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The teaching of the optimization algorithm is a new kind of swarm intelligence optimization
technique, which is superior in optimizing many simple functions. Still, it is not evident in
processing some complex problems (group and teaching classification). Achieving
automatic matching and knowledge transfer in online courses is imperative in
mathematics education. This study proposes a design scheme MTCBO-LR (Multiobjective
Capability Optimizer-Logistic Regression), based on multitask optimization, which enables
precise knowledge transfer and data interaction among many educators. It incorporates
the standard TLBO algorithm to optimize, provides a variety of learning tactics for students
at different stages of mathematics instruction, and is capable of adaptively adjusting these
strategies in response to actual teaching needs. Experimental results on various datasets
reveal that the proposed method enhances searchability and group diversity in various
optimization extremes and outperforms similar methods in resolving to multitask teaching
problems.
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16 Abstract

17 The teaching of the optimization algorithm is a new kind of swarm intelligence optimization 

18 technique, which is superior in optimizing many simple functions. Still, it is not evident in 

19 processing some complex problems (group and teaching classification). Achieving automatic 

20 matching and knowledge transfer in online courses is imperative in mathematics education. This 

21 study proposes a design scheme MTCBO-LR (Multiobjective Capability Optimizer-Logistic 

22 Regression), based on multitask optimization, which enables precise knowledge transfer and 

23 data interaction among many educators. It incorporates the standard TLBO algorithm to optimize, 

24 provides a variety of learning tactics for students at different stages of mathematics instruction, 

25 and is capable of adaptively adjusting these strategies in response to actual teaching needs. 

26 Experimental results on various datasets reveal that the proposed method enhances 

27 searchability and group diversity in various optimization extremes and outperforms similar 

28 methods in resolving to multitask teaching problems.

29 Keywords: Task optimization; Teaching optimization algorithm; Multiobjective optimization

30

31 1 Introduction

32 The current trend in educational tasks is increasingly focused on personalized and specific 

33 development, aiming to meet the unique educational needs of each student and achieve 

34 dynamic resource allocation [1]. Therefore, the school education system should continue to 
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35 explore and improve teaching methods. Intelligent teaching-assistant systems are a solution that 

36 can automatically allocate appropriate learning resources and tasks based on students' learning 

37 situations and performances, achieving dynamic resource allocation. Meanwhile, teachers 

38 should pay attention to and analyze students' personalized needs, stimulating their learning 

39 interests and potential through diversified teaching methods and strategies. This personalized 

40 and specific teaching approach not only helps improve students' learning effectiveness but also 

41 cultivates their innovation and problem-solving abilities, better adapting to the needs of future 

42 society[2].

43 From design modelling to task optimization, viewing mathematics education as a 

44 multiobjective optimization issue that can be solved by iteratively refining a set of objectives 

45 under constrained decision-making variables is gaining traction as a promising new approach. 

46 Evolutionary multitask, or multi-factor optimization, is a new emerging sub-field in optimization 

47 that combines the ideas of evolutionary computation and multitask learning. Unlike the previous 

48 two, multi-factor optimization integrates multiple interrelated objective functions to solve various 

49 optimization tasks simultaneously and explore potential relationships among tasks to improve 

50 efficiency and effectiveness[3]. Mathematics teaching is a four-satellite activity. Students can 

51 perform multiple tasks. To effectively utilize the commonalities and differences among various 

52 problems, knowledge of one job should be used to assist the solution of another job, which is a 

53 multiobjective problem-solving process.

54 Existing algorithms typically solve singular optimization tasks in isolation and seldom 

55 leverage knowledge gained from one task to help solve another[4]. However, it is plausible that 

56 correlations exist between diverse problems, potentially augmenting the efficiency and 

57 effectiveness of problem-solving. Drawing inspiration from the human ability to manage multiple 

58 tasks, Gupta et al. [5] employed multitask learning in evolutionary computation, introducing a 

59 novel optimization problem category known as multi-factor optimization and a multi-factor 

60 evolutionary algorithm. The objective of this algorithm is to exploit potential synergies among 

61 disparate optimization problems, making efficient use of both shared and distinct characteristics 

62 of the various issues. This paper introduces the MTCBO framework, which is founded on 

63 multitask optimization. The MTCBO algorithm is based on the principles of teaching optimization 

64 algorithms. It capitalizes on the fact that students can transfer knowledge from teachers or 

65 classmates with similar or dissimilar attributes, effectively leveraging the commonalities between 

66 problems. This approach has the potential to greatly enhance the efficiency and performance of 

67 problem-solving.

68 We propose MTCBO-LR, which can realize the function of introducing different learning 

69 strategies at different stages. Three learning strategies are presented to update knowledge at 

70 the teaching level, and two are introduced to update knowledge at the student level. The main 

71 contribution of this paper is

72 (1) Using multiple strategies can maintain the diversity of the population while maintaining a 

73 higher convergence accuracy and speed. The algorithm adaptively selects appropriate learning 

74 strategies, enhances the positive influence of shared information, and improves the overall 

75 optimization ability of the algorithm.
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76 (2) The normal distribution perturbation strategy is introduced to help students escape from 

77 local optimality. The selection strategy based on the ranking is adopted to find high-quality 

78 solutions while maintaining the population's diversity, ensuring the algorithm's generalization and 

79 accuracy..

80 2 Related Work

81 The complexity of mathematics teaching tasks is continuously increasing, leading to 

82 increased complexity in teaching preparation and student acceptance of the teaching process. 

83 To address these challenges, researchers have proposed the concept of multiobjective 

84 optimization. By leveraging multiobjective optimization techniques, it is possible to transfer 

85 knowledge across diverse tasks, thereby improving overall problem-solving capabilities. 

86 Researchers have made significant progress in implementing multiobjective optimization 

87 algorithms and have devised effective methods to leverage information among tasks.

88 For instance, Bali et al. presented a novel evolutionary computing framework that can learn 

89 online and enhance optimization  Zhou [6] proposed the MFEA-AKT algorithm, which utilizes 

90 adaptive knowledge transfer to match appropriate crossover operators adaptively. Gupta 

91 introduced the multi-factor evolutionary algorithm, which combines multitask optimization with 

92 evolutionary algorithms. Liang et al. [7] proposed a novel multi-factor evolutionary algorithm with 

93 a genetic transformation strategy that can improve knowledge transfer efficiency.

94 These approaches facilitate exploring and exploiting subspaces for each task and the 

95 combined search space, enabling individuals to discover lesser-known areas and enhance 

96 optimization performance. The advent and evolution of multiobjective optimization algorithms 

97 offer effective techniques and concepts for tackling mathematical teaching tasks.

98 Research into multitask evolutionary algorithms has received considerable attention to 

99 lessen the computational load; Huang et al. proposed the SAEF-AKT framework, which uses an 

100 adaptive knowledge transfer strategy and creates a proxy model by mining past searches for 

101 information. Similarly, Wu [8] introduced the MFEA/D-DRA algorithm that employs decomposition 

102 and dynamic resource allocation strategies to transform the problem into several sub-problems 

103 for adaptive resource allocation. Furthermore, Bali et al. presented the cognitive evolutionary 

104 multitask engine, which analyzes the data produced during multitask optimization and lowers 

105 optimization costs by adjusting the degree of online genetic transfer.

106 Some investigations have proposed novel algorithms and frameworks to expedite the 

107 optimization process. For instance, the collaboration protocol evolutionary framework introduced 

108 by Chen et al. can partition the problem into low-dimensional subproblems and use a locally-

109 search algorithm grounded on quasi-Newton methods to achieve knowledge exchange and local 

110 search for solving high-dimensional optimization problems. Similarly, Hao et al.[9] developed the 

111 EMHH algorithm, a graph-based evolutionary multitask hyperheuristic algorithm that addresses 

112 multitask problems through cooperative action. Additionally, Xu et al.[10] presented the MTO-

113 FWA algorithm, which employs transfer sparks to transmit genetic information to enhance 

114 optimization efficiency. Furthermore, Feng et al. integrated multi-factor and differential evolution 

115 algorithms to resolve multiobjective optimization problems. Rao et al.[11] devised a heuristic 
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116 swarm intelligence optimization algorithm named Teaching-Learning-Based Optimization 

117 (TLBO), which optimizes by emulating classroom teaching processes. TLBO outperforms 

118 traditional swarm intelligence optimization algorithms with fewer control parameters, a more 

119 straightforward overall structure[12-13], faster-running speed, and more straightforward 

120 implementation. Consequently, it has been widely adopted in various fields, capturing the 

121 attention of many researchers and continually improving[14-15]. The MTCBO-LR algorithm 

122 incorporates the normal distribution perturbation strategy. After generating new descendant 

123 students, the MTCBO-LR algorithm utilizes a rank-based selection strategy to retain students 

124 with superior quality.

125 3 Method

126 3.1MTCBO

127 EMO algorithm plays a significant role in scientific research and engineering applications[16]. 

128 Therefore, solving multiobjective optimization problems is of great importance. Here, we first 

129 define EMO:

 1 2min ( ) ( ), ( ), , ( )mF x f x f x f x  （

1）

130  The EMO algorithm is a method for solving optimization problems with multiple conflicting 

131 objective functions by seeking numerous optimal solutions to balance the relationship between 

132 these objective functions. EMO algorithms are widely used in scientific research and engineering 

133 applications, such as machine learning, logistics planning, power system optimization, etc.. They 

134 can help people better understand and solve practical problems.

135 The present study introduces an enhanced single-objective multitask optimization algorithm, 

136 MTCBO. The primary iteration of this algorithm consists of two scenarios. During the initial 

137 stages of the algorithm, if the number of solutions in the archive set Arc is less than Na, i.e., Arc 

138 is small in size, it is challenging to estimate the trend of the Pareto Front (PF) accurately. We 

139 propose the MTCBO approach for optimizing the MOP method [17] to address this. This 

140 technique uses crossover and mutation operators on P populations to create new offspring 

141 populations. The proposed method subsequently updates the archive set Arc and applies fast, 

142 non-dominated sorting and crowded distance selection to choose the next generation population 

143 in the population.

144 These two individuals are selected from different sub-populations if this probability condition 

145 is unmet. Finally, we update the archive set Arc and sub-populations p1, p2, ...,

        1 2 1 1 2 2, , , arg min ,arg min , ,arg mink K Kx x x P x P x P x   （

2）

146 3.2 MTCBO-LR

147 3.2.1Adaptive Knowledge Transfer

148 To improve the MTCBO algorithm, we propose two methods of adaptive knowledge transfer 

149 for improvement. Each student chooses learning strategies from the two strategies according to 

150 their situation, and students update knowledge through appropriate learning strategies in 

151 different optimization stages. Different from the greedy selection strategy of the original TLBO 
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152 algorithm, the selection of new offspring is based on individual factor value and factor diversity.

153 Following the above principles, we divided all students into different classes, each class was 

154 assigned different learning strategies based on skill factors, and the performance of the 

155 strategies varied. Among them, teacher  and  were the best individuals from teacher ,

fX  teacher ,n

fX

156 class and class factor value, respectively. Teaching assistants  and  were randomly k ,

mX  k ,

m

nX

157 selected individuals from class  and class , respectively. Mean and were the average scores 
P nP

158 of class  and class , respectively. The individual update formula is as follows:
P nP

  
  

,, teacher , mean ,

, new 

, teacher , , mem ,

rand(1, ) * / 2 *  if rand 

rand(1, ) * / 2 *  otherwise 
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f n

i
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n n
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

 

      
    

（

3）

159 X Strategy 1: This strategy aims to increase diversity among each student. Teachers and 

160 teaching assistants provide instruction based on the difference between their average level and 

161 the class's average score.

  
  ,

, teacher , , meam ,

nww , new 
*

, teacher , mean, 

rand(1, ) / 2 *  if rand 

rand(1, ) * / 2  otherwise 
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f n
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 

      
   

（

4）

162     X Strategy 2: A reverse learning mechanism is implemented in this learning strategy. 

i iX U L X  && （

5）

163 The value of RMP allows for balancing between exploration and exploitation of the search 

164 space. When RMP[18] is close to 1, students will always receive knowledge transfer from 

165 individuals with the same attribute, which can help scan critical areas of the search space but 

166 increase the risk of falling into local optima. Conversely, when rmp is lower than 1, 

167 communication between individuals from different cultures can aid in escaping local optima. 

168 Figure 1 illustrates the algorithm flow of MTCBO-LR, which follows the above principles.

169

170 Figure 1 Algorithm flow of MTCBO-LR

171

172 3.3 Adaptive Matching and Vertical Spread Strategies

173 In the later stage of learning, students are likely to encounter learning bottlenecks that make 

174 it difficult to continue improving. Through a certain degree of "perturbation", students can be 

175 helped to break out of the bottleneck, explore a wider search space, and find better solutions. 

176 The criterion that initiates this strategy is as follows: when the optimal value of any task factor 
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177 remains unchanged for ten successive generations, all students will undergo perturbation, and 

178 their knowledge will be updated according to their respective learning strategies. The formula for 

179 updating individuals is as follows:

new , new ,  normrnd (0,0.01,1, D)i iX X  
  （

6）

180 In the later stages of learning, students are likely to encounter learning bottlenecks that are 

181 difficult to overcome. By introducing a certain degree of "disturbance", students can break 

182 through bottlenecks, explore a broader search space, and find better solutions[19]. The trigger 

183 condition for this strategy is: when the optimal factor value of any task does not change for ten 

184 consecutive according to the learning strategy. The individual update formula is as follows:

185 Where ormrnd (0, 0.01,1, D) is a 1×D normal distribution matrix, 0 and 0.01 are the mean 

186 and standard deviation, respectively.

187 The MTCBO-LR method refers to two MFEA algorithms, the original MFEA and MFEA-AKT. 

188 Unlike the original MFEA, which uses a single crossover operator, MTCBO-LR uses multiple 

189 crossover operators with different search performances for knowledge transfer. Specifically, 

190 during the algorithm execution process, MTCBO-LR randomly selects two parent individuals to 

191 generate offspring individuals. If these two parent individuals have the same skill factor, the SBX 

192 crossover operator is used for crossover operation. Otherwise, whether to perform crossover or 

193 mutation operation on these two parent individuals is determined according to the preset random 

194 mating probability. Suppose parents have different skill factors and need to perform crossover 

195 operations. In that case, MTCB0-LR will randomly assign cf for activating the crossover factor W 

196 or p and use the corresponding crossover operator to perform crossover operations on W and p. 

197 In addition, the generated individuals, i.e., migration offspring, will use the crossover factor Cfa 

198 as their attribute. If two offspring C1 and C2, are generated by a crossover operation or a 

199 mutation operation without knowledge transfer, then C1 and C2 will inherit their corresponding 

200 parent crossover factor, respectively.

201

 
 

1 2 1 1

1 1 1 2 2 2 1 1

1 2 1 1

2 2 2 1 1 1 2 2

, , , , , , , , ,

, , , , , , , , ,

i i j j n

i i j j n

c p p p p p p p

c p p p p p p p

 

 

   

   
（

7）

202 3.4 Selection strategy based on KNN

203 The KNN model classifier was trained using a historical transfer data set containing positive 

204 and negative transfer individuals[20], denoted as HTS. Let M represent the set of all trained KNN 

205 model classifiers. The following steps were taken to train the KNN model classifier: (1) A 

206 similarity matrix was constructed based on the distance between individuals in HTS. The initial 

207 label of all training data was set to "unlabeled." The maximum local neighbour N of each 

208 individual in HTS, which covers the maximum number of neighbours of the same category, was 

209 calculated. (2) The maximum local neighbour Ni of all individuals Si with the "unlabeled" label 

210 was put into set Q. (3) The maximum value N in set Q was found, and a model M=<Cls(s;), 

211 Sim(s;), Num(s;), Rep(s;)>, where Num(s;) = N, was constructed. This indicates that s; covers 

212 the maximum number of neighbours of the same category. Model M was then put into the model 
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213 set M.

214 Using the KNN classifier based on the above steps can avoid the problem of randomly 

215 selecting individuals from the current population, which often leads to repeat visits to hopeless 

216 regions in the search space and low efficiency in traditional algorithms. Mathematical proofs 

217 suggest that introducing a conflicting solution and its opposite has greater potential than 

218 introducing two unrelated random solutions to approach the optimal global solution without prior 

219 information[21]. Therefore, we defined a conflicting point in this paper. Additionally, a selection 

220 strategy was designed that considers both factor value and factor diversity to update individuals. 

221 In this paper, we design a selection strategy considering factor value and diversity to renew 

222 individuals. It is implemented in the MTCBO-LR algorithm. For the populations corresponding to 

223 task T, we arranged them from most minor to most significant regarding factor value and 

224 assigned Fitness Rank (FR) to each individual. The calculation formula of FR is as follows:

225

, 1, 2, ,i

jFR i i NP  L
（

8）

226 The smaller the factor value of an individual, the lower its corresponding fitness level. The 

227 population corresponding to task Tyj is sorted in ascending order of factor diversity, and the 

228 resulting order is the diversity rank (DR) of the individual, which is defined by the formula:

, 1, 2, ,i

jDR i i NP  L
（

9）

229 The smaller the factor diversity of an individual, the smaller the corresponding diversity level. 

230 In task Tyj, the rankRy of individual Xyi is defined as:

(1 )i i i

j j jR DR FR      （

10）

231 where  is the current iteration number and Maxgen is the maximum iteration 

G

Maxgen
 

232 number.

233 4 The experiment

234 4.1 Experiment Settings

235 This experiment mainly verifies the optimization effect of the proposed method on small-

236 scale problems, which is suitable for forming small-class online collaborative learning groups. A 

237 simulated data set containing seven features of 30 learners (numbered S1-S30) was selected. 

238 To assess optimization test problems, this study selected seven sets of classic single-

239 objective to multitask optimization problems and ten sets of complex single-objective multitask 

240 optimization problems for analysis. Each benchmark test problem consisted of two component 

241 tasks containing a single-objective optimization task. The seven classic Multitask Optimization 

242 Technique Reports had varying degrees of overlap and similarity between the component tasks. 

243 The overlap degree refers to the similarity or difference of the optimal global solution of the two 

244 tasks in the same search space, with three types of overlap degrees. CI meant that the 
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245 component tasks in the benchmark test problem had precisely the same global optimal solution. 

246 PI meant that the optimal global solution of the component tasks in the benchmark test problem 

247 was partially the same. NI meant that the component tasks in the benchmark test problem had 

248 completely different global optimal solutions. The similarity degree refers to the similarity of the 

249 shape and size of the two tasks in the same search space. It should be noted that since the 

250 MTCBO-LR algorithm processed two tasks once in each iteration, while the SOTLBO algorithm 

251 processed only one task, the total number of iterations of the SOTLBO algorithm was 250 when 

252 reaching the termination condition, while the MTCBO-LR algorithm was 500.

253 4.2Single-objective Task Benchmarking Problem Performance

254 Assuming the mean and standard deviation were 0 and 0.01, respectively, the other 

255 parameters were the same as the original publication. Table 1 presents the average factor 

256 values and standard deviations of five algorithms independently run 20 times, with the best 

257 experimental results highlighted in bold. The final comparison was based on the average results 

258 of 20 independent runs.

259

260 As shown in Table 1, the MTCBO-LR algorithm performs better in 7 tasks. Specifically, the 

261 MTCBO-LR algorithm has a minor score in all group problems in the seven tasks and has a clear 

262 advantage, especially compared to the traditional SOTLBO algorithm. This is because the 

263 MTCBO-LR algorithm employs multiple strategies to maintain population diversity, thus 

264 maintaining high convergence accuracy. The superiority of the MTCBO-LR algorithm 

265 demonstrates that novel and adaptive learning strategies can reduce the negative transfer of 

266 knowledge and that rank-based selection strategies can maintain population diversity while 

267 finding high-quality solutions, enhancing the algorithm's development and exploration 

268 capabilities. The experimental results are confirmed in Figures 2, 3, and 4, indicating that the 

269 MTCBO-LR algorithm has high effectiveness in solving MTO problems.

270 4.3 Multiobjective Task Benchmark Performance

271 To assess the efficacy of the MTCBO-LR algorithm on multiobjective tasks, we conducted a 

272 comparative analysis across five distinct task combinations. To ensure parity across all trials, we 

273 maintained a population size of 100 and a maximum evaluation threshold of 200,000 as the 

274 termination criterion[22]. Each algorithm underwent 20 independent runs for the sake of 

275 comparison. This study employed the iteration count of the MTCBO-LR algorithm as the 

276 benchmark, set as the abscissa. It used the corresponding true factor value of all algorithms as 

277 the ordinate. Our findings indicate that the MTCBO-LR algorithm outperforms other EMT 

278 algorithms regarding convergence speed across most test sets. The algorithm generates high-

279 quality solutions within fewer than 150 iterations for the CI+HS and NI+HS test problems. This 

280 superior performance is attributed to the algorithm's multifaceted approach and enhanced 

281 accuracy and speed of convergence. In contrast, other algorithms could not attain comparable 

282 results at termination. Table 2 provides an overview of the parameter settings for the comparison 

283 algorithms.

284 Table 3 details the parameter configurations for both the MFEA-GHS and MFEA-AKT 

285 algorithms. To analyze the convergence performance of the MTCBO-LR algorithm, this study 
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286 presents graphical visualizations of the convergence of the SOTLBO, MFEA, MFDE, MFPSO, 

287 and MTCBO-LR algorithms across five distinct sets of single-objective multitask test problems. It 

288 is worth noting that each algorithm was run for differing iterations. Using a population size of 100 

289 and a maximum evaluation threshold of 100,000, each algorithm underwent 20 independent runs, 

290 and the convergence curve graphs for four strategies are provided.

291 4.4 Global Strategy Effectiveness Evaluation

292 The MTCBO-LR algorithm incorporates position. These individuals can generate new 

293 populations from their optimal historical positions. The optimal global position (gbest) selection 

294 depends on the distribution of non-dominant solutions. The unsuccessful game strategies learn 

295 from the successful ones and refer to the specific game process network. This paper adopts a 

296 corresponding strategy evaluation, and convergence curves are constructed for MTCBO-LR and 

297 seven different algorithms targeting two different tasks, as shown in Figures 5 and 6. The graphs 

298 illustrate that the convergence curve IGD value of the MTCBO-LR algorithm is higher, and the 

299 convergence speed is faster, indicating better performance.

300 4.5 Discussion

301 In the MTTLBO algorithm, students learn from teachers and classmates in different tasks, 

302 realizing cross-task knowledge transfer. Introducing a reverse learning mechanism in the 

303 "teaching" stage can prevent convergence too fast and fall into local optimal. The experimental 

304 results show that compared with the existing evolutionary multitasking algorithms, the MTTLBO 

305 algorithm achieves satisfactory results in single-objective multitasking optimization. In the 

306 MTTLBO-MR algorithm, each student learns from other individuals in different tasks, realizing 

307 cross-task knowledge transfer and multi-learning strategy ensures the diversity of search. In the 

308 late iteration period, the normal distribution perturbation strategy is introduced to prevent falling 

309 into local optimal effectively. Specifically, the training results of the model can better enable the 

310 members of the online collaborative learning group to help each other, ensure heterogeneity 

311 within the group, and realize the mixed grouping of learners with different cognitive levels and 

312 learning styles to realize the complementary features among the members of the learning group. 

313 The formed online learning group contains learners with different characteristics. When 

314 completing collaborative learning tasks, various thinking modes of learners of different types 

315 interact and collide within the group to realize brainstorming, improve the efficiency of 

316 collaborative learning, and promote the cultivation of various abilities of learners.

317

318 5 Conclusion

319 In this paper, we propose the MTCBO multiobjective optimization strategy and the phased 

320 optimization method of MTCBO-LR, which can give different teaching strategies for students with 

321 varying learning situations to achieve better optimization results. At the same time, we also 

322 propose three different learning strategies for global effectiveness evaluation to guide the 

323 algorithm's exploration and utilization in the search process. These learning strategies can 

324 expand the exploration range, increase the exploration depth, and improve the search accuracy, 

325 thus effectively improving the optimization effect.
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326 Our experiments showed that the MTCBO-LR algorithm showed excellent optimization 

327 results in different test problems. This demonstrates the effectiveness of our proposed 

328 multiobjective optimization strategy and phased optimization method, which can significantly 

329 improve the learning effect. The multiobjective optimization strategy of MTCBO proposed in this 

330 paper and the phased optimization method of MTCBO-LR, as well as the introduction of learning 

331 strategies, provide a new idea and method for solving multiobjective optimization problems. 

332 Future research can further explore how to apply these strategies in practical problems and how 

333 to combine them with other optimization algorithms to improve the optimization effect further.

334 Currently, the most lacking mathematics education is reasonable and reliable teaching 

335 strategies and personalized plans. The MTCBO-LR algorithm designed in this paper can 

336 effectively realize the complement process of the corresponding strategy, ensure the successful 

337 implementation and development of teaching, and achieve good teaching results.

338
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Figure 1
Figure 1 The algorithm flow of MTCBO-LR
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Figure 2
Figure2 The effectiveness of five algorithms on CI+HS tasks
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Figure 3
Figure3 The effectiveness of five algorithms on CI+MS tasks
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Figure 4
Figure4 The effectiveness of five algorithms on PI+HS tasks
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Figure 5
Figure 5 Convergence curves of different algorithms on UF3
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Figure 6
Figure 6 Convergence curves of different algorithms on ZDT1
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Table 1(on next page)

Table 1 Score performance of 7 groups of single-target multi-task benchmarks
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1 Table 1 Score performance of 7 groups of single-target multi-task benchmarks

MCI+HS MFEA-

GHS

EMT TMOMFEA MTCBO-

LR

MCI+MS -0.063 -

1.512

-0.523 -0.621

MCI+LS 2.965 1.412 -1.523 -1.421

MPL+HS 1.508 0.052 1.762 -2.402

MPI+MS -0.107 -

0.145

-1.422 -0.091

MPI+LS 2.991 3.379 2.764 -0.987

MNO+HS 0.215 -

0.445

  0.124 -0.447
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Table 2(on next page)

Table 2 Parameter settings of algorithms MFEA-GHS and MFEA-AKT
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1 Table 2 Parameter settings of algorithms MFEA-GHS and MFEA-AKT

MFEA-GHS MFEA-AKT

zoom ratio:sr∈[0.5,1.5] polynomial index of variation:5

number of top individuals:2 Analog Binary Cross Index:2

polynomial index of variation:5 arithmetic cross index:0.25

Analog Binary Cross Index:2 geometric cross index:0.25

2
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Table 3 Performance of 7 groups of single-objective multi-task benchmarking problems
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1 Table 3 Performance of 7 groups of single-objective multi-task benchmarking problems

CI+HS WORK MFEA-

GHS

MFEA MFEA-

AKT

MTCBO-

LR

Griewank 3.85E-01 3.59E-01 1.55E-05 0.00E+00CI+MS

Rastrign 1.41E-01 2.17E+02 3.99E-02 0.00E+00

Ackley 4.12E+00 4.63E+00 6.11E-05 2.21E-01CI+LS

Rastrign 3.14E+02 2.79E+01 2.79E-02 0.01E-01

Ackley 2.63E+01 9.09E-01 1.23E-05 1.07E+01PL+HS

Schewfel 4.73E-02 2.45E+02 3.57E-02 1.22E+02

Mode 6.17E-01 6.19E-01 2.33E-05 1.16E+01PI+MS

Modify 9.02E-02 7.17E-02 5.28E-02 2.87E+03

Modify 5.83E+01 1.59E-01 3.53E-05 1.19E+01PI+LS

Schewfel 1.73E+02 5.57E+02 6.10E-02 1.64E+03

Mode 8.91E-01 7.59E-01 2.25E-05 1.87E+02NO+HS

Ackley 2.86E+02 8.17E+02 4.16E-02 2.61E-01
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