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ABSTRACT
Alzheimer’s disease (AD) is a progressive type of dementia characterized by loss of
memory and other cognitive abilities, including speech. Since AD is a progressive
disease, detection in the early stages is essential for the appropriate care of the patient
throughout its development, going from asymptomatic to a stage known as mild
cognitive impairment (MCI), and then progressing to dementia and severe dementia;
is worth mentioning that everyone suffers from cognitive impairment to some degree
as we age, but the relevant task here is to identify which people are most likely to
develop AD. Along with cognitive tests, evaluation of the brain morphology is the
primary tool for AD diagnosis, where atrophy and loss of volume of the
frontotemporal lobe are common features in patients who suffer from the disease.
Regarding medical imaging techniques, magnetic resonance imaging (MRI) scans are
one of the methods used by specialists to assess brain morphology. Recently, with the
rise of deep learning (DL) and its successful implementation in medical imaging
applications, it is of growing interest in the research community to develop
computer-aided diagnosis systems that can help physicians to detect this disease,
especially in the early stages where macroscopic changes are not so easily identified.
This article presents a DL-based approach to classifying MRI scans in the different
stages of AD, using a curated set of images from Alzheimer’s Disease Neuroimaging
Initiative and Open Access Series of Imaging Studies databases. Our methodology
involves image pre-processing using FreeSurfer, spatial data-augmentation
operations, such as rotation, flip, and random zoom during training, and state-of-
the-art 3D convolutional neural networks such as EfficientNet, DenseNet, and a
custom siamese network, as well as the relatively new approach of vision transformer
architecture. With this approach, the best detection percentage among all four
architectures was around 89% for AD vs. Control, 80% for Late MCI vs. Control, 66%
for MCI vs. Control, and 67% for Early MCI vs. Control.
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive neurological disorder that primarily affects
memory and cognition. Other symptoms, such as language disorders, hallucinations, and
in some cases, seizures or parkinsonian features, may also be present (Kumar et al., 2022).
One theory regarding the causes of AD links the b-amyloid peptide and mutations in its
precursor proteins to weakened brain structures, which in turn impact various cognitive
processes in the patient’s brain. This theory is supported and assessed through two key
markers: amyloid plaques and neurofibrillary tangles (Ballard et al., 2011).

Macroscopically, changes in brain morphology play a crucial role in the diagnosis of
AD, with frontotemporal lobe atrophy being a common feature. This loss of brain volume
in the region results in diminished function of the amygdala and hippocampus, which are
responsible for memory processes. Medical imaging techniques, such as magnetic
resonance imaging (MRI) and positron emission tomography (PET) scans, are utilized by
specialists to evaluate the morphological changes in the brain caused by AD (van Oostveen
& de Lange, 2021). In addition to brain scans, using cognitive tests, like the Mini-Mental
State Examination (MMSE), that consider specific physical, psychological, and social skills
is essential for a reliable diagnosis of the disease.

Regarding AD progression, as the disease advances the symptoms change, and a series
of consecutive stages can be identified, following the convention used by Alzheimer’s
Disease Neuroimaging Initiative (ADNI, https://adni.loni.usc.edu). A brief description of
each stage is presented below.

� Early mild cognitive impairment (EMCI): the affected person starts experiencing
episodes of memory loss with words or the location of household items, nevertheless he
can function independently and participate in social activities.

� Mild cognitive impairment (MCI): the affected people are susceptible to forgetting
recent occurrences, becoming disoriented in their homes, and having difficulties with
communication. This is often the longest stage of AD, lasting up to 4 years.

� Late mild cognitive impairment (LMCI): at this stage of the disease, patients may need
help with daily tasks, facing increasing difficulty communicating and controlling their
movements. Their memory and cognitive skills worsen, and changes in behavior and
personality may occur.

� Alzheimer’s disease (AD): as the disease progresses, the affected person requires
increasing levels of attention and aid with daily tasks. This stage is characterized by
growing unawareness of time and space, problems recognizing family and close friends,
difficulty walking, and behavioral disturbances that may even lead to aggression.
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Furthermore, with the rise of deep learning (DL) and its successful implementation in
medical imaging applications, researchers have been working on automatic systems able to
learn from MRI and PET scans to support the diagnosis of AD (LaMontagne et al., 2019;
Petersen et al., 2010; Zeng et al., 2018). This kind of decision support system, created with
artificial intelligence at its core, has been used successfully in different situations in the
healthcare field improving diagnostic performance, reducing medical errors, and
providing a better quality of service in developing countries (Currie & Rohren, 2021;
Porumb et al., 2020). In general, DL techniques are developed to find patterns in the data
and extract the relevant features for optimal classification (Sharma, Sharma & Sharma,
2016; Chan et al., 2020; Bravo-Ortiz et al., 2021), making them suitable for tasks with large
volumes of labeled data based on human experiences, such as classifying the stages of AD
using brain imaging (Liu et al., 2014; Chitradevi & Prabha, 2020; Zeng, Li & Peng, 2021). In
particular, for AD diagnosis, most of the research papers consider a 3D convolutional
neural network (CNN) approach to take advantage of the multidimensional features in
brain scans (Payan &Montana, 2015;Huang et al., 2019). Alternatively, the work of Cheng
& Liu (2017) proposes a 2D CNN approach, combined with recurrent neural networks to
link the features of the three-dimensional scans. In the development of such systems,
image pre-processing is key to achieving the best possible results, and in that regard, the
main tool is FreeSurfer, which allows operations like skull suppression, bias field
correction, anatomical registration, segmentation, reconstruction, and parcellation of the
cortical surface (Fischl, 2012).

Acknowledging the growing number of patients with AD, and the importance of
improving their quality of life, it is essential to develop more effective and efficient tools to
diagnose the disease. This article presents a DL-based approach to the classification of MRI
scans in the different stages of AD, using the EfficientNet, DenseNet, a custom Siamese
architecture, and a Vision Transformer, the detection percentage among all four
architectures was around 89% for AD vs. Control, 80% for Late MCI vs. Control, 66% for
MCI vs. Control, and 67% for Early MCI vs. Control, and it is organized as follows: the
Methods section describes the dataset, CNN architectures, and training set-up; the Results
section presents the experiments and classification results obtained; the Discussion section
reviews the results and their impact on the field; and finally the Conclusion of this work.

METHODS
Dataset
For this task, open-access imaging databases ADNI (https://adni.loni.usc.edu) and OASIS
(LaMontagne et al., 2019) are the most commonly used sources of MRI scans to train and
evaluate DL models. The ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI and
early AD.

For the purpose of this article, a dataset comprising images from both databases was
used. There are a total of 2,559 images from 1,126 subjects, where the gender distribution is
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relatively even with 54% of images from males and the remaining 46% from females; and
ages ranging from 55 to 96 years old with a mean of 75 years old. Following the labels used
by ADNI, there are a total of five different classes in the dataset: Cognitively Normal or
Control (CN), EMCI, MCI, LMCI, and AD; OASIS labels, which are expressed numerically
according to the Clinical Dementia Rating, were changed to ADNI format: label 0
corresponds to CN, (0,1) to MCI, and [1,3] to AD. Figure 1 shows the number of samples
per class in the dataset.

In order to reduce data-induced bias in the model, the images were partitioned into the
training, validation, and test sets on a subject basis, obtaining a training set with 683
patients (1,569 images), a validation set with 222 patients (513 images), and a test set with
221 patients (477 images), where every session from a patient is contained in a single set.
Additionally, a similar age distribution within each partition was also maintained (see
Fig. 2).

Deep learning architectures
Siamese 3D
In this type of architecture, the data flows through parallel routes at the same time, which
are then combined to make a final prediction. In this case, each path is composed of sets of
3D convolutional layers, 3D batch normalization, and average pooling operations, in the
end, the feature maps are flattened, concatenated, and then passed to the fully connected
layers for the final prediction. It is worth mentioning, that this is a custom architecture,
designed for the classification of AD stages using 3D MRI scans (Saborit Torres, 2019). In
the proposed configuration, this model has a total of 392,822 trainable parameters for the
binary classification tasks, and 392,923 for the 3-way classification tasks. Figure 3 shows
the model architecture.
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Figure 1 Class distribution in the dataset. Full-size DOI: 10.7717/peerj-cs.1490/fig-1
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Vision transformer
Vision transformers (ViT) (Dosovitskiy et al., 2020) are a groundbreaking approach to
computer vision that has recently gained popularity due to their impressive performance
on various tasks. Unlike traditional CNNs, which rely on hand-engineered feature maps,
vision transformers use self-attention mechanisms to learn features directly from the input
data dynamically. This approach has several advantages, including increased flexibility and
scalability and improved performance on object detection, segmentation, and classification
tasks. Additionally, ViT (Khan et al., 2022) has shown promise in domains beyond
computer vision, including natural language processing and speech recognition. One of the
critical innovations of ViT is self-attention, which allows the network to attend to different
parts of the input data and dynamically adjust the importance of each feature. ViT (Khan
et al., 2022) contrasts traditional CNNs, which rely on fixed, pre-defined feature maps that
may only be optimal for some tasks. Another advantage of vision transformers is their
ability to learn from large-scale datasets. Pre-training on massive datasets such as
ImageNet has been shown to significantly improve the performance of ViT on
downstream tasks, demonstrating the importance of unsupervised learning in deep
learning models (Dosovitskiy et al., 2020). Despite their impressive performance, ViT is
still a relatively new approach to computer vision, and there is ongoing research into how
best to design and optimize these models. In the proposed configuration, this model has a
total of 1,853,698 trainable parameters.

DenseNet
DenseNet was originally proposed as a general-purpose image classification architecture,
where the dense convolutional blocks improved significantly the vanishing gradient
problem experienced by very deep neural networks. Each of these dense convolutional
blocks refers to a set of convolutional layers that are all connected between them, this
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Figure 2 Age distribution in each dataset partition. Full-size DOI: 10.7717/peerj-cs.1490/fig-2
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Figure 3 Siamese 3D model architecture. Full-size DOI: 10.7717/peerj-cs.1490/fig-3
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means that “the feature-maps of all preceding layers are used as inputs, and its own
feature-maps are used as inputs into all subsequent layers” (Huang et al., 2016). By
concatenating several of these blocks, the DenseNet architecture and all its variants are
created. This network has been successfully used in different biomedical imaging
classification problems, such as the detection of COVID-19 in computed tomography
scans avoiding manual delineation of the lesions (Xiao et al., 2022), the detection of AD
from brain scans based on features extracted from the hippocampal region (Cui & Liu,
2019), and the detection of skin cancer by classifying the images of skin lesions (Villa-
Pulgarin et al., 2022), which motivate its inclusion in this work. In the proposed
configuration, this model has a total of 11,244,674 trainable parameters for the binary
classification tasks, and 11,245,699 for the 3-way classification tasks.

EfficientNet
EfficientNet refers to a series of convolutional neural networks that scale the three
dimensions of the network at the same time, achieving better classification results with
fewer trainable parameters compared to other state-of-the-art architectures. The
dimensions affected are depth (number of layers), width (number of channels or filters per
layer), and resolution (size of the input images and feature maps). In particular, the B7
variant was used for this article, which is the biggest one as presented in the original paper
(Tan & Le, 2019). As for DenseNet, this architecture has been implemented in various
tasks of biomedical image processing such as the detection of diabetic retinopathy from
digital fundus images (Jaiswal et al., 2021;Wang et al., 2020), the detection of tuberculosis
in chest X-ray images (Munadi et al., 2020), and aging classification based on skin
microstructure characteristics (Moon & Lee, 2022). In the proposed configuration, this
model has a total of 68,764,114 trainable parameters for the binary classification tasks, and
68,766,675 for the 3-way classification tasks.

Training procedure
Regarding the model training set-up, the MONAI (MONAI Consortium, 2022) was used, it
is based on PyTorch and allows easy implementation of input data pipelines with image
intensity scaling to the [0,1] range, image resizing to 91� 91� 91 pixels, and spatial data-
augmentation operations, such as random 90� rotation, random flip, and random zoom.
The latter operations aim to improve the models’ generalization ability by adding
variability to the images during training. In terms of training hyperparameters, all models
were trained for 250 epochs, using a weighted cross entropy loss to account for data
imbalance, and the Adadelta optimizer with a learning rate of 1:0, q ¼ 0:95, and

e ¼ 1� 10�7. All the experiments were performed using NVIDIA Quadro RTX 8000
graphic processor units.

RESULTS
This section presents the experiments performed over the previously described dataset,
and the classification results achieved for each one of them. The first experiment consists of
the binary classification between the Control cases and AD, which is the benchmark task in
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AD detection. Table 1 presents the training, validation, and test results achieved for this
task, where the ViT architecture performed the best.

Figure 4A shows the receiver operator curve for the CN vs. AD task using the
predictions from the EfficientNet model.

The second experiment involves the binary classification between Control cases against
LMCI. Table 2 presents the results for this experiment.

Figure 4B shows the receiver operator curve for the CN vs. LMCI task using the
predictions from the DenseNet model.

Similarly, the third experiment consists of the classification of Control cases against
MCI. Table 3 presents the results for this experiment.

Figure 4C shows the receiver operator curve for the CN vs. MCI task using the
predictions from the DenseNet model.

The fourth experiment consists of the classification of Control and EMCI, which is
significantly more challenging since the physical effect of the disease is not as aggressive as
for AD, but ultimately it is more relevant for physicians since it would help them identify
potential AD patients in the early stages. Table 4 presents the results for this experiment.

Figure 4D shows the receiver operator curve for the CN vs. EMCI task using the
predictions from the Siamese 3D model.

The fifth experiment aimed to classify the early and late stages of the disease
progression; the early stages were the Control and EMCI cases, and MCI, LMCI, and AD
were considered as late stages. The main goal was to take advantage of the complete dataset
aiming to improve classification results. Table 5 presents the results for the fourth
experiment.

The sixth and final experiment consists of a multi-class classification problem involving
Control, MCI (including early and late MCI), and AD cases. Table 6 presents the results of
this experiment.

DISCUSSION
This article presents a DL-based approach to the classification of MRI scans in the different
stages of AD, using a curated set of images from both ADNI and OASIS databases. There
are studies from different countries around the world that suggest an increasing prevalence
of dementia in older patients, and how AD can be considered one of the leading causes of it
(Rasmussen & Langerman, 2019), it is important for the scientific and healthcare
community to develop and improve current diagnostic techniques, in particular during its

Table 1 Classification results for two classes—control and Alzheimer’s disease. The best results for each test metric is indicated in bold italics.

Model Train accuracy Validation accuracy Test accuracy Test sensitivity Test specificity

Siamese 3D 0.9844 0.8646 0.7448 0.6776 0.5943

ViT 0.7804 0.9203 0.8902 0.8902 0.7401

DenseNet 0.9656 0.8854 0.7448 0.6322 0.5905

EfficientNet B7 0.9672 0.8750 0.8542 0.8085 0.6835
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(a) (b)

(c) (d)

Figure 4 ROC curves. (A) Control and Alzheimer’s disease. (B) Control and late mild cognitive impairment. (C) Control and mild cognitive
impairment. (D) Control and early mild cognitive impairment. Full-size DOI: 10.7717/peerj-cs.1490/fig-4
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Table 2 Classification results for two classes—control and late mild cognitive impairment. The best results for each test metric is indicated in
bold italics.

Model Train accuracy Validation accuracy Test accuracy Test sensitivity Test specificity

Siamese 3D 0.7656 0.8021 0.7578 0.5156 0.5156

ViT 0.7656 0.9070 0.8056 0.6870 0.6530

DenseNet 0.9984 0.8385 0.7031 0.6991 0.6633

EfficientNet B7 0.7375 0.8177 0.7734 0.5833 0.5833

Table 3 Classification results for two classes—control and mild cognitive impairment. The best results for each test metric is indicated in bold
italics.

Model Train accuracy Validation accuracy Test accuracy Test sensitivity Test specificity

Siamese 3D 0.8966 0.7305 0.6250 0.6017 0.6017

ViT 0.8506 0.7103 0.6432 0.5970 0.6420

DenseNet 0.9976 0.7188 0.6641 0.6449 0.6633

EfficientNet B7 0.9976 0.7383 0.6641 0.6530 0.6591

Table 4 Classification results for two classes—control and early mild cognitive impairment. The best results for each test metric is indicated in
bold italics.

Model Train accuracy Validation accuracy Test accuracy Test sensitivity Test specificity

Siamese 3D 0.7331 0.7344 0.6719 0.6749 0.6511

ViT 0.7932 0.7020 0.6320 0.6720 0.6311

DenseNet 0.9596 0.7383 0.5938 0.6094 0.5913

EfficientNet B7 0.5807 0.6523 0.5042 0.4915 0.4640

Table 5 Classification results for two classes—early and late stages. The best results for each test metric is indicated in bold italics.

Model Train accuracy Validation accuracy Test accuracy Test sensitivity Test specificity

Siamese 3D 0.8542 0.6875 0.6473 0.6292 0.6292

ViT 0.7920 0.6990 0.6540 0.6560 0.6520

DenseNet 1.0000 0.7051 0.6540 0.6505 0.6505

EfficientNet B7 0.7760 0.7246 0.6652 0.6550 0.6550

Table 6 Classification results for three classes—control, mild cognitive impairment, and Alzheimer’s disease. The best results for each test
metric is indicated in bold italics.

Model Train accuracy Validation accuracy Test accuracy Test sensitivity Test specificity

Siamese 3D 0.6250 0.5645 0.5625 0.3585 0.6664

ViT 0.6120 0.5780 0.5510 0.4260 0.6650

DenseNet 0.5964 0.5820 0.5446 0.4199 0.6861

EfficientNet B7 0.5443 0.5703 0.5893 0.4163 0.6765
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early stages. Since there is yet to be a treatment that can revert the physiological effects of
severe dementia, the early diagnosis of the disease is imperative for appropriate care of the
patient, and a realistic projection of the following years and stages. In this regard, brain
imaging and CAD systems are of high interest to researchers, where the high capacity of
DL algorithms to extract relevant features from images can be leveraged to detect the subtle
changes present in the early stages of the disease.

Our methodology encompasses image pre-processing using FreeSurfer, spatial data
augmentation techniques such as rotation, flip, and random zoom during training, and
state-of-the-art 3D CNNs, including EfficientNet, DenseNet, and a custom siamese
network, as well as the relatively new approach of Vision Transformer architecture. Using
this approach, the best detection percentages among all three architectures were
approximately 89% for AD vs. Control, 80% for Late MCI vs. Control, 66% for MCI vs.
Control, and 67% for Early MCI vs. Control. It is noteworthy that all three models involved
in the experiments achieve competitive results and outperform one another in specific
cases, with the Siamese 3D model’s performance on the CN vs. Early MCI task and the ViT
model’s performance on the CN vs. AD task being particularly remarkable. Regarding
these results, it is essential to acknowledge the difficulty in comparing them with similar
research papers due to the numerous factors affecting model performance. If these factors
are not adequately reported, reproducing the results and directly comparing them with
ours becomes nearly impossible. Consequently, the dataset and selected partition are
crucial for obtaining reliable results that accurately represent how the model would
perform in real-life scenarios. As reported in medical tasks, a significant portion of
predictive models presented in the scientific literature offer little to no value to the
healthcare community due to the presence of bias in the models, which affects the accuracy
of predictions (Roberts et al., 2021, Wynants et al., 2020). Bearing this in mind, the code
and references to the data used during the experimentation stage of our work are available
in a GitHub repository (https://github.com/MoraRubio/alzheimer-stages-dl), and this
article describes, to the best of our ability, the materials and methods used throughout the
process.

In particular, compared to the referenced works on classification using 3D CNNs, The
work by Huang et al. (2019) also includes FDG-PET images, which offer relevant
information for the diagnosis, but at a greater cost for the patient or healthcare system,
resulting in less viable option for developing countries with lower resources, as well as,
fewer images for model training and evaluation. On the other hand, the work by Payan &
Montana (2015), uses an autoencoder for feature extraction instead of feeding the images
directly to the CNN, which adds extra complexity for model development and deployment.
In this work, only MRI images are considered, since they are more common and accessible
than PET images, and the images are directly fed to the CNN architectures. As mentioned
above, a direct comparison of the detection percentages is not easily performed.

Acknowledging the limited size of the involved dataset, and the number of DL methods;
future work should be aimed at exploring different network architectures, such as
Convolutional Vision Transformers, to enhance the detection accuracy of the different
stages. Initially, this will focus on binary classification to differentiate intermediate stages
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from Control and AD patients. However, the ultimate goal is to identify those MCI
patients who are most likely to develop AD, particularly in the early stages, where
prediction is crucial for healthcare professionals in providing optimal patient care.
Moreover, assembling a larger image dataset while adhering to ethical principles (Tabares-
Soto et al., 2022) and aiming to minimize data-induced bias in the models can positively
impact the detection capabilities and, more importantly, the generalization ability of the
models, which is essential for developing viable CAD systems. Furthermore, it is vital to
conduct in-depth analysis of the results using visualization or interpretation techniques,
such as activation maps, occlusion sensitivity, or gradient-based heat maps. These methods
could enable comparison with physical markers assessed by medical specialists or even
identify new regions of interest for AD detection.

CONCLUSIONS
Early diagnosis of AD is key to providing adequate care to the patient, but existing
detection techniques are not definitive enough to provide a certain diagnosis. The
evaluation of brain morphology and its changes through time is one of the tools used by
specialists to diagnose the disease, however, changes in the early stages are difficult to
identify in plain sight, and the use of CAD systems is of great interest for this task. The
results presented in this article regarding the classification of different stages of AD using
brain MRI indicate that DL models do have the ability to correctly identify control/healthy
patients from the ones suffering from dementia, nevertheless, there is still a lot of work to
be done in order to create reliable models and test them appropriately in real-life scenarios.
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