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Annual increases in global energy consumption are an unavoidable consequence of a
growing global economy and population. Among different sectors, the construction
industry consumes an average of 20.1% of the world's total energy. Therefore, exploring
methods for estimating the amount of energy used is critical. There are several
approaches that have been developed to address this issue. The proposed methods are
expected to contribute to energy savings as well as reduce the risks of global warming.
There are diverse types of computational approaches to predicting energy use. These
existing approaches belong to the statistics-based, engineering-based, and machine
learning-based categories. Machine learning-based frameworks showed better
performance compared to these other approaches. In our study, we proposed using
Extreme Gradient Boosting (XGB), a tree-based ensemble learning algorithm, to tackle the
issue. We used a dataset containing energy consumption hourly recorded in an office
building in Shanghai, China, from January 1, 2015, to December 31, 2016. The
experimental results demonstrated that the XGB model developed using both historical
and date features worked better than those developed using only one type of feature. The
best-performing model achieved RMSE and MAPE values of 109.00 and 0.24, respectively.
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ABSTRACT10

Annual increases in global energy consumption are an unavoidable consequence of a growing global econ-

omy and population. Among different sectors, the construction industry consumes an average of 20.1% of

the world’s total energy. Therefore, exploring methods for estimating the amount of energy used is critical.

There are several approaches that have been developed to address this issue. The proposed methods

are expected to contribute to energy savings as well as reduce the risks of global warming. There

are diverse types of computational approaches to predicting energy use. These existing approaches

belong to the statistics-based, engineering-based, and machine learning-based categories. Machine

learning-based frameworks showed better performance compared to these other approaches. In our

study, we proposed using Extreme Gradient Boosting (XGB), a tree-based ensemble learning algorithm,

to tackle the issue. We used a dataset containing energy consumption hourly recorded in an office

building in Shanghai, China, from January 1, 2015, to December 31, 2016. The experimental results

demonstrated that the XGB model developed using both historical and date features worked better than

those developed using only one type of feature. The best-performing model achieved RMSE and MAPE

values of 109.00 and 0.24, respectively.
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INTRODUCTION25

The annual rise in global energy use is one of the direct consequences of economic and population26

expansion. Energy use in the construction sector, which accounts for an average of 20.1% of the world’s27

total energy use, is a vital aspect of the global energy consumption picture (Conti et al., 2016). In many28

nations, this proportion is substantially greater; for example, in China and the United States, it contributes29

up to 21.7% and 38.9% of total energy use, respectively (China Association of Building Energy Efficiency,30

2021; Becerik-Gerber et al., 2014). This rising energy use worsens global warming and causes natural31

resource depletion. Therefore, increasing the efficient use of energy in the construction sector is essential32

because it lessens the risk of global warming and enhances sustainable growth. To effectively manage33

diverse technical activities (e.g., demand response during construction (Dawood, 2019), organization34

of urban power systems (Moghadam et al., 2017), and defect detection (Kim et al., 2019), prediction35

of energy demand is crucial in preventing ineffective energy use in many sectors (Min et al., 2023; Li36

et al., 2022), especially construction (Liu et al., 2023; Zhang et al., 2021). Besides, a good estimation of37

energy demand helps to create energy-saving plans for heating, ventilation, and air conditioning (HVAC)38

systems (Du et al., 2021; Min et al., 2019). To address this issue, several computation frameworks39

were proposed to predict energy use. Zhao and Magoulès (2012) performed a comprehensive review of40

numerous computational frameworks developed to estimate construction energy use. According to their41

investigation, all approaches for predicting energy use may be generally categorized into three groups:42

statistics-based, engineering-based, and machine learning-based techniques.43

Statistics-based approaches were employed to model the correlation between energy use and involved44

attributes with a parametrically defined mathematical formula. Ma et al. (2010) developed models using45

multiple linear regression and self-regression techniques and essential energy consumption features46
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characterized by particular population activities and weather conditions. The least squares method was47

used to estimate parameters as well as approximate monthly energy consumption for broad-scale public48

housing facilities (Ma et al., 2010). Conducting the principal component analysis, Lam et al. (2010)49

discovered three significant climatic variables, comprising dry-bulb temperature, wet-bulb temperature,50

and global solar radiation, to create a novel climatic index. After that, regression models were built51

to establish an association focusing on the daily period between the climatic index and the simulated52

cooling demand. Despite fast and simple calculations, these approaches often lack flexibility and have53

poor prediction ability due to limitations in handling stochastic occupant behaviors and complicated factor54

interactions between factors (Ahmad et al., 2014).55

Applying physics’ concepts and thermodynamic calculations, engineering-based approaches determine56

the energy use of each building component (Zhao and Magoulès, 2012). Although the defined relationships57

between input and output variables improve the model’s explainability, these approaches need curated58

sources of building and environmental data whose accessibility is very limited (Zhao and Magoulès, 2012).59

Some researchers have attempted to reduce the complexity of engineering models in order to improve their60

ability to accurately predict energy use. Yao and Steemers (2005) developed a straightforward approach61

for generating a load profile (SMLP) to predict the breakdown of everyday energy consumed by electrical62

household appliances. This technique estimated seasonal energy demand since the average daily energy63

(consumed by these appliances) seasonally fluctuated. Based on frequency response characteristic analysis,64

Wang and Xu (2006) obtained simple physical properties to determine the model parameters. In addition,65

they used monitored operating data to identify parameters for a thermal network of lumped thermal mass66

to describe a building’s interior mass (Wang and Xu, 2006). The prediction accuracy, however, is one of67

the most concerning issues because the simplified model may be somewhat underfitting (Wei et al., 2018).68

Machine learning-based approaches utilize either traditional machine learning (e.g., Random Forest,69

Support Vector Machines) or deep learning (e.g., Artificial Neural Networks (ANN), Convolutional Neural70

Networks (CNN), recurrent neural networks (RNN)) for modeling by learning from historical data (Nora71

and El-Gohary, 2018; Tian et al., 2019). These machine learning-based approaches usually exhibit better72

performance compared to other methods, especially in event detection (Wang et al., 2023; Sun et al.,73

2023c; Ren et al., 2022) and other applications using time-series data (Sun et al., 2023a,b; Long et al.,74

2023). To predict perennial energy use, Azadeh et al. (2008) suggested using ANN in combination with75

an analysis of variance. The approach was demonstrated to outperform the standard regression model.76

Hou and Lian (2009) developed a computational framework using support vector machines to estimate the77

cooling demand of an HVAC system, and their findings showed that it was dominant over Autoregressive78

Integrated Moving Average (ARIMA) models. Tso and Yau (2007) used Decision Tree (DT), stepwise79

regression, and ANN to estimate Hong Kong’s power consumption. The results suggested that the DT80

and ANN techniques performed somewhat better during the summer and winter seasons, respectively.81

However, many traditional machine learning approaches use shallow frameworks for modeling, reducing82

prediction efficiency. As black box models, deep neural networks do not well explain physical behaviors,83

but they can effectively learn abstract features from raw inputs to build superior models (Ozcan et al.,84

2021a). Cai et al. (2019) constructed prediction frameworks using RNN and CNN to measure time-series85

building-level load in recursive and direct multi-step approaches, respectively. Compared to the seasonal86

ARIMA model with exogenous inputs, the gated 24-hour CNN model had its prediction accuracy improved87

by 22.6% in the experiments. To calculate electric load consumption, Ozcan et al. (2021b) suggested88

dual-stage attention-based recurrent neural networks consisting of encoders and decoders. Experimental89

results revealed that their proposed method vanquished other methods (Ozcan et al., 2021b). A hybrid90

sub-category of deep learning called deep reinforcement learning (DRL) blends reinforcement learning91

decision-making with neural networks (Mnih et al., 2015; Levine et al., 2016; Sallab et al., 2017). DRL92

approaches are often used in the construction industry to investigate the ideal HVAC control (Wei et al.,93

2017; Huang et al., 2020). DRL approaches obtained promising outcomes for energy use prediction (Wei94

et al., 2017; Huang et al., 2020). Liu et al. (2020) examined the efficacy of DRL approaches for estimating95

energy consumption, and their results suggested that the deep deterministic policy gradient (DDPG)96

method had the most predictive power for single-step-ahead prediction. Although the deployment of DRL97

approaches yields initial success, further research is required to determine its ability to solve this issue.98

In this study, we proposed a more effective method to predict energy use in the construction sector99

using four tree-based machine learning algorithms, including Random Forest (RF), Extremely Randomized100

Trees (ERT), Extreme Gradient Boosting (XGB), and Gradient Boosting (GB). Four feature sets are101
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created to combine with four learning algorithms to form 16 models. The four feature sets correspond to102

four development and testing scenarios: (1) using 1-3 historical hours, (2) using 1–5 historical hours, (3)103

using 1–7 historical hours, and (4) using 1–9 historical hours before prediction time as input features. The104

best-performing models are then selected as the final models for evaluation.105

MATERIALS AND METHODS106

Dataset107

In this study, we used an energy consumption dataset recorded in an office building in Shanghai (Fu et al.,108

2022). The energy consumption data were recorded hourly from January 1, 2015, to December 31, 2016.109

Since data from February 29, 2016 was not recorded, the dataset has a total of 17,520 recorded samples.110

The original dataset was split into three parts: ‘From 1 January 2015 to 30 April 2016’, ‘From 1 May111

2016 to 31 August 2016’, and ‘From 1 September 2016 to 31 December 2016’ which were used as a112

training set, validation set, and test set. In the case of time series data, random samples might lead to a113

failed training session since the model could not learn the data that were included in the validation or test114

set. The information about the data sets is summarized in Table 1.115

Dataset No. of samples Time period

Training 13872 From 3 January 2015 to 3 August 2016

Validation 1440 From 4 August 2016 to 2 October 2016

Test 2160 From 3 October 2016 to 31 December 2016

Total 17472 From 1 January 2015 to 31 December 2016

Table 1. Data for model development and evaluation

Overview of Method116

Figure 1 provides a flowchart of the modeling strategies of our work with two stages: validation and117

testing. The validation stage aims to select the best model, while the testing stage focuses on evaluating118

the performance of the selected one. The modeling steps of both stages are similarly designed. As the119

samples are time-series, training, validation, and test data are partitioned in time-sequential order. The120

validation and test sets contain 1440 and 2160 samples, which correspond to 60 and 90 days, respectively.121

Initially, the model is developed with the training data and then evaluated on a timely ordered list of 7122

sub-validation sets before being retrained. Each sub-validation set contains 336 validation samples, which123

are equivalent to 14 days. After 7 days, the model is retrained with an updated training set, which is a124

combination of previous training samples and 7-day validation samples. This process is repeated until no125

validation samples are left. After completing the validation stage, we compare the performance of these126

models to select the best one. The best model is then retrained with the new training set, which contains127

all training and validation samples. The obtained model is finally evaluated on the test data in the same128

manner as in the validation stages.129

Data Processing and Featurization130

Figure 2 describes the main steps in data sampling, processing, and featurization. After obtaining the131

training, validation, and test sets, we processed the data to generate their feature sets. The original data132

frame has only two columns: ‘recorded time’ and ‘energy used’. We created two types of features,133

including historical feature (Figure 2.B) and date feature (Figure 2.C). The historical features are energy134

values that were recorded 1,2, ...,n hours before the prediction time with n = 48 (2 days). The labeli135

(value of energy used) of samplei is filled to the column ordered 48th of samplei+1. The columns ordered136

48th
,47th

,46th
, ...,1st present the recorded values of energy used before 1,2,3, ...,48 hours, respectively.137

The first sample was recorded on ‘January 1, 2015 at 00’ hour with undetermined historical features. The138

next 47 samples have their historical features determined with 1,2,3, ...,47 recorded values. Since the first139

48 samples have historical features containing undetermined values, we removed them from the dataset.140

The samples recorded after ‘January 3, 2015 at 00 hour’ have the historical features of all determined141

values. The date features of a sample give information on ‘day of year’, ‘whether it is a holiday’, and142

‘when it is recorded’. The historical and date features are expressed as 48-dimensional and 3-dimensional143

numeric vectors, respectively. To select the best feature set, we examined three scenarios, including using144

only historical features, using only date features, and using combinatory features (Table 2).145
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Figure 1. Overview of Method.

Scenario No. of features Annotation

1 48 Using 1,2, ..., 48 hours before prediction time as historical features

2 3 Using day of year, holiday information, and recorded hour as date features

3 51 Using both historical features and date features as combinatory features

Table 2. Scenarios for model development and evaluation.

Machine Learning Algorithms146

Random Forest147

Random Forest (RF) (Breiman, 2001) is a supervised machine learning method that utilizes an ensemble148

of decision trees. It was developed based on the “bagging” concept (Breiman, 1996) and the use of random149

feature selection (Ho, 1995), which allows for the creation of multiple decision trees that are distinct150

from one another. In RF, the output is determined by either the mode of the classes or the average of the151

predicted values of the multiple trees, depending on the task at hand (i.e., classification or regression). One152

of the key benefits of RF is its ability to overcome the issue of overfitting, which is a common problem in153

decision tree algorithms. Overfitting occurs when a model becomes too closely fitted to the training data,154

leading to poor generalization to unseen data. RF is able to mitigate this issue due to its use of multiple155

decision trees and the random feature selection process.156
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Figure 2. Major steps in data sampling, processing, and featurization. (A. Data sampling, B. Creating

historical variables, C. Extracting binary timing vectors)

Extremely Randomized Trees157

Extremely Randomized Trees (ERT) (Geurts et al., 2006) is a supervised machine learning method that is158

designed to address both classification and regression tasks. It is based on the principles of tree-based159

ensembles, and the central aspect of this method is the significant randomization of both the attributes and160

the cut points used to divide a tree node. In some cases, ERT may construct trees whose structures are161

entirely random and unrelated to the output values of the training sample. The degree of randomization162

can be controlled through the use of a parameter, allowing the user to adjust the intensity of randomization163

as needed. ERT is known for its accuracy as well as its improved computational speed compared to other164

tree-based methods such as Random Forest.165

Extreme Gradient Boosting166

eXtreme Gradient Boosting (XGB) (Chen and Guestrin, 2016) is a powerful supervised machine learning167

algorithm that combines the principles of Gradient Tree Boosting (Friedman, 2001; Mason et al., 2000)168

with Classification and Regression Trees (CART) (Steinberg and Colla, 2009). It is equipped with169

additional regularization options, including L1 and L2 penalization. XGB is trained to minimize a170

regularized objective function that includes a convex loss function and a penalty scoring function based171

on the difference between the predicted outcomes and the true labels. Its boosting strategy involves the172

successive use of random subsets of data and features, with the weight of mispredicted classes increasing173

in each iteration. This method has been shown to be effective for a range of tasks.174

Gradient Boosting175

Gradient Boosting (GB) (Friedman, 2001, 2002) is a supervised machine learning technique that is based176

on the concept of improving the performance of a weak learner through the use of an ensemble approach.177

It involves sequentially training weak learners on filtered subsets of the data, with each successive learner178

focusing on the observations that were not well predicted by the previous learners. GB can be applied to a179

variety of tasks, including regression, multi-class classification, and other problems, by utilizing arbitrary180

differentiable loss functions. It is a flexible method that can be generalized to a wide range of situations.181
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Model Selection182

To select the best-performing model for testing, we validated 12 models (created by four learning183

algorithms in combination with three feature sets). Since all models were developed using tree-based184

algorithms, data normalization can be bypassed. The parameter max depth was used for model tuning,185

while the other parameters were set to default once the best model was selected. The model was selected186

based on mean absolute percentage error (MAPE) and root mean squared error (RMSE).187

RESULTS AND DISCUSSION188

The model’s performance was evaluated using two metrics: root mean squared error (RMSE) and mean189

absolute percentage error (MAPE).190

RMSE =

�

N

∑
i=1

(ŷi − yi)2

n
, (1)

MAPE =
1

n

N

∑
i=1

|
Ai −Fi

Ai

|, (2)

where n is the number of samples, ŷ is the predicted value, and y is the true value.191

Model Validation192

Table 3 provides a comparative analysis of the performance of the 12 developed models on the validation193

set. Generally, models developed using combinatory features obtain better performances, followed by194

those developed with historical features and those developed with date features only. The GB model195

shows better performance than other models in scenario 2, with the smallest RMSE and MAPE values.196

While in scenarios 1 and 3, the XGB models work more effectively compared to the others, the ERT197

models have limited performance in all scenarios in terms of RMSE and MAPE. The GB models are198

ranked as the second-best models in scenarios 2 and 3. The performance of RF models is not competitive199

in all scenarios. The results are not surprising because the RF and ERT algorithms share more common200

characteristics, while the XGB algorithm is developed based on the concept of the GB algorithm. Based201

on the results, we selected the XGB model developed using combinatory features as our final model for202

evaluation (Table 4).203

Scenario Model
Metric

RMSE MAPE

1

RF 227.76 0.50

ERT 364.06 0.96

XGB 238.02 0.47

GB 264.72 0.57

2

RF 311.39 0.78

ERT 322.48 0.70

XGB 309.35 0.72

GB 277.25 0.53

3

RF 245.76 0.28

ERT 186.54 0.37

XGB 133.56 0.21

GB 150.41 0.25

Table 3. Performance of the 12 models on the validation set.

Model Evaluation204

Figure 3 gives information on the variation of prediction error over multiple time points of test data. The205

results indicate that the prediction errors show downward trends over the testing period. The errors tend206
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Parameter

(max depth)

Metric

RMSE MAPE

2 146.87 0.32

3 112.38 0.20

4 124.3 0.21

5 135.29 0.21

Table 4. Performance of the tuned XGB models on the validation set.

to increase when the time point’s distance to the retraining point is large and then immediately drop207

once we retrain the model with updated training data. Figures 3.A and B visualize the changes in RMSE208

and MAPE over 76 time points, where each time point represents the 14-day period with between-point209

distances of one day. Besides, Figures 3.C and D illustrate the performance of the best and worst predicted210

time points over 336 consecutive hours. To quantify the variation of prediction error, we computed the211

mean, standard deviation, and 95% confidence interval (95% CI). The RMSE achieves a mean of 109.00212

and a standard deviation of 37.07, while the MAPE obtains a mean of 0.24 and a standard deviation213

of 0.08. The 95% CI values of RMSE and MAPE are (100.47, 117.52) and (0.22, 0.26), respectively214

(Table 5).215

A B

C D

Figure 3. Variation in prediction error over multiple time points of test data (A. MAPE, B. RMSE, C.

Best predicted time point, D. Worst predicted time point).

CONCLUSIONS216

The experimental results confirm the robustness and effectiveness of machine learning, especially Extreme217

Gradient Boosting (XGB), in developing computational models predicting energy use. The achieved218
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Metric
Statistics

Mean Standard deviation 95%Confidence Interval

RMSE 109.00 37.07 (100.47, 117.52)

MAPE 0.24 0.08 (0.22, 0.26)

Table 5. The statistical values of metrics on the test set.

results indicate that the XGB models work more effectively than other tree-based models to address this219

issue. Also, the selection of a suitable historical period is essential to improving model performance.220
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