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ABSTRACT
Background. Malware, malicious software, is the major security concern of the
digital realm. Conventional cyber-security solutions are challenged by sophisticated
malicious behaviors. Currently, an overlap between malicious and legitimate behaviors
causes more difficulties in characterizing those behaviors as malicious or legitimate
activities. For instance, evasive malware often mimics legitimate behaviors, and evasion
techniques are utilized by legitimate and malicious software.
Problem. Most of the existing solutions use the traditional term of frequency-inverse
document frequency (TF-IDF) technique or its concept to representmalware behaviors.
However, the traditional TF-IDF and the developed techniques represent the features,
especially the shared ones, inaccurately because those techniques calculate a weight for
each feature without considering its distribution in each class; instead, the generated
weight is generated based on the distribution of the feature among all the documents.
Such presumption can reduce the meaning of those features, and when those features
are used to classify malware, they lead to a high false alarms.
Method. This study proposes a Kullback-Liebler Divergence-based Term Frequency-
Probability Class Distribution (KLD-based TF-PCD) algorithm to represent the
extracted features based on the differences between the probability distributions of
the terms in malware and benign classes. Unlike the existing solution, the proposed
algorithm increases the weights of the important features by using the Kullback-Liebler
Divergence tool to measure the differences between their probability distributions in
malware and benign classes.
Results. The experimental results show that the proposed KLD-based TF-PCD algo-
rithm achieved an accuracy of 0.972, the false positive rate of 0.037, and the F-measure
of 0.978. Such results were significant compared to the related work studies. Thus,
the proposed KLD-based TF-PCD algorithm contributes to improving the security of
cyberspace.
Conclusion. New meaningful characteristics have been added by the proposed algo-
rithm to promote the learned knowledge of the classifiers, and thus increase their ability
to classify malicious behaviors accurately.
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INTRODUCTION
Malicious software, also referred to as malware, is a program or piece of code that is
intended to access a system without the user’s permission and perform harmful actions
(Sharma & Sahay, 2014). The majority of cyber vulnerabilities and attacks, such as global
threats, advanced persistent threats (APTs), sensitive data theft, remote code execution,
and distributed denial of service (DDoS) attacks, are driven by malware (Dixit & Silakari,
2021). The frequency, level of complexity, and financial harm caused by malware infections
have been rapidly growing in recent years (Aslan, Samet & Tanrıöver, 2020; Gunduz,
2022). A Symantec Internet Security Company report (Symantec, 2015) revealed that
each day in 2014, around one million new malware were launched into the Internet.
In 185 different countries, Kaspersky reported 277,646,376 malicious Internet attacks
during the third quarter of 2017 (Hashemi, Samie & Hamzeh, 2022). In their study,
(Catak et al., 2021) claimed that between 2011 and 2020, the quantity of new malicious
software significantly increased. Recently, a report from (AV-TEST n.d) demonstrated
that the number of malicious software has increased significantly, as explained in Fig. 1 by
which the increased ratio of new malware and potentially unwanted applications (PUA) is
shown during the period of time between 2008 and 2022. This is because some available
malware creation toolkits allow even the non-expert to adopt several forward strategies like
polymorphism and metamorphism using the help of obfuscation techniques to generate
sophisticated malware (Kakisim, Nar & Sogukpinar, 2020).

To deal with this massive amount of malware, Ali et al. (2020), Kim, Shin & Han (2020),
Finder, Sheetrit & Nissim (2022) and Nunes et al. (2022) move forward using a sandbox-
based analysis approach, by which thousands of malware are analyzed daily instead of
analyzing the malware statically. Several studies (Shijo & Salim, 2015; Darshan & Jaidhar,
2019;Yoo et al., 2021) stated that dynamic analysis offersmore reliable detection capabilities
than static analysis. On the other hand, malware authors use immediate evasion techniques
as a defense against dynamic analysis (Kim et al., 2022). By analyzing 45,375 malware
samples, Galloro et al. (2022) concluded that the use of evasion mechanisms has increased
among malware by 12% over the past ten years, and 88% of malicious software can
perform new evasion behaviors rather than the older ones. Evasive malware instances
either imitate legitimate behaviors or violently interrupt the execution in sandboxed
execution conditions (Bulazel & Yener, 2017; Alaeiyan, Parsa & Conti, 2019; Or-Meir et al.,
2019; Afianian, Niksefat & Sadeghiyan, 2019; Mills & Legg, 2020). Additionally, Galloro et
al. (2022) in their work, reported that evasion behaviors have picked up in both malware
and benign instances because those evasion techniques have been originally developed for
a legitimate purpose, such as to prevent reversing, and protect intellectual property.

One of the most intelligent strategies for malware to evade suspicion is to mimic
legitimate behaviors. The developed malware detection models now have a significant
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Figure 1 Malware statistical. The number of new malware and potentially unwanted applications (PUA)
created between 2008 and 2022.

Full-size DOI: 10.7717/peerjcs.1492/fig-1

challenge as a result of this mimicking behavior (Amer, El-Sappagh & Hu, 2020). The
overlapping in malware and benign behaviors by which each class can be characterized
causes a serious challenge for the developedmodels, whichmay suffer frommisclassification
trouble, and thus the overall detection accuracy is negatively affected by increasing the false
positive and negative rates (Yang & Lim, 2021; Sun et al., 2021). This challenge comes from
the fact that these behaviors have to be constructed in the form of a dataset in which the
features that characterize each class are extracted and represented. Therefore, an inaccurate
features representation technique can be the root cause of the model confusion situation,
which leads to the misclassification problem.

Therefore, malware detection researchers have attempted to develop malware
classification models by which malicious and benign behaviors are accurately represented
using several feature representation techniques. A well-known TF-IDF technique is
imported from the information retrieval field and used for representation purposes
by several malware detection researchers (Zhang et al., 2019; Ali et al., 2020; Li et al., 2020a;
Li et al., 2020b) to represent the extracted features in the form of weight-based vectors.
Furthermore, several studies (Wang & Zhang, 2013; Xue et al., 2019; Xiao et al., 2020;
Al-Rimy et al., 2020; Qin, Zhang & Chen, 2021) have been carried out to develop various
feature representation techniques by enhancing the concept of the traditional TF-IDF
technique and boost its capability to accurately represent the extracted feature. However,
the primary principle of these techniques has been built based on the main concept of
the traditional TF-IDF technique, by which the probability distributions of the features
in each class are not considered when the IDF is calculated. Otherwise, the appearance
of each feature in the documents is considered regardless of the classes to which these
documents belong. Therefore, such representation does not necessarily accurate represent
the sharing features that belong to the mimic legitimate behaviors performed by malware,
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or the evasion techniques offered by benign and low weights can be assigned for those
kinds of features. As a result, an enhanced feature representation technique is required to
improve the detection accuracy of the proposed malware classification model and decrease
the false positive and negative rates.

To this end, this paper proposes a Kullback-Liebler Divergence-based TermFrequency—
Probability Class Distribution KLD-based TF-PCD algorithm that accurately represents
the extracted features, including the shared features in the form of weight-based vectors.
Our proposed algorithm is developed based on the fact that the probability distribution
of using evasion behaviors differs between malware and benign classes (Maffia et al.,
2021). In contrast to existing solutions which rely on the appearance of the features in
the documents, the KLD-based TF-PCD algorithm calculates the weights according to
the TF of each feature in the concerned document multiplied by the difference between
the probability distributions of that feature in malware and benign classes. The difference
between the probability distributions is calculated using the Kullback-Liebler Divergence
method. The intuition is that even the sharing features can be useful when their probability
distributions are not similar in malware and benign classes, thus as long as the dissimilarity
in the probability distributions of the feature is bigger, the weight of that feature is greater.
In summary, this paper makes the following contributions:
1. A Kullback-Liebler Divergence-based Term Frequency-Probability class Distribution

(KLD-based TF-PCD) algorithm was proposed to represent the extracted features
using numerical weights which were generated based on the probability distributions
of the features in malware and benign classes.

2. Strengthen the feature space by enhancing the usefulness of the features that have
appeared differently in malware and benign classes by using their distribution in each
class.

3. A comprehensive experimental evaluation was carried out to demonstrate the
improvement that the KLD-based TF-PCD algorithm had made.

4. Conducting an in-depth comparative analysis between the utilized KLD-based TF-
PCD algorithm and the recent related feature representation techniques in terms of the
obtained classification accuracy and other detection metrics.
The paper is organized as follows: In the ‘‘Related Work’’ section, this paper presents

the recent related work. Then, a full description of Kullback-Liebler Divergence tool and
its usage in malware analysis and detection field are introduced in the ‘‘Kullback-Liebler
Divergence’’ section. In the ‘‘The Proposed Method’’ section, the methodology that was
followed to design and develop the proposed algorithm is illustrated. The experimental
design, including the dataset, performance measures, obtained results, comparison,
and significance test are shown in the ‘‘Experimental Design’’ section. After that, the
experimental results are analyzed and discussed in the ‘‘Analysis and Discussion’’ section.
The ‘‘Conclusion’’ section concludes the paper and presents future research directions.

RELATED WORK
Several studies (Burnap et al., 2018; Naz & Singh, 2019; Kakisim, Nar & Sogukpinar, 2020;
Ahmed et al., 2020; Catak et al., 2020;Galloro et al., 2022;Nunes et al., 2022; Finder, Sheetrit
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& Nissim, 2022) have been done for malware detection based on the signature, behavioral,
and heuristic approaches. Static features such as opcodes and PE header data have been
extracted by Naz & Singh (2019) and Kakisim, Nar & Sogukpinar (2020) to identify the
characteristics of malware, while (Burnap et al., 2018; Ahmed et al., 2020; Galloro et al.,
2022; Nunes et al., 2022; Finder, Sheetrit & Nissim, 2022) have observed and recorded
the malware behaviors during the run-time like API calls, system calls, and machine
activity metrics. For the aim of malware detection and classification, most studies trained
machine learning techniques using the extracted features with several feature representation
techniques by which the extracted features are represented in the form of numerical vectors
to be understandable by machine learning algorithms (Aboaoja et al., 2022).

To enhance the performance of malware detection and classification models, various
studies were conducted to suggest solutions by which the weaknesses of the feature
representation techniques could be mitigated. Those solutions can be categorized into
three main kinds, binary-based, frequency-based, and weight-based. According to the
presence or absence of each extracted feature in each document, the values 1 or 0 are
assigned to that feature in the generated vector. Shijo & Salim (2015) and Sihwail et al.
(2019) created binary vectors by which each extracted n-gram feature was represented
using 0 or 1 to characterize each sample in their datasets using its corresponding binary
vector. A support vector machine (SVM) classifier was trained and evaluated using the
generated binary vectors. Both studies achieved satisfactory detection accuracy of 0.985
and 0.987, respectively. Banin, Shalaginov & Franke (2016) trained (K-NN) k-nearest
neighbor and (ANN) artificial neural network classifiers using binary-based vectors
which were constructed to represent the most frequently dynamic n-gram features. The
developed models provided an accuracy of 0.989. However, the legitimate behaviors, which
are frequently injected into the developed malware by malware writers to circumvent the
analysis attempts, may be represented inmalware binary vectors asmalicious characteristics
by which the false positive rate can be increased (Singh & Singh, 2018; Aboaoja et al., 2022).

In frequency-based features, on the other hand, the similarity between malicious
behaviors can be measured based on the frequency (occurrence times) of each extracted
feature to identify multiple variants of the same family. The frequency-based representation
technique generates vectors in which the frequency count of each feature in the document
is assigned to represent the performed behaviors. Furthermore, the frequency-based
representation techniques were developed based on the assumption that there is a difference
between the frequency of the performed function in malware and benign classes (Yewale
& Singh, 2017). As VBasic-based malware was a concern of Ali et al. (2020) in their study,
the VBscript samples were explored to identify certain functions, methods, and keywords
together with their frequencies to build frequency-baes vectors. Using n-gram technique,
the authors of Galal, Mahdy & Atiea (2016) extracted API calls, and then frequency-based
vectors of each n-gram were generated to describe the file properties. However, the
popularity of employing obfuscation techniques to produce irrelevant features using dead
code insertion, instruction reordering, and equivalent code replacement can be the most
common source of generating unrepresentative frequency vectors (Mirzazadeh, Moattar &
Jahan, 2015; Elsersy, Feizollah & Anuar, 2022).
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Moreover, to mitigate the shortcomings of the above-mentioned feature representation
techniques, several studies such as Belaoued et al. (2019) and Ali et al. (2020) selected the
most important features based on the weights that were calculated using the traditional
TF-IDF technique, while (Li et al., 2020a) used TF-IDF technique to select and represent the
proposed feature set. Other studies (Xue et al., 2019; Xiao et al., 2020; Al-Rimy et al., 2020;
Qin, Zhang & Chen, 2021) developed the traditional TF-IDF to propose enhanced TF-IDF
techniques by which the obtained features were represented using more accurate weights.
Xue et al. (2019) proposed a malware classification model that connected a convolutional
neural network (CNN) trained on static features and the random forest (RF) trained on
dynamic features via a probability scoring threshold. Furthermore, the API-based n-gram
features by which the RF classifier was trained were selected and represented using the
weights that were calculated utilizing the developed document frequency-inverse document
frequency DF-IDF technique.

To solve the problem of the computational complexity of graph-basedmalware detection
models, Xiao et al. (2020) developed an API-based graph malware detection model. The
constructed graph is divided into fragment behaviors and the crucial behaviors have
been extracted and represented by joining TF-IDF and IG information gain methods.
The extracted crucial behaviors are used to train machine learning classifiers. Al-Rimy
et al. (2020) proposed feature extraction scheme for accurately extracting representative
ransomware attack features from the pre-encryption phase. To represent the extracted
features, an annotated term frequency-inverse document frequency (aTF-IDF) technique
has been developed. The proposed (aTF-IDF) penalized the general-purpose API calls
that come after the pre-encryption phase since the developed technique is capable of
observing the API calls before and after the pre-encryption phase. Therefore, the problem
of insufficient characteristics through which the traditional TF-IDF increases its weights
when it computes the IDF is mitigated.

A few studies have employed the Inverse class frequency ICF component during the
representation stage by few studies. While (Wang & Zhang, 2013) used inverse class
frequency ICF rather than inverse document frequency IDF to highlight features that
appear in fewer classes than those that appear in more classes, Qin, Zhang & Chen (2021)
combined IDF and ICF to introduce the term frequency-(inverse document frequency
and inverse class frequency) TF-(IDF & ICF) technique in which API sequences were
represented as weight-based vectors. Consequently, machine learning classifiers were
trained using those generated vectors to provide an accuracy of 0.979 by the LR logistic
regression classifier.

However, the traditional TF-IDF technique suffers from inaccurately weighted features.
This is because the weights are calculated by multiplying TF (the frequency rate of the
feature in one document) by IDF (describe how rarely the feature appears in all the
documents). Therefore, the probability distributions of the features in each class are not
considered. Ignoring the probability distribution of the features in each class and settling
only on identifying how many the documents in which the features are appeared lead to
a decrease in the mean of the features that are appeared in both classes regardless of the
frequency of their appearances in each class. This is because the probability distributions
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of those features are varied between malware and benign classes (Maffia et al., 2021).
Moreover, the developed TF (IDF & ICF) is computed through the summation of IDF and
ICF components. The ICF component is calculated by dividing the total number of the
classes by the total number of the classes that contain the concerned feature. This technique
is developed for the multiclassification task. Therefore, in the case of a binary classification
task, the ICF component will be abstractly assigned as 1 for all the features that appear
in both classes since there is no consideration for the degree to which the frequencies of
those features differ in each class. Additionally, the IDF component is calculated without
considering the feature distribution in each class. The (DF-IDF) technique seems to be
more appropriate for multiclassification models than binary classification models. This
is because applying the DF-IDF technique with a binary classification model leads to
assigning inaccurate weights for the extracted features since the difference between the
distributions of each feature in malware and benign classes has never been identified. The
(TF-IDF & ICF) technique is developed based on the concepts of traditional TF-IDF and
ICF techniques, and thus the proposed technique suffers from the shortcomings of IDF
and ICF components. On the other hand, while the aTF-IDF seems adequate to represent
the pre-encryption features of a ransomware attack, its nature makes it inapplicable to
represent the evasion behaviors since there are no pre-stage-based features.

To fill the gaps in the current techniques, this paper proposes a feature representation
algorithm by which the extracted features can be accurately represented using numerical
weights that are calculatedwith a consideration of the TF of the feature in one document and
the degree of difference between the probability distribution of that feature in malware and
benign classes. The proposed technique can mitigate the confusion level of the developed
model since the weights of the features that appear in both classes will be different as
a result of the diversity of the probability distribution of those features in each class.
Table 1 shows a summary of the most utilized feature representation techniques in terms
of components (how to calculate each part in the developed techniques), and the weakness
of each developed technique.

KULLBACK-LIEBLER DIVERGENCE
A tool called Kullback-Liebler Divergence (KLD) is employed to compare two probability
distributions and to measure the difference between them. Information theory and
probability theory are where the concept originally developed. The KL divergence
represents a non-symmetricmeasurement to estimate the difference between the probability
distributions p(x) and q(x). The KL divergence of q(x) from p(x), denotedDKL(p(x),q(x)),
is a measure of the information lost when q(x) is used to approximate p(x) (Sartea et al.,
2020; University of Illinois, 2021). DKL(p(x),q(x)) is defined in Eq. (1):

KLD
(
p(x),q(x)

)
=

∑
x→X

p∗ log
(
p(x)
q(x)

)
. (1)

KLD tool is utilized as a distribution difference measurement tool in several malware
detection and classification studies for many purposes, such as distinguishing between
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passive and reactive traces (Sartea et al., 2020), accelerating dynamic analysis (Lin, Pao &
Liao, 2018), identifying image changes (Fargana & Baku, 2019), measuring the effectiveness
of the extracted features (Zhang et al., 2018).

Based on bayesian games between a sandbox agent and amalware execution trace, Sartea
et al. (2020) created an active malware analysis AMA technique. The sandbox achieved an
action by which the malware is triggered to perform malicious behaviors, and thus the
proposed technique linked each malware family to the notion of the bayesian game types
that reflect the malware family triggers. Kullback-Liebler Divergence KLD tool is employed
to compute the difference between the distribution of APIs (P) for passive execution
traces by which the malware exhibited malicious behavior without any triggers and the
distribution of APIs (Q) for reactive execution traces, which represent the malware that
needs triggers to present malicious activities. Practically, the mean value of KLD between
the distributions of passive and reactive execution traces is computed in the training phase.
Therefore, during the test phase, the mean KLD value is used to classify the tested passive
and reactive traces.

With a focus on accelerating sandbox-based dynamic analysis, Lin, Pao & Liao (2018)
proposed an information measurement-based virtual time control (VTC) mechanism in
which the clock source is generated based on a pre-identified speed rate. The main aim of
the developed VTC mechanism is to record as many system calls as possible within limited
resources. Random variables based on Shannon entropy are used to figure out how often
system calls occur (system call frequency) in each time interval. Additionally, the KLD tool
is used to measure the difference between the distributions of system calls in the current
time interval and the next time interval. As long as the KLD value is close to zero due to the
low difference ratio between the compared system call distributions owing to the fact that
there are no additional new system calls being produced, the speed rate has to be increased
to accelerate the execution analysis and thus record new system calls.

Moreover, because new malware has been created by making petty updates to the
previously created ones, Fargana & Baku (2019) developed a malware detection model
based on discovering the changes by which the new malware images can be changed
compared to the training images. RGB images are divided into grid blocks with the same
dimensions. Furthermore, two Gauss distributions are measured for each grid. The KLD
tool is used to estimate the difference between the Guass distributions of two image grids.
The Gaussian Mixture Clustering model is utilized to cluster the KLD data to classify the
changes that have been made to the images.

In their work, Zhang et al. (2018) used the KLD as an evaluation tool to investigate the
effectiveness of the extracted sensitive sys calls. The most frequent sys calls in unpacked
malware and not in benign code are extracted. Furthermore, the important features are
selected using the IG method. The selected features have been used to train and evaluate
the proposed principal component initialized multi-layers neural network. To ensure
the effectiveness of the extracted sensitive sys calls, the KLD tool is used to measure the
distributions of the sensitive sys calls between unpacked malware/benign and packed
malware/benign.
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Table 1 Summary of the developed TF-IDFs as feature representation techniques, their components, and weaknesses.

Ref Technique Components Weakness
Component1 Component2

Ali et al. (2020), Li
et al. (2020a), Li et
al. (2020b) and Soni,
Kishore & Mohapatra
(2022)

TF-IDF TF= number of occurrences of feature (F) in document D
number of all features in document D IDF= log

(
total number of all documents N

number of documents contain feature (F)

)
The weights of IDF com-
ponent are calculated based
on the distribution of the
features in all the docu-
ments without discovering
the feature distribution in
each class. Thus, the im-
portance of all the sharing
features is decreased even
if there is differences in
their distributions between
classes.

Al-Rimy et al. (2020) aTF-IDF TF= number of occurrences of feature (F) in document D
number of all features in document D IDF= log

(
total number of all documents N

number of documents contain feature (F)

)
Although aTF-IDF sounds
promising to represent the
pre-encryption characteris-
tics of ransomware attack,
its architecture prevents
it from being used to rep-
resent evasion behaviours
because there are no pre-
stage-based features.

Normalized tf= TF
length of trace file aTF− IDF = atf |feature| =

{
1, if pre
0, other ∗ IDF

(continued on next page)
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Table 1 (continued)

Ref Technique Components Weakness
Component1 Component2

Qin, Zhang & Chen
(2021)

TF-(IDF & ICF) TF= number of occurrences of feature (F) in document D
number of all features in document D ICF= total number of classes C

number of classes contain feature Both IDF and ICF com-
ponent drawbacks can be
surfaced when using the
TF-(IDF & ICF) technique
on a binary classification
task. Regarding ICF, each
feature that occurs in mal-
ware and benign classes
will have a low ICF value
regardless of how many it
is distributed in each class.
On the other hand, the IDF
value is computed without
considering the distribu-
tion of the concerned fea-
ture in each class.

IDF= total number of documents D
number of documents contain feature

TF-(IDF & ICF)= log10 (1+ ICF+ In (IDF))
Xiao et al. (2020) TF-IDF&IG TF-IDF IG (information gain) Even though IG values are

calculated to measure the
probability distribution of
each feature in malware
and benign classes as de-
scribed in Lin, Pao & Liao
(2018). However, the val-
ues that are generated us-
ing TF-IDF suffer from the
weakness of traditional TF-
IDF. Therefore, an overall
weight which is computed
through multiplying TF-
IDF value by IG value in-
herits the original failure of
traditional TF-IDF.

TF-IDF & IG= α TF-IDF+ (1- α)IG

(continued on next page)
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Table 1 (continued)

Ref Technique Components Weakness
Component1 Component2

Xue et al. (2019) DF-IDF DF= number of benign contain feature (F)
number of all benign sampleD(k) IDF = log

(
number of all malware samples D(k)

number of malware contain feature (F) +1
)

Using this technique with a
binary classification model
leads to highlight the fea-
tures which are frequently
appeared in both classes as
important features. This
is because each feature is
weighted based on multi-
plying its document fre-
quency DF in benign class
by its inverse document
frequency in malware class.
Therefore, the obtained
weights may not accurate
since the difference be-
tween the distributions in
malware and benign classes
has never identified.

A
boaoja

etal.(2023),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.1492

11/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1492


Figure 2 An overview of the proposed method.
Full-size DOI: 10.7717/peerjcs.1492/fig-2

THE PROPOSED METHOD
Figure 2 shows an overview of the proposed method. Feature extraction, feature
representation, and evaluation are the main three stages that are carried out to evaluate the
performance of the proposed KLD-based TF-PCD algorithm. While the feature extraction
stage extracts API-based 2-gram features, the developed KLD-based TF-PCD algorithm is
utilized in the feature representation stage. Finally, several machine learning techniques
are trained and evaluated using features that are represented using the proposed algorithm.
The following subsections describe those stages in detail.
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Feature extraction
Several studies (Fuyong & Tiezhu, 2017; Zhang et al., 2019; Li et al., 2020b; Yang & Liu,
2020) have suggested the N-gram technique for obtaining N-length or sub-text features
from the initial text. From the API sequences of every evasive malicious software sample
and benign sample in the database, we extract 2-gram features. Becausemalwaremustmake
several API calls rather than just individual API calls in order to performmalicious activities
(Pektaş & Acarman, 2017), we chose the API sequence-based N-gram features. As a result,
the extracted API sequence-based N-gram features can be beneficial in understanding and
modelling malicious behaviour.

Feature representation
In this subsection, the Kullback-Liebler Divergence-based Term Frequency-Probability
Class Distribution (KLD-based TF-PCD) algorithm is proposed to represent the extracted
features, including the features that occur in both benign and malware classes, using
accurate weight vectors. The drawback of employing the traditional TF-IDF technique is
that the distribution of each extracted feature in benign and malware classes is neglected
when computing the IDF term. Such neglect leads to calculation of inaccurate IDF values
for the sharing features, and thus the overall generated weights are negatively affected by
IDF values.

Moreover, mimicking legitimate behavior is a widely used strategy by todays malware
(Bulazel & Yener, 2017; Alaeiyan, Parsa & Conti, 2019; Or-Meir et al., 2019; Afianian,
Niksefat & Sadeghiyan, 2019; Mills & Legg, 2020; Amer, El-Sappagh & Hu, 2020). In
addition, evasion behaviors have been observed in both benign and malicious classes
(Galloro et al., 2022). Applying the traditional TF-IDF technique to represent the features
related to the above-mentioned behaviors will introduce small IDF values, which cause
low TF-IDF weights. Therefore, these features can be ignored in the case of using a feature
selection technique or using them with close weights, in which the classification model
is confused and provides high false positive and negative rates in case feature selection
technique is not utilized. This study supposes that these kinds of features can bemeaningful
features if their probability distributions in both benign and malware classes are exploited
since benign and malware classes exhibited evasion behaviors in different probability
distributions (Maffia et al., 2021).

The KLD-based TF-PCD algorithm tackles this issue by calculating the probability
distributions of each feature in both benign and malware classes and then identifying the
difference between the probability distribution of every feature in the benign class and the
probability distribution of every feature in the malware class using the Kullback-Liebler
Divergence tool. The general formula applied to calculate KLD-based TF-PCD weights is
shown in Eq. (2).

W
(
n_gramj

i

)
=TF

(
n_gramj

i

)
∗ log

(
−1∗KLD

(
PMD

(
n_gramj

i

)
,PBD

(
n_gramj

i

)))
(2)

where w (n− gramj
i) represents the calculated weight of the ith n-gram in malware

instance j, TF (n−gramj
i) represents the term frequency, or how many times the n−grami

is invoked by instance j. TF is calculated using the formula illustrated in Eq. (3). The
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probability distribution of n−gramj
i in malware class and the probability distribution of

n−gramj
i in benign class are denoted by PMD(n−gramj

i) and PBD(n−gram
j
i), respectively.

PMD and PBD are computed using the formulas described in Eqs. (4) and 5, respectively.
KLD refers to the Kullback-Liebler Divergence tool that measures the difference between
the probability distribution of n−gramj

i in malware and benign classes. KLD is calculated
using the formula shown in Eq. (6).

TF (n_gramj
i)=

count(n_gramj
i)∑

k count(n_gram
j
k)

(3)

where TF (n− gramj
i) is the frequency of n− grami in malware instance j, count

(n− gramj
i) refers to the number of times n− grami occurs in malware instances j,

and
∑

kcount(n−gram
j
k)stands for the total number of all n-grams in malware instance j.

PMD (n−gramj
i)=

count_M(i,j)
N (m)

(4)

PBD (n−gramj
i)=

count_B(i,j)
N (b)

(5)

where PMD(n− gramj
i) and PBD(n− gramj

i) refer to the probability distribution of
n− gramj

i in malware class and benign class, respectively. count_M(i,j), count_B(i,j)
represent the number of malware samples that n−gramj

i is appeared in and the number
of benign samples that contain n−gramj

i , respectively, while N (m) stands for the total
number of malware samples, N (b) denotes the total number of benign samples.

KLD (PMD (n−gramj
i),PBD (n−gramj

i))= PMD (n−gramj
i)

∗log2

(
PMD (n−gramj

i)

PBD(n−gramj
i)
+1

)
(6)

where KLD(PMD(n−gramj
i),PBD(n−gramj

i)) refers to the difference in the probability
distributions of n−gramj

i in malware class and benign class, PMD(n−gramj
i) means the

probability distribution of n−gramj
i in malware class, PBD(n−gramj

i) is the probability
distribution of n−gramj

i in the benign class, the constant 1 is added to prevent the difference
value to be zero value.

Unlike traditional and developed TF-IDF utilized by existing malware classification
solutions, the KLD-based TF-PCF technique used the differences between the probability
distribution of the concerned feature in malware class and the probability distribution of
that feature in benign class instead of IDF values.

IDF can be more useful in the natural language processing field (NLP) when a text
classification task is required. Our assumption is that the text classification task in the NLP
field differs from the text classification task in the malware classification field. Since the
texts in the NLP field belong to human languages, the words that frequently appear in all
the documents, such as the, for, of, and others, are not meaningful words because they
frequently occur to give the same meanings for all the documents, while the texts in the
malware classification field were not originally human languages. Otherwise, these texts
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belong to malware and benign behaviors. Therefore, the generalization of the concept
of IDF on behavioral-based text classification without considering how differently those
behaviors have appeared in malware and benign classes can reduce the discrimination of
those behaviors.

Evaluation
This study utilized a variety ofmachine learning techniques that are extensively employed in
the literature, including k-nearest neighbor (KNN), regression trees (CART), Naive Bayes
(NB), support vector machine (SVM), artificial neural network (ANN), random forest
(RF), logistic regression (LR), and eXtreme Gradient Boosting (XGBoost). Furthermore,
40% of the constructed dataset is randomly reserved for testing purposes as unseen data in
order to evaluate these machine learning classifiers, and the remaining 60% has been used
to train the chosen machine learning models using the 10-fold-cross validation method.
To ensure that all classifiers are evaluated using the exact same data when we compare our
suggested model with the relevant work, we used the simple random sampling method to
split the dataset into train and unseen test data. Figure 3 shows the training and test stages.

EXPERIMENTAL DESIGN
In this section, the methodology of validating the developed model is covered. We describe
the dataset deployed, identify the specification of the experimental environment, the
performance measures used to evaluate the proposed model, and the experimental results
of the proposed model have been presented including the comparison with the related
studies. Finally, a t -test has been done to measure the proposed technique’s significance.

Experiment environment setup
The experiments have been carried out under the environment with specifications as
follows: Windows 10 Pro 21H2 is installed on a PC equipped with an Intel(R) Core(TM)
i7-4790 CPU running at 3.60 GHz and 16.0 GB of memory size. Python (3.9) libraries
using Spyder editor version 5 have been utilized to implement feature extraction, feature
representation, and classification techniques that have been developed in this study.

Dataset
We dynamically obtained API call sequences that represent behaviors of 7208 evasive
malware collected from Galloro et al. (2022) and Kirat & Vigna (2015) as well as 3848
benign samples collected from Wei et al. (2021) and the freshly installed Windows 7
operating system to evaluate our suggested algorithm. We established our dataset with
this number of samples based on the acceptance number we gained from the literature
review in the community of malware detection, which mostly ranged between 1000 and
5000 samples (Nunes et al., 2019; Sihwail et al., 2019; Zhang et al., 2019; Kakisim, Nar &
Sogukpinar, 2020; Yoo et al., 2021; Nunes et al., 2022; Finder, Sheetrit & Nissim, 2022). The
majority of authors either did not make their used datasets accessible or provided broken
URL connections (Amer, El-Sappagh & Hu, 2020). Consequently, establishing datasets for
evasive malware and benign software was certainly not an easy operation. Our experiments
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Figure 3 Training and testing stage.
Full-size DOI: 10.7717/peerjcs.1492/fig-3

Table 2 Evasive malware types and benign files.

Class Evasion techniques Number Source

Hardware id-based evasion 82 Kirat & Vigna (2015)
Bios-based evasion 6 Kirat & Vigna (2015)
Processor feature-based evasion 134 Kirat & Vigna (2015)
Exception-based evasion 197 Kirat & Vigna (2015)
Timing-based evasion 689 Kirat & Vigna (2015)
Wait for keyboard 3 Kirat & Vigna (2015)

Malware

Not available 6,096 Galloro et al. (2022)

Malware Total Number 7208
Benign 2000 Win7
Benign 1848 Wei et al. (2021)

Benign Total Number 3848

in this work are carried out using the API call sequences dataset that was generated using
malware and benign samples mentioned above which have been used in our earlier work
(Aboaoja et al., 2023). The contents of the used dataset are displayed in Table 2.

Performance measures
Several performance validationmeasures, such as the False PositiveRate (FP), FalseNegative
Rate (FN), Accuracy (ACC), Detection Rate (DR), Precision (P), and F-measures (F1), have
been applied to assess the effectiveness of the proposed algorithm. Further, FN depicts the
proportion ofmalware classified as legitimate, whereas FP shows the rate of benign classified
as malware (Darshan & Jaidhar, 2020; Arslan, 2021). While the detection rate (DR)/Recall
calculates the percentage of malicious samples that are accurately classified using Eq. (7),
the accuracy (ACC) assesses the fraction of samples that are effectively recognized using
Eq. (8) (Rostamy et al., 2015). Moreover, Precision (P) uses Eq. (9) to calculate the ratio
of malware samples that are estimated to be a malware across all malicious samples and
benign samples that are estimated to be malware. Using Eq. (10), F-measure (F1) sums the
mean values of Precision and Detection rate (Rostamy et al., 2015).
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DR=
TP

TP+FN
(7)

ACC=
TP+TN

Tp+TN+FP+FN
(8)

P=
TP

TP+FP
(9)

F1=
2*Precision*Recall
Precision+Recall

. (10)

Experimental results
To validate the performance of the proposed Kullback-Liebler Divergence-based Term
Frequency-Probability Class Distribution (KLD-based TF-PCD) algorithm, it has been
applied on a dataset in which the API call sequence-based 2-gram features were stored
to represent the features in the form of a weights-based vector for each instance in the
dataset. Furthermore, the dataset has been divided into 60% as training data and 40% as
unseen test data using a simple random sampling method. 60% of the dataset instead of
80% or 90% is selected to be the percentage of the training data to guarantee the robustness
of the developed model because each improvement in the obtained accuracy means
more effectiveness of the proposed model against unseen data points, which have further
potential to examine the proposed model as long as the test data size is large. Additionally,
the training data was utilized to train multiple machine learning techniques, K-Nearest
Neighbor (KNN), Regression Trees (CART), Naive Bayes (NB), Support Vector Machine
(SVM), Artificial Neural Networks (ANN), Random Forest (RF), Logistic Regression (LR),
and eXtreme Gradient Boosting (XGBoost). To evaluate how each classifier was learned
from the weight vectors that were generated using the proposed KLD-based (TF-PCD)
algorithm, the test data was utilized to measure the classification performance of each
classifier.

Even though the imbalanced dataset is considered one of the problem domains in the
malware detection community, it is not our focus in this work. Additionally, the related
work compared with the proposed algorithm was trained using imbalanced datasets.
However, to estimate the negative effect of an imbalanced dataset, we applied the SMOTE
technique to generate balanced training data. The results, using unseen test data, show
that the model that trained based on the balanced dataset decreases the accuracy obtained
by only 0.004%. The interpretation of the decrement in the accuracy may be referred to
as the SMOTE has generated more noises and overlapped features leading to a decrease
the accuracy. However, an in-depth investigation is required to study the impact of an
imbalanced dataset on classification performance. Such investigation has been left for
future work.

Table 3 displays the performance results of the developed classifiers which were trained
based on weight vectors generated using the proposed KLD-based(TF-PCD) algorithm.
The classifiers’ accuracy rates varied from 0.794 for NB to 0.972 for XGBoost. Likewise, the
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Table 3 Experimental results. Experimental results of the KLD-based (TF-PCD) on dataset with differ-
ent classifiers.

Classifier Acc FPR FNR DR P F1

KNN 0.898 0.130 0.086 0.914 0.930 0.922
CART 0.944 0.059 0.054 0.946 0.968 0.957
NB 0.794 0.088 0.269 0.731 0.940 0.823
SVM 0.943 0.084 0.042 0.958 0.955 0.957
ANN 0.959 0.043 0.039 0.961 0.977 0.969
RF 0.956 0.066 0.032 0.968 0.965 0.967
LR 0.929 0.102 0.055 0.945 0.946 0.945
XGBoost 0.972 0.037 0.023 0.977 0.980 0.978

Figure 4 The comparison of the Detection Accuracy between the proposed KLD(TF-PDF)-based
model and the related work-based models.

Full-size DOI: 10.7717/peerjcs.1492/fig-4

F1 rates ranged from 0.823 for NB to 0.978 for XGBoost. The results illustrate that FPR and
FNR values dropped together to be 0.037 and 0.023, respectively, with XGBoost. Further,
the highest FPR is performed by KNN with 0.130, while NB achieved the highest FNR of
0.269. Regarding the DR, XGBoost introduced the highest value with 0.977, whereas the
lowest DR of 0.914 was provided by KNN. For P, the classifiers achieved P rates that ranged
between 0.930 for KNN and 0.978 for XGBoost.

Figures 4, 5, 6, 7, 8 and 9 present the comparison of the proposed KLD-based TF-PCD
with the traditional TF-IDF, which was widely used in the state-of-the-art (Belaoued et
al., 2019; Ali et al., 2020; Li et al., 2020a) and the DF-IDF that was developed by Xue et al.
(2019). In terms of accuracy and F-measure, the proposed KLD-based TF-PCD was higher
than other techniques for all the classifiers. Furthermore, most of the classifiers with the
proposed KLD-based TF-PCD achieved FPR, FNR, DR, and P higher than the traditional
TF-IDF and DF-IDF techniques. The best performance compared to all the classifiers was
achieved by the XGBoost classifier, which was trained using the weight vectors generated
using the proposed KLD-based TF-PCD algorithm.
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Figure 5 The comparison of the False positive rate between the proposed KLD(TF-PDF)-based model
and the related work-based models.

Full-size DOI: 10.7717/peerjcs.1492/fig-5

Figure 6 The comparison of the False negative rate between the proposed KLD(TF-PDF)-based model
and the related work-based models.

Full-size DOI: 10.7717/peerjcs.1492/fig-6

Figure 7 The comparison of the Detection rate between the proposed KLD(TF-PDF)-based model and
the related work-based models.

Full-size DOI: 10.7717/peerjcs.1492/fig-7
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Figure 8 The comparison of the Precision between the proposed KLD(TF-PDF)-based model and the
related work-based models.

Full-size DOI: 10.7717/peerjcs.1492/fig-8

Figure 9 The comparison of the F -measure between the proposed KLD(TF-PDF)-based model and the
related work-based models.

Full-size DOI: 10.7717/peerjcs.1492/fig-9

Significance test
To evaluate the significance of the proposed KLD-based TF-PCD algorithm statistically
against the traditional TF-IDF and DF-IDF techniques based on the classification accuracy,
the paired t -test has been carried out with the help 10-fold—cross-validation method
using the XGBoost classifier. (α= 0.5) is identified as the standard value to the degree
of significance. In the paired t -test, two hypotheses are evaluated against each other. The
first hypothesis supposes that the proposed algorithm and the techniques developed in the
related work have the same detection accuracy, whereas the second hypothesis supposes
that the proposed and related techniques have different detection accuracy. The first
hypothesis is discarded if

(
p-value<α

)
. Table 4 displays the t -test outcomes at the 95%

level of significance. It can be observed in Table 4 that the classification accuracy of the
KLD-based TF-PCD algorithm significantly enhanced the detection accuracy against the
traditional TF-IDF and DF-IDF techniques based on the p-values obtained against both
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Table 4 t -test for KLD-based TF-PCD algorithm. Results of t -test for KLD-based TF-PCD algorithm against the traditional TF-IDF and DF-IDF
techniques on classification accuracy.

Representation technique t -value p-value Significance

The proposed KLD-based TF-PCD/Traditional TF-IDF 1.8595 0.0068 Significant
The proposed KLD-based TF-PCD/DF-IDF developed by Xue et al. (2019) 1.8595 0.0010 Significant

TF-IDF and DF-IDF techniques. The rate of accuracy enhancement is indicated in the
t -values by which the significance is estimated. The results of the t -test show a significant
improvement in the efficiency of the proposed KLD-based TF-PCD feature representation
algorithm when compared to the traditional TF-IDF and DF-IDF techniques.

ANALYSIS AND DISCUSSION
This study introduced the concept of representing malicious behaviors using weights
which were influenced by how differently those behaviors were distributed in each class.
The KLD-based TF-PCD algorithm was suggested and implemented to accurately calculate
the weight-based vectors for the extracted features, including the sharing features, in order
to reduce the model confusion level and thus improve the classification accuracy through
decreasing the FPR and FNR. The proposed technique consists of two components, the
Term Frequency TF component, and the Kullback-Liebler Divergence component. TF was
employed in the proposed algorithm to compute the appearance ratio of each feature in
the concerned document, while the KLD component was utilized to measure the difference
between the distributions of each feature in malware and benign classes. Unlike previous
work, which relies on feature distributions in entire documents without taking into account
the feature class of those documents, the proposed representation algorithm measures the
difference between the feature distributions in malware and benign classes to enrich the
features that reflect big distribution difference values according to how big the difference
value is, instead of assigning similar weights to those features based on their distribution
in the all the documents.

Table 3 displays that the majority of the classifiers provided close classification
performance except for KNN and NB classifiers, which experienced classification
performance degradation. This reduction in the classification performance may be due
to the nature of KNN and NB classifiers. Furthermore, the NB classifier assumes that
each individual feature contributes independently of other features when the classification
probability of testing data is calculated, while the KNN classifier classifies the testing data
based on the K most similar instances (neighbors) in the training data, which are identified
using Euclidean distance. Therefore, if there are several instances in the training data that
provide the smallest distance from the testing data, the first instance is utilized to specify
the class of testing data (Gupta & Rani, 2020).

Moreover, Figs. 4 and 9 illustrated that the performance of classification (accuracy and
F1) for all the classifiers that were trained based on weights generated using the proposed
KLD-based TF-PCD algorithm was higher than the same classifiers when they were trained
utilizing weights calculated by the traditional TF-IDF and DF-IDF techniques, while Figs. 5,
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6, 7 and 8 show that the classification performance in terms of FPR, FNR, DR, and P for the
majority of classifiers with the proposed KLD-based TF-PCD algorithm was higher than
the classification performance when the classifiers were developed using the traditional
TF-IDF and DF-IDF techniques. This means that the proposed KLD-based TF-PCD
algorithm was eligible to represent malicious behavior characteristics better than the other
feature representation techniques. This is ascribed to the capability of the KLD-based
TF-PCD algorithm to enhance the discrimination degree of the features that exist in almost
all the documents and thus, in both malware and benign classes. However, those features
can be more meaningful when the proposed KLD-based TF-PCD algorithm weighs them
with the help of the differences in their probability distributions between benign and
malware classes. Therefore, the proposed KLD-based TF-PCD algorithm benefits from the
various distribution nature of the sharing features in malware and benign classes instead of
considering those features as non-discrimination features with other feature representation
techniques. As a result, new meaningful characteristics have been added by the proposed
algorithm to promote the learned knowledge of the classifiers, and thus increase their
ability to classify malicious behaviors accurately.

This implies that the mimic legitimate behaviors and the evasion techniques that
were performed by malware and benign samples, respectively, had been represented
using accurate weights. The intuition is that, while those behaviors appeared in most of
the documents, malicious or benign, using the differences between their distributions in
malware and benign classes made those behaviors closer to representing accurately whether
malicious or legitimate activities since such behaviors can be found in both classes but in
different frequency.

Although the proposed algorithm achieves a slight improvement rate in terms of
accuracy, 0.51% compared to the TF-IDF techniques and 1.78% against the DF-IDF
technique, the paired t -test prove that the proposed algorithm carried out a significant
improvement. The improvement was achieved because the proposed algorithm generated
new learning knowledge by which the developed model gained more ability to correctly
classify the testing data. Additionally, as a result of the proposed algorithm carrying out
more refinement for the weights that belong to the overlapping features, both FPR and
FNR have been decreased.

CONCLUSION
In this paper, the Kullback-Liebler Divergence-based Term Frequency-Probability Class
Distribution (KLD-based TF-PCD) algorithm was proposed to represent the extracted
features as weight-based vectors. KLD-based TF-PCD algorithm was developed to mitigate
the limitations of the existing representation techniques where the sharing features were
represented using inaccurate weights which were generated without considering the
feature distributions in each class. KLD-based TF-PCD algorithm enriches the weight of
each feature by measuring the difference between the probability distributions of that
feature in malware and benign classes using the Kullback-Liebler Divergence tool. The
feature’s weight is higher when there is a significant difference between the probability
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distributions of that feature in the malicious and benign classes. Therefore, the overlapping
features that existed in both malware and benign classes but with different frequencies
can be meaningful since the corresponding weights of these features were influenced by
how they were differently distributed in malware and benign classes. Such an algorithm
can benefit from the sharing features such as the ones that reflect the mimic legitimate
behaviors performed by malware and the evasion behaviors achieved by benign. The
proposed KLD-based TF-PCD algorithm was able to generate more accurate weights to
represent the extracted features than the existing techniques. Eight classifiers, namely,
k-nearest neighbor (KNN), regression trees (CART), Naive Bayes (NB), support vector
machine (SVM), artificial neural network (ANN), random forest (RF), logistic regression
(LR), and eXtreme Gradient Boosting (XGBoost) were implemented to evaluate the
classification ability of the features which were represented using the proposed algorithm.
A comparison between the proposed algorithm and the existing representation technique
was also conducted. The comparison results show that the proposed feature representation
algorithm represents the extracted features more accurately than the existing feature
representation techniques. To assess the significance of the improvement for the proposed
technique, a t -test was employed. The results of the t -test show that the improvement of the
proposed algorithm against the traditional TF-IDF and DF-IDF techniques was significant,
with a t -value of 1.8595 versus both techniques and p-values of 0.0068 and 0.0010 against
the traditional TF-IDF and DF-IDF techniques, respectively. However, this study has
limitations from which future work can be planned. The proposed KLD-based TF-PCD
algorithm is established to be appropriate for binary classification tasks. Therefore, the
complementary development by which the KLD-based TF-PCD algorithm can be adequate
for the multiclassification task is interesting for our future work. In addition, the nature,
and the position of the TF component in the KLD-based TF-PCD equation may be the
root causes behind increasing the sparsity vector rate, which we plan to address in our
future work. Although the experiments in this study show that applying SMOTE slightly
decreases the classification accuracy, more investigation is needed to study the impact of
the imbalanced dataset on the classification performance.
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