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ABSTRACT
Interval Markov chains extend classical Markov chains with the possibility to describe
transition probabilities using intervals, rather than exact values. While the standard
formulation of interval Markov chains features closed intervals, previous work has
considered open interval Markov chains, in which the intervals can also be open
or half-open. In this article we focus on qualitative reachability problems for open
interval Markov chains, which consider whether the optimal (maximum or minimum)
probability with which a certain set of states can be reached is equal to 0 or 1.We present
polynomial-time algorithms for these problems for both of the standard semantics of
interval Markov chains. Our methods do not rely on the closure of open intervals,
in contrast to previous approaches for open interval Markov chains, and can address
situations in which probability 0 or 1 can be attained not exactly but arbitrarily closely.

Subjects Theory and Formal Methods, Software Engineering
Keywords Interval Markov chains, Model checking, Probabilistic systems

INTRODUCTION
The development of modern computer systems can benefit substantially from a verification
phase, in which a formal model of the system is verified exhaustively in order to
identify undesirable errors or inefficiencies. In this article we consider the verification of
probabilistic systems, in which state-to-state transitions are accompanied by probabilities
that specify the relative likelihood with which the transitions occur, using model-checking
techniques; see Baier & Katoen (2008), Forejt et al. (2011) and Baier et al. (2018) for general
overviews of this field. One drawback of classical formalisms for probabilistic systems is that
they require typically the specification of exact probability values for transitions: in practice,
it is likely that such precise information concerning the probability of system behaviour
is not available. A solution to this problem is to associate intervals of probabilities with
transitions, rather than exact probability values, leading to interval Markov chains (IMCs)
or interval Markov decision processes. IMCs have been studied in Jonsson & Larsen (1991)
and Kozine & Utkin (2002), and considered in the qualitative and quantitative model-
checking context in Sen, Viswanathan & Agha (2006), Chatterjee, Sen & Henzinger (2008)
and Chen, Han & Kwiatkowska (2013). Qualitative model checking concerns whether a
property is satisfied by the system model with probability (equal to or strictly greater
than) 0 or (equal to or strictly less than) 1, whereas quantitative model checking considers
whether a property is satisfiedwith probability (strictly or non-strictly) above or below some
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threshold in the interval [0,1], and generally involves the computation of the probability
of property satisfaction, which is then compared to the aforementioned threshold.

In Sen, Viswanathan & Agha (2006), Chatterjee, Sen & Henzinger (2008) and Chen, Han
& Kwiatkowska (2013), the intervals associated with transitions are closed. This limitation
was adressed in Chakraborty & Katoen (2015), which considered the possibility of utilising
open (and half-open) intervals, in addition to closed intervals. Example of such open
IMCs are shown in Figs. 1 and 2. In Chakraborty & Katoen (2015), it was shown that the
probability of the satisfaction of a property in an open IMC can be approximated arbitrarily
closely by a standard, closed IMC obtained by changing all (half-)open intervals featured in
the model to closed intervals with the same endpoints. However, as noted in Chakraborty
& Katoen (2015), closing the intervals can involve the loss of information concerning exact
solutions. Take, for example, the open IMC in Fig. 1: changing the intervals from (0,1)
to [0,1] on both of the transitions leaving state s0 means that the minimum probability of
reaching the state s1 after starting in state s0 becomes 0, whereas the probability of reaching
s1 from s0 is strictly greater than 0 for all ways of assigning probabilities to the transitions
in the original IMC.

In this article we propose verification methods for qualitative reachability properties of
open IMCs. We consider both of the standard semantics for IMCs. The uncertain Markov
chain (UMC) semantics associated with an IMC comprises an infinite number of standard
Markov chains, where each Markov chain is obtained from the IMC by fixing a probability
for each transition, chosen from the transition’s interval. In contrast, the interval Markov
decision process (IMDP) semantics associates a singleMarkov decision process (MDP)with
the IMC, where the state set is identical to that of the IMC, and where there are available
generally an uncountable number of choices from a state, each of which corresponds to
an assignment of probabilities belonging to the intervals of the transitions leaving the
associated IMC state. The key difference between the two semantics can be summarised by
considering the behaviour from a particular state of the IMC: for a Markov chain of the
UMC semantics, the same probability distribution over outgoing transitionsmust always be
used from the state, whereas in the IMDP semantics the outgoing probability distribution
may change for each visit to the state. We show that we can obtain exact (not approximate)
solutions to qualitative reachability problems for both semantics in polynomial time in the
size of the open IMC.

For the UMC semantics, and for three of the four classes of the qualitative reachability
problem in the IMDP semantics, the algorithms presented are inspired by methods for
qualitative reachability problems of finite MDPs. Certain cases can be dealt with by
straightforward reachability analysis on the underlying graph of the IMC. Other cases
require the construction of a finite MDP that represents sufficient information regarding
the qualitative properties of the IMC. Recall that the classical definition of MDPs (see, for
example, Puterman (1994) and Baier & Katoen (2008)) specifies that an MDP comprises a
set of states and a transition relation that associates a number of distributions with each
state. A transition from state to state consists of two phases: first a nondeterministic choice
between the distributions associatedwith the source state ismade, and second a probabilistic
choice to determine the target state is made according to the distribution chosen in the first
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Figure 1. An open IMC O1.
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Figure 2. An open IMC O2.

transitions in the original IMC.47

In this paper we propose verification methods for qualitative reachability properties of open IMCs.48

We consider both of the standard semantics for IMCs. The uncertain Markov chain (UMC) semantics49

associated with an IMC comprises an infinite number of standard Markov chains, where each Markov50

chain is obtained from the IMC by fixing a probability for each transition, chosen from the transition’s51

interval. In contrast, the interval Markov decision process (IMDP) semantics associates a single Markov52

decision process (MDP) with the IMC, where the state set is identical to that of the IMC, and where there53

are available generally an uncountable number of choices from a state, each of which corresponds to an54

assignment of probabilities belonging to the intervals of the transitions leaving the associated IMC state.55

The key difference between the two semantics can be summarised by considering the behaviour from a56

particular state of the IMC: for a Markov chain of the UMC semantics, the same probability distribution57

over outgoing transitions must always be used from the state, whereas in the IMDP semantics the outgoing58

probability distribution may change for each visit to the state. We show that we can obtain exact (not59

approximate) solutions to qualitative reachability problems for both semantics in polynomial time in the60

size of the open IMC.61

For the UMC semantics, and for three of the four classes of the qualitative reachability problem62

in the IMDP semantics, the algorithms presented are inspired by methods for qualitative reachability63

problems of finite MDPs. Certain cases can be dealt with by straightforward reachability analysis on64

the underlying graph of the IMC. Other cases require the construction of a finite MDP that represents65

sufficient information regarding the qualitative properties of the IMC. Recall that the classical definition66

of MDPs (see, for example, Puterman (1994) and Baier and Katoen (2008)) specifies that an MDP67

comprises a set of states and a transition relation that associates a number of distributions with each68

state. A transition from state to state consists of two phases: first a nondeterministic choice between the69

distributions associated with the source state is made, and second a probabilistic choice to determine the70

target state is made according to the distribution chosen in the first phase. The set of states of the finite71

MDP that we construct equals that of the IMC and, for each state s and each set X of states, a unique72

distribution that assigns positive probability to exactly the states in X is associated with s if and only if73

there exists at least one probability assignment for target states in the IMC available in s that assigns74

positive probability to each state in X . Intuitively, a distribution associated with s and X in the finite MDP75

can be regarded as the representative distribution of all probability assignments of the IMC that assign76

positive probability to the transitions from s to states in X . For example, in an MDP constructed for the77

IMC of Figure 2, there will be two distributions associated with state s1: one distribution assigns positive78

probability to s0 and s2 (corresponding to the assignment of probability 0.8 to s0, probability 0 to s1, and79

probability 0.2 to s2), and the other assigns positive probability to s0, s1 and s2 (corresponding to all other80

possible assignments of probability to the transitions leaving s1, given by the intervals labelling those81

transitions). Unfortunately, such a finite MDP construction does not yield polynomial-time algorithms in82

the size of the open IMC, because the presence of transitions having zero as their left endpoint means that83

the number of representative distributions can be exponential in the number of IMC transitions. In our84

methods, apart from considering issues concerning the difference between closed and open intervals and85

the subsequent implications for qualitative reachability problems, we avoid such an exponential blow up.86

In particular, we show how the predecessor operations used by some qualitative reachability algorithms87

for MDPs can be applied directly on the IMC.88

The remaining, fourth class of reachability problems in the IMDP semantics concerns determining89

whether the probability of reaching a certain set of states from the current state is equal to 1 for all90

schedulers, where a scheduler resolves nondeterminism by choosing an outgoing probability distribution91

from a state on the basis of the choices made so far. For this class of problems, retaining the memory of92

previous choices can be important for showing that the problem is not satisfied, i.e., that there exists a93

scheduler such that the reachability probability is strictly less than 1. As an example, we can take the94
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phase. The set of states of the finite MDP that we construct equals that of the IMC and, for
each state s and each set X of states, a unique distribution that assigns positive probability
to exactly the states in X is associated with s if and only if there exists at least one probability
assignment for target states in the IMC available in s that assigns positive probability to
each state in X . Intuitively, a distribution associated with s and X in the finite MDP can
be regarded as the representative distribution of all probability assignments of the IMC that
assign positive probability to the transitions from s to states in X . For example, in an MDP
constructed for the IMC of Fig. 2, there will be two distributions associated with state s1:
one distribution assigns positive probability to s0 and s2 (corresponding to the assignment
of probability 0.8 to s0, probability 0 to s1, and probability 0.2 to s2), and the other assigns
positive probability to s0, s1 and s2 (corresponding to all other possible assignments of
probability to the transitions leaving s1, given by the intervals labelling those transitions).
Unfortunately, such a finite MDP construction does not yield polynomial-time algorithms
in the size of the open IMC, because the presence of transitions having zero as their left
endpoint means that the number of representative distributions can be exponential in the
number of IMC transitions. In our methods, apart from considering issues concerning
the difference between closed and open intervals and the subsequent implications for
qualitative reachability problems, we avoid such an exponential blow up. In particular, we
show how the predecessor operations used by some qualitative reachability algorithms for
MDPs can be applied directly on the IMC.

The remaining, fourth class of reachability problems in the IMDP semantics concerns
determining whether the probability of reaching a certain set of states from the current state
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1Although a finite-memory scheduler can
vary the probability of taking the transition
from s0 to s1 on the basis of the number of
times s0 has been visited, the fact that the
memory of the scheduler is finite means
that there is someminimal probability λ
of taking the transition from s0 to s1, and
hence the overall probability of reaching s1
is at least limk→∞1− (1−λ)k = 1.

is equal to 1 for all schedulers, where a scheduler resolves nondeterminism by choosing
an outgoing probability distribution from a state on the basis of the choices made so far.
For this class of problems, retaining the memory of previous choices can be important for
showing that the problem is not satisfied, i.e., that there exists a scheduler such that the
reachability probability is strictly less than 1. As an example, we can take the open IMC
in Fig. 1. Consider the memoryful scheduler that assigns probability 1

2i to the ith attempt
to take a transition from s0 to s1, meaning that the overall probability of reaching s1 when
starting in s0 under this scheduler is 1

2 +
1
2(

1
4 +

3
4(

1
8 +···))< 1. Instead a memoryless

scheduler will reach s1 with probability 1: for any λ ∈ (0,1) representing the (constant)
probability of taking the transition from s0 to s1, the overall probability of reaching s1 is
limk→∞1−(1−λ)k = 1. Similar reasoning can be used to conclude that any finite-memory
scheduler also reaches s1 with probability 1.1 Hence our results for this class of reachability
problems take the inadequacy of memoryless and finite-memory schedulers into account;
indeed, while the algorithms presented for all other classes of problems (and all problems
for the UMC semantics) proceed in a manner similar to that introduced in the literature
for finite MDPs, for this class we present an ad hoc algorithm, based on an adaptation of
the classical notion of end components (de Alfaro, 1997).

Our results also allow us to show that, for both of the considered semantics, the same
set of IMC states satisfy analogous reachability problems (i.e, problems with the same
quantification over Markov chains in the UMC semantics and over schedulers in the
IMDP semantics, and the same kind of comparison with 0 or 1), except in the case of the
reachability problem concerning whether all Markov chains in the UMC semantics or all
schedulers in the IMDP semantics reach a certain set of states with probability 1.

After introducing open IMCs in Section ‘Open Interval Markov Chains’, the algorithms
for the UMC semantics and the IMDP semantics are presented in Section ‘Qualitative
Reachability: UMC semantics’ and Section ‘Qualitative Reachability: IMDP semantics’,
respectively.

Related work. Model checking of qualitative properties of Markov chains (see, for
example, Vardi (1985) and Courcoubetis & Yannakakis (1995)) relies on the fact that
transition probability values are fixed throughout the behaviour of the system, and does not
require that exact probability values are taken into account during analysis. The majority of
work on model checking for IMCs considers the more general quantitative problems: Sen,
Viswanathan & Agha (2006) and Chatterjee, Sen & Henzinger (2008) present algorithms
utilising a finite MDP construction based on encoding extremal probabilities allowed from
a state (known as the state’s basic feasible solutions) within distributions available from
that state. Such a construction results in an exponential blow up, which is also incurred in
Chatterjee, Sen & Henzinger (2008) for qualitative properties (when transitions can have 0
as their left endpoint). Chen, Han & Kwiatkowska (2013) and Puggelli et al. (2013) improve
on these results to present polynomial-time algorithms for reachability problems based
on linear or convex programming. Haddad & Monmege (2018) includes polynomial-time
methods for computing (maximal) end components, and for computing a single step of
value iteration, for interval MDPs. We note that IMCs are a special case of constraint
Markov chains (Caillaud et al., 2011), and that the UMC semantics of IMCs corresponds
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to a special case of parametric Markov chains (Daws, 2004; Lanotte, Maggiolo-Schettini &
Troina, 2007; Junges et al., 2021). In particular, the polynomial-time algorithms for positive
probability qualitative reachability problems for parametric Markov decision processes in
Junges et al. (2021) have similarities with our algorithms for the analogous problems for
the UMC semantics of IMCs: both are based on the principle that assigning to transitions
probability 0, as opposed to positive probability, can never be beneficial from the point
of view of satisfying a positive probability reachability problem, an observation which
allows us to avoid the aforementioned exponential blow up. Bart et al. (2018) present
an IMDP semantics that uses finite-memory schedulers, which (as indicated above) is a
key difference with our work. As far as we are aware, only (Chakraborty & Katoen, 2015)
considers open IMCs. This article is a revised and extended version of the conference paper
(Sproston, 2018a) and the preprint (Sproston, 2018b), and includes a detailed treatment of
the connections between assignments of probabilities to intervals and syntactic properties
of open IMCs, in addition to full proofs of all results.

PRELIMINARIES
A (probability) distribution over a countable set Q is a function µ :Q→[0,1] such that∑

q∈Qµ(q)= 1. Let Dist(Q) be the set of distributions over Q. We use support(µ)=
{q∈Q|µ(q)> 0} to denote the support set of µ, i.e., the set of elements assigned positive
probability by µ, and use {q 7→ 1} to denote the distribution that assigns probability 1 to
the single element q. Given a binary function f :Q×Q→[0,1] and element q ∈Q, we
denote by f (q,·) :Q→[0,1] the unary function such that f (q,·)(q′)= f (q,q′) for each
q′ ∈Q.

Let Q be the set of rational numbers. We let I denote the set of (open, half-open or
closed) intervals that are subsets of [0,1] and that have rational-numbered endpoints (i.e.,
endpoints in Q∩[0,1]). Given an interval I ∈I , we let left(I ) (respectively, right(I ))
be the left (respectively, right) endpoint of I . The set of closed (respectively, left-open,
right-closed; left-closed, right-open; open) intervals inI is denoted byI [·,·] (respectively,
I (·,·]; I [·,·); I (·,·)). Note that I [·,·], I (·,·], I [·,·) and I (·,·) form a partition of I . Let
〈·,·] be the set of right-closed intervals in I , and let I 〈0,·〉 be the set of intervals in I with
left endpoint equal to 0. We partition I 〈0,·〉 into the set I [0,·〉 of left-closed intervals with
the left endpoint equal to 0, and the set I (0,·〉 of left-open intervals with the left endpoint
equal to 0. Furthermore, let I 〈+,·〉=I \I 〈0,·〉 be the set of intervals such that the left
endpoint is positive.

A discrete-time Markov chain (DTMC) D is a pair (S,P) where S is a set of states, and
P : S×S→[0,1] is a transition probability matrix, such that, for each state s∈ S, we have∑

s′∈SP(s,s
′)= 1. Note that P(s,·) is a distribution, for each state s∈ S. Intuitively, given

states s,s′ ∈ S, a transition from s to s′ is made with probability P(s,s′). A path of DTMC D

is a sequence s0s1 ··· such that P(si,si+1)> 0 for all i≥ 0. Given a path ρ= s0s1 ··· and i≥ 0,
we let state[ρ](i)= si be the (i+1)-th state along ρ. The set of paths of D starting in state
s∈ S is denoted by PathsD

∞
(s). In the standard manner (see, for example, Baier & Katoen

(2008) and Forejt et al. (2011)), given a state s∈ S, we can define a probability measure PrD
s

over PathsD
∞
(s).

Sproston (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1489 5/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1489


A Markov decision process (MDP) M is a pair (S,1) where S is a finite set of states and
1 : S→ 2Dist(S) is a transition function such that 1(s) 6= ∅ for all s∈ S. An MDP is finite if
1(s) is finite for all s∈ S. Intuitively, a transition from state s to some target state is chosen
according to two phases: first, a nondeterministic choice is made between distributions
in 1(s); second, a probabilistic choice between target states is made according to the
distribution chosen in the first phase.

A(n infinite) path of an MDP M is a sequence s0µ0s1µ1 ··· such that µi ∈1(si) and
µi(si+1)> 0 for all i≥ 0. Given a path ρ= s0µ0s1µ1 ··· and i≥ 0, we let state[ρ](i)= si be
the (i+1)-th state along ρ, and let dist[ρ](i)=µi be the (i+1)-th distribution along ρ. A
finite path is a sequence r = s0µ0s1µ1 ···µn−1sn such that µi ∈1(si) and µi(si+1)> 0 for
each 0≤ i< n. Let last (r)= sn denote the final state of r . For distribution µ∈1(sn) and
state s′ ∈ S such thatµ(s′)> 0, we write rµs′ to denote the finite path s0µ0s1µ1 ···µn−1snµs′.
We say that r is a prefix of the infinite path ρ if state[ρ](i)= si for each 0≤ i≤ n, and
dist[ρ](i)=µi for each 0≤ i< n. Let PathsM

∗
be the set of finite paths of the MDP M . Let

PathsM
∞
(s) and PathsM

∗
(s) be the sets of infinite paths and finite paths, respectively, of M

starting in state s∈ S.
A scheduler is a mapping σ : PathsM

∗
→ Dist(

⋃
s∈S1(s)) such that σ (r) ∈

Dist(1(last (r))) for each r ∈ PathsM
∗
. Let 6M be the set of schedulers of the MDP

M . Given a state s∈ S and a scheduler σ , we can define a countably infinite-state DTMC
Dσ

s that corresponds to the behaviour of the scheduler σ from state s. Formally, the DTMC
Dσ

s = (PathsM
∗
(s),Pσs ) has Paths

M
∗
(s) as its state set, and where its transition probability

matrix Pσs is defined in the following way: for finite path r ∈ PathsM
∗
(s), distribution

µ∈1(last (r)) and state s′ ∈ S, we have that Pσs (r,rµs
′)= σ (last (r))(µ) ·µ(s′). The DTMC

Dσ
s can be used to define a probability measure Prσs over PathsM

∞
(s) in the standardmanner

(see Baier & Katoen (2008) and Forejt et al. (2011)).
A scheduler σ ∈ 6M is memoryless if, for finite paths r,r ′ ∈ PathsM

∗
such that

last (r)= last (r ′), we have σ (r)= σ (r ′). In the sequel, a memoryless scheduler will
generally be written as the mapping σ : S→ Dist(

⋃
s∈S1(s)). Let 6M

m be the set of
memoryless schedulers of M . Note that, for a memoryless scheduler σ ∈6M

m , we can
construct a finite DTMC D̃σ

= (S,P̃) with P̃(s,s′)=
∑

µ∈1(s)σ (s)(µ) ·µ(s
′): we call this

DTMC the folded DTMC of σ . The probability measures Prσs and PrD̃
σ

s assign the same
probabilities to measurable sets of paths. This can be seen by considering the following.
Recall that the scheduler σ and state s induce a DTMC Dσ

s = (PathsM
∗
(s),Pσs ). Now

consider the smallest relation R ⊆ PathsM
∗
(s)× S such that (r,s′) ∈R if last (r)= s′.

Note that, for a given r ∈ PathsM
∗
(s) and s′ ∈ S, we have

∑
µ∈1(last (r))P

σ
s (r,rµs

′)=∑
µ∈1(last (r))σ (last (r))(µ) ·µ(s

′)= P̃(last (r),s′). This allows us to conclude thatR induces
a probabilistic bisimulation (Larsen & Skou, 1991) (more formally, the equivalence relation
induced by R on the ‘‘combined DTMC’’ obtained by the union of the state spaces of Dσ

s
and D̃σ and the standard transition function that corresponds directly from Pσs and P̃).
Given that probabilistic bisimilar states of DTMCs induce probability measures that assign
the same probability to measurable sets of paths (see, for example, Chapter 10 of Baier &
Katoen, 2008), we conclude that Prσs and PrD̃

σ

s assign the same probabilities to measurable
sets of paths.
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Remark 1 Note that the classical definition of MDPs (Puterman, 1994; Baier & Katoen,
2008) features actions and a transition function mapping states and actions to distributions
over states. As above, a transition consists of two phases: the first phase regards the
nondeterministic choice of an action, and the second phase regards the probabilistic choice
of the unique distribution associated with the current state and the action chosen in the
first phase. In our setting, in which we use MDPs to define the IMDP semantics of IMCs,
actions have no explicit significance. For this reason, and in accordance with other papers
on IMCs (Sen, Viswanathan & Agha, 2006; Chatterjee, Sen & Henzinger, 2008; Chen, Han
& Kwiatkowska, 2013), we choose to omit actions and present the transition function as a
mapping from states to sets of distributions. �

OPEN INTERVAL MARKOV CHAINS
In this section, we recall of the definition of (open) interval Markov chains, and introduce
notions such as assignments of probability to transitions, well-formed interval Markov
chains and edges of interval Markov chains, together with the relationships between these
concepts that will be necessary for subsequent technical results. Portions of this text were
previously published as part of a preprint (Sproston, 2018b).
Definition 1 (IMCs): An (open) interval Markov chain (IMC) O is a pair (S,δ), where S
is a finite set of states, and δ : S×S→I is an interval-based transition function. �

Intuitively, the probability of making a transition from state s to state s′ of an IMC
(S,δ) is a value from the interval δ(s,s′). Given a state s∈ S, a distribution a∈Dist(S) is an
assignment for s if a(s′)∈ δ(s,s′) for each state s′ ∈ S.

Well-formed IMCs
In the sequel, we will consider only IMCs for which there exists at least one assignment for
each state. This restriction can be captured by the following syntactic conditions on the
transition function. Let s∈ S be a state. The well-formedness conditions for s are defined as
follows:
1.
∑

s′∈S left(δ(s,s′))≤ 1,
2.
∑

s′∈S left(δ(s,s′))= 1 implies that δ(s,s′) is left-closed for all s′ ∈ S,
3.
∑

s′∈S right(δ(s,s′))≥ 1, and
4.
∑

s′∈S right(δ(s,s′))= 1 implies that δ(s,s′) is right-closed for all s′ ∈ S.
The following proposition establishes the correspondence between the well-formedness

conditions and the existence of an assignment, and generalises to open IMCs similar
assertions for IMCs with closed intervals only (for example, in Section 4 of Haddad &
Monmege (2018)).
Proposition 1 Let (S,δ) be an IMC and s∈ S be a state. Then the well-formedness conditions
for s are satisfied if and only if there exists an assignment for s. �
Proof (⇒) Assume that the well-formedness conditions for s are satisfied. We proceed by
defining a function f : S→[0,1] such that:
(a) left(δ(s,s′))+ f (s′)∈ δ(s,s′) for all s′ ∈ S and
(b)

∑
s′∈S left(δ(s,s′))+ f (s′)= 1.
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Intuitively, the value f (s′) is an ‘‘offset’’ from left(δ(s,s′)) towards right(δ(s,s′)). Then
we let a : S→[0,1] be the function defined by setting a(s′)= left(δ(s,s′))+ f (s′) for all
s′ ∈ S. The function a is an assignment: condition (a) in the definition of f establishes
that a(s′) ∈ δ(s,s′) for each state s′ ∈ S, and condition (b) establishes that a ∈Dist(S).
In order to define an appropriate f , we consider the following cases.

Case
∑

s′∈Sleft(δ(s,s′)) =
∑

s′∈Sright(δ(s,s′)) = 1. Given that left(δ(s,s′)) ≥ 0,
right(δ(s,s′))≥ 0 and left(δ(s,s′))≤ right(δ(s,s′)) for all s′ ∈ S, we have that left(δ(s,s′))=
right(δ(s,s′)) (i.e., δ(s,s′) is the degenerate interval [left(δ(s,s′)),right(δ(s,s′))]) and
therefore δ(s,s′) is left- and right-closed for all s′ ∈ S. Let f (s′)= 0 for all s′ ∈ S. Hence
left(δ(s,s′))+ f (s′)= left(δ(s,s′)) for all s′ ∈ S. Given that δ(s,s′) being left-closed implies
that left(δ(s,s′))∈ δ(s,s′), and that

∑
s′∈Sleft(δ(s,s′))= 1 for this case, conditions (a) and

(b) in the definition of f aref satisfied.
Case

∑
s′∈Sleft(δ(s,s′))= 1 and

∑
s′∈Sright(δ(s,s′))> 1. We let f (s′)= 0 for all s′ ∈ S. Given

that the antecedent of the well-formedness condition (2) is satisfied for this case, we have
that δ(s,s′) is left-closed for all s′ ∈ S. Following the reasoning presented for the previous
case, conditions (a) and (b) in the definition of f are satisfied.
Case

∑
s′∈Sleft(δ(s,s′))< 1 and

∑
s′∈Sright(δ(s,s′))= 1. We let f (s′)= right(δ(s,s′))−

left(δ(s,s′)) for all s′ ∈ S. Hence left(δ(s,s′))+ f (s′)= right(δ(s,s′)) for all s′ ∈ S. We then
proceed similarly to the previous cases: well-formedness condition (4) implies that, for
all s′ ∈ S, the interval δ(s,s′) is right-closed, and therefore right(δ(s,s′))∈ δ(s,s′), in turn
establishing condition (a) in the definition of f . Given that

∑
s′∈Sright(δ(s,s′))= 1 in this

case, condition (b) in the definition of f is satisfied trivially.
Case

∑
s′∈Sleft(δ(s,s′)) < 1 <

∑
s′∈Sright(δ(s,s′)) Given s′ ∈ S, let width(δ(s,s′)) =

right(δ(s,s′))− left(δ(s,s′)). Then, for each s′ ∈ S, we let:

f (s′)= (1−
∑
s′′∈S

left(δ(s,s′′))) · width(δ(s,s′))∑
s′′∈Swidth(δ(s,s′′)) .

First we show that condition (a) in the definition of f is satisfied. Our task is to show that
left(δ(s,s′))+ f (s′)∈ δ(s,s′) for all s′ ∈ S. Let s′ ∈ S, and consider the following two cases.

Sub-case left(δ(s,s′))= right(δ(s,s′)). In this sub-case width(δ(s,s′))= 0 and hence
f (s′) = 0. Showing that left(δ(s,s′))+ f (s′) ∈ δ(s,s′) then reduces to showing that
left(δ(s,s′))∈ δ(s,s′). Given that this sub-case specifies that δ(s,s′) is the degenerate interval
[left(δ(s,s′)),right(δ(s,s′))], we have established that left(δ(s,s′))+ f (s′)∈ δ(s,s′).

Sub-case left(δ(s,s′))< right(δ(s,s′)). To show that the choice of f (s′) satisfies
left(δ(s,s′))+f (s′)∈ δ(s,s′), it suffices to show that 0< f (s′)<width(δ(s,s′)). First, we show
that f (s′)> 0. From the definition of the case we have

∑
s′′∈Sleft(δ(s,s′′))< 1, and hence

1−
∑

s′′∈Sleft(δ(s,s′′))> 0. The definition of the sub-case specifies that width(δ(s,s′))> 0.
Combining these two facts with the fact that width(δ(s,s′′))≥ 0 for all s′′ ∈ S establishes
that f (s′)> 0.

Second, we show that f (s′)<width(δ(s,s′)). From our choice of f (s′), we need to
show that 1−

∑
s′′∈Sleft(δ(s,s′′))∑

s′′∈Swidth(δ(s,s′′)) < 1. Noting that the definition of the case specifies that
1<

∑
s′′∈Sright(δ(s,s′′)), we obtain the following equivalent statements from that fact
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and the definition of width(δ(s,s′)):

1 <
∑
s′′∈S

right(δ(s,s′′))

⇔ 1 <
∑
s′′∈S

left(δ(s,s′′))+width(δ(s,s′′))

⇔ 1−
∑
s′′∈S

left(δ(s,s′′)) <
∑
s′′∈S

width(δ(s,s′′))

⇔
1−

∑
s′′∈S left(δ(s,s′′))∑

s′′∈Swidth(δ(s,s′′)) < 1.

Hence we have established that the choice of f (s′) satisfies left(δ(s,s′))+ f (s′)∈ δ(s,s′).
Next we show that condition (b) of the definition of f is satisfied. From the choice of f
and straightforward rearranging, we have:∑
s′∈S

left(δ(s,s′))+ f (s′)

=

∑
s′∈S

left(δ(s,s′))+
∑
s′∈S

f (s′)

=

∑
s′∈S

left(δ(s,s′))+
∑
s′∈S

(1−
∑
s′′∈S

left(δ(s,s′′))) · width(δ(s,s′))∑
s′′∈Swidth(δ(s,s′′))

=

∑
s′∈S

left(δ(s,s′))+ (1−
∑
s′′∈S

left(δ(s,s′′))) ·
∑

s′∈Swidth(δ(s,s′))∑
s′′∈Swidth(δ(s,s′′))

=

∑
s′∈S

left(δ(s,s′))+ (1−
∑
s′′∈S

left(δ(s,s′′)))

= 1.

Hence we have established the (⇒) direction of the theorem.(⇐) Assume that there
exists an assignment a for state s. Recall that, from the definition of assignments, we
have a(s′) ∈ δ(s,s′) for all s′ ∈ S. Hence a(s′)≥ left(δ(s,s′)) and a(s′)≤ right(δ(s,s′))
for all s′ ∈ S. Furthermore, given that an assignment is a distribution, we have∑

s′∈Sa(s
′)= 1. From these facts, we obtain

∑
s′∈Sleft(δ(s,s′)) ≤

∑
s′∈Sa(s

′)= 1 and∑
s′∈Sright(δ(s,s′))≥

∑
s′∈Sa(s

′)= 1, establishing conditions (1) and (3) of well-formedness
for s. Now consider the case in which

∑
s′∈Sleft(δ(s,s′))= 1. Given that

∑
s′∈Sa(s

′)= 1 and
a(s′)≥ left(δ(s,s′)) for all s′ ∈ S, we must have a(s′)= left(δ(s,s′)) for all s′ ∈ S. From the
fact that a(s′)∈ δ(s,s′) for all s′ ∈ S, it must be the case that δ(s,s′) is left-closed for all s′ ∈ S.
Hence condition (2) of well-formedness for s is established. Following similar reasoning, we
can show that, in the case in which

∑
s′∈Sright(δ(s,s′))= 1, we have δ(s,s′) is right-closed

for all s′ ∈ S, thereby establishing condition (4) of well-formedness. �

Henceforth we assume that the IMCs that we consider satisfy the well-formedness
conditions for each of their states.
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2The conference version of this article
(Sproston, 2018a) considered only the
first condition in its definition of edges,
and hence its results were restricted to the
subclass of IMCs for which there were no
state pairs (s,s′) such that condition (1)
holds and condition (2) does not hold.

Edges of IMCs
In the following, we refer to edges as those state pairs to which the transition function can
associate positive probability. There are two situations in which the transition function
enforces the association of probability 0 to a state pair (s,s′)∈ S×S: first, when the right
endpoint of δ(s,s′) is equal to 0 (and hence δ(s,s′) is the interval [0,0]); second, when the
sum of the left endpoints of transitions from s that do not have s′ as target state is equal
to 1 (thereby preventing the assignment of positive probability to (s,s′)). Hence we define
formally the set of edges E ofO as the smallest set such that (s,s′)∈ E if (1) right(δ(s,s′))> 0
and (2)

∑
s′′∈S\{s′}left(δ(s,s′′))< 1.2

We now formalise the intuition that edges are those state pairs which can be assigned
positive probability by relating the notions of edges and assignments.
Proposition 2 Let (S,δ) be an IMC and s,s′ ∈ S be states. Then (s,s′)∈ E if and only if there
exists an assignment a for s such that a(s′)> 0. �
Proof (⇒) Assume that (s,s)′ ∈ E . From the definition of the set E of edges,
we have right(δ(s,s)′) > 0 and

∑
s′′∈S\{s′}left(δ(s,s′′)) < 1. We now show that

there exists an assignment a for s such that a(s′) > 0 by adopting the construc-
tion of a from the (⇒) direction of Proposition 1; in particular, we note that
a(s′) = left(δ(s,s′))+ f (s′) where f (s′) = (1−

∑
s′′∈Sleft(δ(s,s′′))) · width(δ(s,s′))∑

s′′∈Swidth(δ(s,s′′)) .
Consider the following three cases:

Case left(δ(s,s′)) = right(δ(s,s′)). Given that width(δ(s,s′)) = 0 in this case, we
have f (s′)= 0. Hence a(s′)= left(δ(s,s′))+ f (s′)= left(δ(s,s′))= right(δ(s,s′)). From
right(δ(s,s′))> 0, we conclude that a(s′)> 0.
Case left(δ(s,s′))< right(δ(s,s′)) and

∑
s′′∈Sleft(δ(s,s′′))= 1. By the definition of edges,

we have
∑

s′′∈S\{s′}left(δ(s,s′′))< 1. Given that
∑

s′′∈Sleft(δ(s,s′′))= 1 in this case, we have
left(δ(s,s′))> 0. Given that f (s′)≥ 0, we conclude that a(s′)> 0.
Case left(δ(s,s′))< right(δ(s,s′)) and

∑
s′′∈Sleft(δ(s,s′′))< 1. In this case,width(δ(s,s′))> 0

and 1−
∑

s′′∈Sleft(δ(s,s′′))> 0. From the fact that left(δ(s,s′′))≥ 0 for all s′′ ∈ S, we have that
f (s′)> 0, and hence a(s′)> 0.(⇐) We prove the contrapositive, i.e., we show that (s,s′) 6∈ E
implies that all assignments a for s are such that a(s′)= 0. Assume (s,s′) 6∈ E . Hence (1′)
right(δ(s,s′))= 0 or (2′)

∑
s′′∈S\{s′}left(δ(s,s′′))= 1 (note that, by well-formedness, we

cannot have
∑

s′′∈S\{s′}left(δ(s,s′′))> 1). We consider these two cases in turn:
Case (1′): right(δ(s,s′))= 0. For all assignments a for s, given that a(s′)∈ δ(s,s′), we have
a(s′)≤ right(δ(s,s′))= 0.
Case (2′):

∑
s′′∈S\{s′}left(δ(s,s′′))= 1. Consider an (arbitrary) assignment a for s. Recall

that a(s′′)≥ left(δ(s,s′′))≥ 0 for all s′′ ∈ S. Hence
∑

s′′∈S\{s′}left(δ(s,s′′))= 1 means that∑
s′′∈S\{s′}a(s

′′) ≥ 1. Then, given that assignments are distributions, and hence that∑
s′′∈Sa(s

′′)= 1, we must have a(s′)= 0. Because we chose a to be an arbitrary assignment
for s, we have shown that a(s′)= 0 for all assignments a for s.

Hence we have established that the existence of an assignment a for s such that a(s′)> 0
implies that (s,s′)∈ E . �

We use edges to define the notion of path for IMCs: a path of an IMC O = (S,δ) is a
sequence s0s1 ··· such that (si,si+1)∈ E for all i≥ 0. Given a path ρ = s0s1 ··· and i≥ 0, we
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let state[ρ](i)= si be the (i+1)-th state along ρ. We use PathsO
∞

to denote the set of paths
of O , PathsO

∗
to denote the set of finite paths of O , and PathsO

∞
(s) and PathsO

∗
(s) to denote

the sets of paths and finite paths starting in state s∈ S. We refer to (S,E) as the graph of O .
We define the size of an IMC O = (S,δ) as the size of the representation of δ, which is

the sum over all states s,s′ ∈ S of the binary representation of the endpoints of δ(s,s′), where
rational numbers are encoded as the quotient of integers written in binary.

IMCs are presented typically with regard to two semantics, which we consider in turn.
Given an IMC O = (S,δ), the uncertain Markov chain (UMC) semantics of O , denoted
by [O]U, is the smallest set of DTMCs such that (S,P)∈ [O]U if, for each state s∈ S, the
distribution P(s,·) is an assignment for s. The interval Markov decision process (IMDP)
semantics of O , denoted by [O]I, is the MDP (S,1) where, for each state s∈ S, we let 1(s)
be the set of assignments for s.

Let T ⊆ S be a set of states of IMC O = (S,δ). We define Reach(T )⊆ PathsO
∞

to be the
set of paths of O that reach at least one state in T . Formally, Reach(T )={ρ ∈ PathsO

∞
|∃i∈

N.state[ρ](i)∈T }. In the following we assume without loss of generality that states in T
are absorbing in all the IMCs that we consider, i.e., δ(s,s)= [1,1] for all states s∈T .

Valid edge sets
Let O = (S,δ) be an IMC with edge set E , and let s ∈ S be a state of O . Edge (s′,s′′) ∈ E
has source s if s= s′ and target s if s= s′′. Let E(s)= {(s,s′) ∈ E|s′ ∈ S} be the set of
edges of O with source s. Given ? ∈ {[·,·],(·,·],[·,·),(·,·),〈+,·〉,[0,·〉,(0,·〉,〈0,·〉,〈·,·]},
let E? = {(s,s′) ∈ E|δ(s,s′) ∈I ?

}. Given X ⊆ S, and given s and ? as defined above, let
E(s,X)= {(s,s′) ∈ E(s)|s′ ∈ X} be the set of edges with source s and target in X , and let
E?(s,X)= E(s,X)∩E?.

In the sequel, we will be interested in identifying the sets of edges with source state s∈ S
and target states that correspond exactly to the set of states assigned positive probability by
assignments for s. This will allow us to reason about sets of edges with certain characteristics
rather than reasoning directly about assignments. The characteristics of sets of edges with
the same source state that we consider are the following: the first condition, called largeness,
requires that the sum of the upper bounds of the set’s edges’ intervals is at least 1; the second
condition, called realisability, requires that the edges that are not included in the set can
be assigned probability 0. The formal definition of these characteristics now follows.
Definition 2 (Large, realisable and valid edge sets.): Let B⊆ E(s) be a set of edges with
source state s∈ S. The set B is:

• large if either (a)
∑

e∈Bright(δ(e))> 1 or (b)
∑

e∈Bright(δ(e))= 1 and B⊆ E〈·,·];
• realisable if E(s)\B⊆ E [0,·〉;
• valid if it is large and realisable. �

The following lemma specifies that a valid set of edges with source state s characterises
exactly the support sets of at least one assignment for s. In its statement and proof we use
the following notation. Given s∈ S and B⊆ E(s), we partition S into the following sets:

• TB={s′|(s,s′)∈B} denotes the target states of edges in B,
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• TE(s)\B={s′|(s,s′)∈ E(s)\B} denotes the target states of edges with source s that are not
in B, and
• S¬E(s)= S\{s′|(s,s′)∈ E(s)} denotes states that are not target states of the edges that have
source state s.

Lemma 1 Let s∈ S and B⊆ E(s). Then B is valid if and only if there exists an assignment
a for s such that support(a)=TB. �

Proof (⇒) Let B be a valid subset of E(s) of edges with source s. We have
∑

e∈Bleft(δ(e))≤∑
e∈E(s)left(δ(e))≤

∑
e∈E left(δ(e))≤ 1 from B⊆ E(s)⊆ E and condition (1) of well-

formedness. Furthermore,
∑

e∈Bright(δ(e))≥ 1 because B is large.

First we identify conditions that are analogues of well-formedness conditions restricted
to the set B of edges. Then, using these conditions, we proceed as in the (⇒) direction of
Proposition 1 to define an assignment that assigns positive probability only to target states
of edges in B.

The well-formedness conditions (1) and (2), together with the fact that B⊆ E(s),
establishes the following conditions (1̃) and (2̃), whereas the largeness of B establishes the
following conditions (3̃) and (4̃):
(1̃)

∑
e∈Bleft(δ(e))≤ 1,

(2̃)
∑

e∈Bleft(δ(e))= 1 implies that δ(e) is left-closed for all e ∈B,
(3̃)

∑
e∈Bright(δ(e))≥ 1, and

(4̃)
∑

e∈Bright(δ(e))= 1 implies that δ(e) is right-closed for all e ∈B.
It will be useful to consider the following strengthening of condition (2̃):

(2̃′)
∑

e∈Bleft(δ(e))= 1 implies that δ(s,s′) is left-closed for all s′ ∈ S.
Condition (2̃′) has the following justification. Assume that

∑
e∈Bleft(δ(e))= 1. From

this fact, and from the combination of
∑

s′∈Sleft(δ(s,s′))≤ 1 (that is, condition (1) of
well-formedness) and the fact that B⊆{s}×S, we have that

∑
s′∈Sleft(δ(s,s′))= 1. Then, by

condition (2) of well-formedness, we have that δ(s,s′) is left-closed for all s′ ∈ S. We note
that an analogous strengthening of condition (4̃) cannot in general be obtained (because it
is possible that there exists at least one pair (s,s′)∈ ({s}×S)\B such that right(δ(s,s′))> 0
without contradicting well-formedness condition (3)).

Next, we define an assignment in a similar manner to that featured in the (⇒) direction
of Proposition 1, taking care to guarantee that the assignment we define assigns positive
probability only to target states of edges in B. As in the (⇒) direction of Proposition 1, we
define a function f : S→[0,1] such that:
(a) left(δ(s,s′))+ f (s′)∈ δ(s,s′) for all s′ ∈ S and
(b)

∑
s′∈Sleft(δ(s,s′))+ f (s′)= 1.

We define a : S→[0,1] by setting a(s′)= left(δ(s,s′))+ f (s′) for all s′ ∈ S. As in the proof
of Proposition 1, the function a is an assignment, because condition (a) in the definition
of f establishes that a(s′)∈ δ(s,s′) for each state s′ ∈ S, and condition (b) establishes that
a∈Dist(S).

In order to define an appropriate f , we consider the following cases.
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Case
∑

e∈Bleft(δ(e))= 1. As in analogous cases of the proof of Proposition 1, we let
f (s′)= 0 for all s′ ∈ S. Condition (a) in the definition of f is satisfied for the following
reason. Given that

∑
e∈Bleft(δ(e))= 1, the antecedent of condition (2̃′) is satisfied,

and hence δ(s,s′) is left-closed (i.e., left(δ(s,s′)) ∈ δ(s,s′)) for all s′ ∈ S; then the choice
of f (s′)= 0 for all s′ ∈ S means that left(δ(s,s′))+ f (s′) ∈ δ(s,s′) is satisfied for all
s′ ∈ S, hence establishing condition (a). We now establish the satisfaction of condition
(b) in the definition of f . Given that f (s′)= 0 for all s′ ∈ S, showing condition (b)
reduces to showing that

∑
s′∈Sleft(δ(s,s′))= 1. Given that

∑
e∈Bleft(δ(e))= 1, our

task reduces in turn to showing that left(δ(s,s′))= 0 for all s′ ∈ S \TB. Recall that
S \TB = TE(s)\B ∪ S¬E(s) (because TB, TE(s)\B and S¬E(s) form a partition of S). We
proceed first by showing that left(δ(s,s′))= 0 for all s′ ∈TE(s)\B. Given that E(s)\B⊆ E [0,·〉

from the realisability of B, and that left(δ(e))= 0 for all e ∈ E [0,·〉 by definition, we
have that left(δ(s,s′))= 0 for all s′ ∈ TE(s)\B. Next, we show that left(δ(s,s′))= 0 for
all s′ ∈ S¬E(s). From the definition of edges, for s′ ∈ S¬E(s), either right(δ(s,s′))= 0 or∑

s′′∈S\{s′}left(δ(s,s′′))≥ 1. In the case of right(δ(s,s′))= 0, from left(δ(s,s′))≤ right(δ(s,s′))
(by definition of δ), we must have left(δ(s,s′))= 0. In the case of

∑
s′′∈S\{s′}left(δ(s,s′′))≥ 1,

given that well-formedness condition (1) specifies that
∑

s′′∈Sleft(δ(s,s′′))≤ 1, we must
have left(δ(s,s′))= 0. Hence we have established condition (b) in the definition of f .
Next we establish that support(a)= TB. First we show that support(a)⊆ TB. From the
reasoning in the previous paragraph, we have left(δ(s,s′))= 0 for all s′ ∈ S\TB. Given
that f (s′)= 0 for all s′ ∈ S, we have a(s′)= left(δ(s,s′))+ f (s′)= 0 for all s′ ∈ S\TB. Hence
support(a)⊆ TB. Second we show that support(a)⊇ TB. Note that

∑
e∈Bleft(δ(e))= 1

holds in the definition of this case, and that
∑

s′′∈S\{s′}left(δ(s,s′′))< 1 holds for all (s,s′)∈ E
from the definition of edges. Combining these two facts allows us to conclude that
left(δ(e))> 0 for all e ∈ B. Then a(s′)= left(δ(s,s′))+ f (s′)> 0 for all s′ ∈TB, establishing
that support(a)⊇TB.
Case

∑
e∈Bleft(δ(e)) < 1 and

∑
e∈Bright(δ(e)) = 1. We let f (s′) = right(δ(s,s′))−

left(δ(s,s′)) for all s′ ∈TB, and let f (s′)= 0 for all s′ ∈ S\TB. Hence left(δ(s,s′))+ f (s′)=
right(δ(s,s′)) for all s′ ∈ TB, and left(δ(s,s′))+ f (s′)= left(δ(s,s′)) for all s′ ∈ S\TB. First
we establish that the choice of f above yields an assignment by showing that conditions
(a) and (b) in the definition of f are satisfied. First consider condition (a). The antecedent
of condition (4̃) is satisfied for this case, hence δ(e) is right-closed for all e ∈ B, i.e.,
right(δ(s,s′))∈ δ(s,s′) for all s′ ∈TB. For s′ ∈ S\TB, because f (s′)= 0, we need to show that
left(δ(s,s′))∈ δ(s,s′), i.e., that δ(s,s′) is left-closed. Recalling that TE(s)\B and S¬E(s) form a
partition of S\TB, we have two sub-cases based on whether s′ belongs to TE(s)\B or to S¬E(s).
For s′ ∈TE(s)\B, given that E(s)\B⊆ E [0,·〉 from the realisability of B, we have that δ(s,s′)
is left-closed. For s′ ∈ S¬E(s), from the definition of edges, we either have right(δ(s,s′))= 0
or
∑

s′′∈S\{s′}left(δ(s,s′′))≥ 1. For right(δ(s,s′))= 0, it must be the case that δ(s,s′)= [0,0],
which is left-closed. For

∑
s′′∈S\{s′}left(δ(s,s′′))≥ 1, given that well-formedness condition

(1) specifies that
∑

s′′∈Sleft(δ(s,s′′))≤ 1, we must have
∑

s′′∈Sleft(δ(s,s′′))= 1. Then well-
formedness condition (2) specifies that δ(s,s′) is left-closed. Hence we have established
condition (a) in the definition of f . Next we turn our attention to condition (b) in the
definition of f . Recall that TB, TE(s)\B and S¬E(s) form a partition of S. First consider
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TB. Noting that
∑

e∈Bright(δ(e))= 1, we have
∑

s′∈TB
right(δ(s,s′))= 1. Then, from the

choice of f , we have
∑

s′∈TB
left(δ(s,s′))+ f (s′)= 1. Now consider TE(s)\B. Recall that,

for s′ ∈ TE(s)\B, we have chosen f (s′)= 0 and established that left(δ(s,s′))= 0 (because
δ(s,s′)= [0,0]) above, and hence

∑
s′∈TE(s)\B

left(δ(s,s′))+f (s′)= 0. Finally, for s′ ∈ S¬E(s), we
either have right(δ(s,s′))= 0, in which case left(δ(s,s′))= 0, or

∑
s′′∈S\{s′}left(δ(s,s′′))≥ 1,

in which case the well-formedness condition (1) specifying that
∑

s′′∈Sleft(δ(s,s′′))≤ 1
establishes that left(δ(s,s′))= 0. Given that f (s′)= 0 for all s′ ∈ S\TB and S¬E(s)⊆ S\TB,
we have

∑
s′∈S¬E(s) left(δ(s,s′))+ f (s′)= 0. From the fact that TB, TE(s)\B and S¬E(s) form a

partition of S, we then conclude that:∑
s′∈S

left(δ(s,s′))+ f (s′)=
∑
s′∈TB

right(δ(s,s′))= 1.

Hence we have established condition (b) in the definition of f , and therefore the choice of
f yields an assignment.

It remains to show that support(a)= TB. From the reasoning in the previous two
paragraphs, we have established that left(δ(s,s′))+ f (s′)= right(δ(s,s′)) for all s′ ∈ TB,
and left(δ(s,s′))+ f (s′)= 0 for all s′ ∈ S \TB. Hence support(a)⊆ TB. From the fact
that right(δ(s,s′))> 0 for s′ ∈ S such that (s,s′) ∈ E(s), and from B⊆ E(s), we have
that right(δ(s,s′))> 0 for all s′ ∈ TB. Hence support(a)⊇ TB. We then conclude that
support(a)=TB.
Case

∑
e∈Bleft(δ(e))< 1<

∑
e∈Bright(δ(e)). For each s′ ∈TB, we let:

f (s′)= (1−
∑
s′′∈TB

left(δ(s,s′′))) · width(δ(s,s′))∑
s′′∈TB

width(δ(s,s′′)) ,

and let f (s′)= 0 for each s′ ∈ S\TB.
First we show that this definition of f satisfies condition (a), i.e., left(δ(s,s′))+f (s′)∈ δ(s,s′)
for all s′ ∈ S. In the sub-case in which left(δ(s,s′))= right(δ(s,s′)) (i.e., δ(s,s′) is the
degenerate interval [left(δ(s,s′)),right(δ(s,s′))]), we have f (s′)= 0, because either s′ ∈ S\TB,
or s′ ∈ TB and f (s′)= 0 is a consequence of the fact that width(δ(s,s′))= 0. As in
the proof of Proposition 1, we then conclude that left(δ(s,s′))+ f (s′) ∈ δ(s,s′). Now
consider the sub-case in which left(δ(s,s′))< right(δ(s,s′)). Recall again that TB, TE(s)\B

and S¬E(s) form a partition of S. If s′ ∈ TE(s)\B or s′ ∈ S¬E(s), we conclude, following
identical reasoning used in the previous case, that left(δ(s,s′))+ f (s′) ∈ δ(s,s′). On the
other hand, if s′ ∈ TB, we proceed in a similar manner to that of the analogous case
of Proposition 1. In order to show left(δ(s,s′))+ f (s′) ∈ δ(s,s′), we will establish that
0< f (s′)< width(δ(s,s′)). The fact that f (s′)> 0 is a consequence of the following
three facts: 1−

∑
e∈Bleft(δ(e))> 0 (from the definition of the case), width(δ(s,s′))> 0

(given that we are considering the sub-case of left(δ(s,s′)) < right(δ(s,s′))), and∑
s′′∈TB

width(δ(s,s′′))> 0 (from the previous fact and from the fact that width(δ(s,s′′))≥ 0
for all s′′ ∈ S). We now show that f (s′)<width(δ(s,s′)). From the definition of f , this

requires showing that
1−
∑

s′′∈TB
left(δ(s,s′′))∑

s′′∈TB
width(δ(s,s′′)) < 1. Given that we are considering the case in

which 1<
∑

e∈Bright(δ(e)), i.e., 1<
∑

s′′∈TB
left(δ(s,s′′))+width(δ(s,s′′)), we can conclude
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that 1−
∑

s′′∈TB
left(δ(s,s′′))<

∑
s′′∈TB

width(δ(s,s′′)) and hence 1−
∑

s′′∈TB
left(δ(s,s′′))∑

s′′∈TB
width(δ(s,s′′)) < 1. Thus

we have established that the choice of f (s′) satisfies left(δ(s,s′))+ f (s′)∈ δ(s,s′) for s′ ∈TB.
We now proceed to show that f satisfies condition (b), i.e.,

∑
s′∈Sleft(δ(s,s′))+ f (s′)= 1.

Recall that TB, TE(s)\B and S¬E(s) form a partition of S, and that f (s′)= 0 for each
s′ ∈ S \TB. Following similar reasoning to that of the previous case and of the proof
of Proposition 1, we show that left(δ(s,s′))= 0, and hence left(δ(s,s′))+ f (s′)= 0, for each
s′ ∈ S \TB. For s′ ∈ TE(s)\B, we have left(δ(s,s′))= 0 from the fact that E(s) \B⊆ E [0,·〉

because B is realisable. For s′ ∈ S¬E(s), we have left(δ(s,s′))= 0 by the definition of
edges: either right(δ(s,s′)) = 0 and hence left(δ(s,s′)) = 0, or the combination of∑

s′′∈S\{s′}left(δ(s,s′′))≥ 1 and
∑

s′′∈Sleft(δ(s,s′′))≤ 1 (well-formedness condition (1))
establishes that left(δ(s,s′))= 0. Given that left(δ(s,s′))+ f (s′)= 0, for each s′ ∈ S\TB,
our aim reduces to showing that

∑
s′∈TB

left(δ(s,s′))+ f (s′)= 1. We proceed as for the
analogous case in Proposition 1:∑
s′∈TB

left(δ(s,s′))+ f (s′)

=

∑
s′∈TB

left(δ(s,s′))+
∑
s′∈TB

f (s′)

=

∑
s′∈TB

left(δ(s,s′))+
∑
s′∈TB

(1−
∑
s′′∈TB

left(δ(s,s′′))) · width(δ(s,s′))∑
s′′∈TB

width(δ(s,s′′))

=

∑
s′∈TB

left(δ(s,s′))+ (1−
∑
s′′∈TB

left(δ(s,s′′))) ·
∑

s′∈TB
width(δ(s,s′))∑

s′′∈TB
width(δ(s,s′′))

=

∑
s′∈TB

left(δ(s,s′))+ (1−
∑
s′′∈TB

left(δ(s,s′′)))

= 1.

Next, we show that support(a)= TB. The fact that support(a)⊆ TB follows from
left(δ(s,s′))+f (s′)= 0, for each s′ ∈ S\TB, which was established in the previous paragraph.
In order to establish that support(a)⊇TB, we observe the following facts. For s′ ∈TB, we
have (s,s′)∈ B⊆ E(s), and hence right(δ(s,s′))> 0 from the definition of edges. Then if
width(δ(s,s′))= 0, from left(δ(s,s′))= right(δ(s,s′)) we have left(δ(s,s′))> 0. Instead, if
width(δ(s,s′))> 0, we have f (s′)> 0 from the choice of f . Hence, for each s′ ∈ TB, we
have left(δ(s,s′))+ f (s′)> 0, from which we obtain support(a)⊇ TB. We conclude that
support(a)=TB.

This concludes the (⇒) direction of the proof.
(⇐) Let a be an assignment for state s such that support(a)=TB. Our aim is to show

that B is valid, i.e., that B is large and realisable. From the definition of assignments, we
have a(s′)∈ δ(s,s′), and hence a(s′)≤ right(δ(s,s′)) for each state s′ ∈ S. From this fact, and
given that a is a distribution (i.e., sums to 1), we have:∑
(s,s′)∈B

right(δ(s,s′))=
∑

s′∈support(a)
right(δ(s,s′))≥

∑
s′∈support(a)

a(s′)= 1.

Sproston (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1489 15/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1489


In the case of
∑

(s,s′)∈Bright(δ(s,s′))> 1, the fact that B is large follows immediately from the
definition of largeness. In the case of

∑
(s,s′)∈Bright(δ(s,s′))= 1, then a(s′)= right(δ(s,s′))

(i.e., a(s′) must be equal to the right endpoint of δ(s,s′)) for each (s,s′)∈B. Hence B⊆ E〈·,·],
and as a consequence B is large. The fact that {(s,s′)|s′ ∈ support(a)} = B implies that
a(s′)= 0 for all (s,s′)∈ E(s)\B. Hence E(s)\B⊆ E [0,·〉, and therefore B is realisable. Because
B is large and realisable, B is valid. �

A consequence of Lemma 1, together with Proposition 1 and the fact that we consider
only well-formed IMCs, is that there exists at least one valid subset of outgoing edges from
each state.

For each state s ∈ S, we let Valid(s)= {B⊆ E(s)|B is valid}. Note that |Valid(s)| =
2|E(s)|−1 in the worst case (when all edges in E(s) are associated with intervals [0,1]).
Given a valid set B∈Valid(s), we let ValidAssign(B) be the set of assignments a for s that
witness Lemma 1, i.e., all assignments a for s such that {(s,s′)|s′ ∈ support(a)} = B. Let
Valid =

⋃
s∈SValid(s) be the set of valid sets of the IMC. A witness assignment function

w :Valid→Dist(S) assigns to each valid set B∈Valid an assignment from ValidAssign(B).
Example 1 For the state s1 of the IMC O2 of Fig. 2, the valid edge sets are B1 =
{(s1,s0),(s1,s1),(s1,s2)} and B2 = {(s1,s0),(s1,s2)}, reflecting the intuition that the edge
(s1,s1) can be assigned (exactly) probability 0. Note thatmodifying the IMC so that the right
endpoint of (s1,s0) is reduced to 0.7 would result in B1 being the only valid set associated
with s1; the set B2 would not be large, because it is not possible to assign probability 0
to edge (s1,s1) and total probability of 1 to edges (s1,s0) and (s1,s2). An example of a
witness assignment function w for state s1 of O2 is w(B1)(s0)= 0.7, w(B1)(s1)= 0.12
and w(B1)(s2)= 0.18, and w(B2)(s0)= 0.8 and w(B2)(s2)= 0.2. �

The qualitative MDP abstraction of O with respect to witness assignment function w is
the MDP [O]w = (S,1w), where 1w is defined by 1w(s)= {w(B)|B∈Valid(s)} for each
state s∈ S.

QUALITATIVE REACHABILITY: UMC SEMANTICS
Qualitative reachability problems can be classified into four categories, depending on
whether we ask that the probability of reaching the target set T is 0 or 1 for some or for
all ways of assigning probabilities to intervals. For the UMC semantics of IMC O = (S,δ),
state s∈ S, quantifier Q∈ {∀,∃} and probability λ∈ {0,1}, the (s,Q,λ)-reachability problem
for the UMC semantics of O asks whether

QD ∈ [O]U .PrDs (Reach(T ))= λ

holds. To solve the (s,Q,λ)-reachability problem for the UMC semantics ofO , we compute
the set Sλ,UQ = {s

′
∈ S|QD ∈ [O] U .PrDs′ (Reach(T ))= λ}, then check whether s ∈ Sλ,UQ .

Portions of this text were previously published as part of a preprint (Sproston, 2018b).
Theorem 1 Let Q ∈ {∀,∃} and λ ∈ {0,1}. The set Sλ,UQ can be computed in polynomial
time in the size of the IMC. �
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A straightforward corollary of Theorem 1 is that qualitative reachability problems for
the UMC semantics of IMCs are in P. The remainder of this section is dedicated to showing
Theorem 1 for each of the combinations of Q∈ {∀,∃} and λ∈ {0,1}.

Computation of S0,U
∀

The case for S0,U
∀

is straightforward. We compute the complement of S0,U
∀

, namely the set
of states for which there exists a DTMC in the UMC semantics such that T is reached with
positive probability, written formally as S\S0,U

∀
={s∈ S|∃D ∈ [O]U .PrDs (Reach(T ))> 0}.

The computation of this set reduces to reachability on the graph of the IMC according to
the following lemma.
Lemma 2 Let s∈ S. There exists D ∈ [O]U such that PrDs (Reach(T ))> 0 if and only if
there exists a finite path r ∈ PathsO

∗
(s) such that last (r)∈T.

Proof (⇒) Let D = (S,P) ∈ [O]U be a DTMC such that PrDs (Reach(T ))> 0. From
PrDs (Reach(T ))> 0, there exists at least one finite path s0s1 ···sn ∈ PathsD∗ (s) of D such
that sn ∈ T . For each i< n, we have that P(si,si+1)> 0. From the definition of the UMC
semantics, we have that P(si,·) is an assignment for si such that P(si,·)(si+1)> 0, from
which we then obtain that (si,si+1)∈ E by Proposition 1. Repeating this reasoning for each
i< n, we have that s0s1 ···sn ∈ PathsO∗ (s). Recalling that sn ∈T , this direction of the proof is
completed.
(⇐) Let s0s1 ···sn ∈ PathsO∗ (s) be a finite path ofO such that sn ∈T , which we assumew.l.o.g.
does not contain any cycle. By the definition of finite paths of O , we have (si,si+1)∈ E for
each i< n. From Proposition 1, for each i< n, there exists an assignment a for state si such
that a(si+1)> 0. In turn, this means that there exists a DTMC D = (S,P)∈ [O]U such that
P(si,si+1)> 0 for each i< n (for any state t ∈ S\{s0,s1,...,sn} not visited along the path,
the distribution P(t ,·) can be defined in an arbitrary way). Given that sn ∈ T , we obtain
PrDs (Reach(T ))> 0. �

Hence the set S0,U
∀

is equal to the complement of the set of states from which there exists
a path reaching T in the graph of the IMC. Given that the graph of the IMC and the latter
set of states can be computed in polynomial time, we conclude that S0,U

∀
can be computed

in polynomial time.

Computation of S0,U
∃

We show that S0,U
∃

can be obtained by computing, in the qualitative MDP abstraction
[O]w = (S,1w) of O with respect to some (arbitrary) witness assignment function w , the
set of states for which there exists a scheduler such that T is reached with probability 0.

To establish the correctness of this approach, we show a more general result: for
λ∈ {0,1}, the set of states of [O]w for which there exists a scheduler such that T is reached
with probability λ is equal to the set of states of O for which there exists a DTMC in [O]U
such that T is reached with probability λ. The case in which λ= 0 will be used subsequently
for the computation of S0,U

∃
, whereas the case in which λ= 1 will be used later in the article

for the computation of S1,U
∃

.
Lemma 3 Let s∈ S and λ∈ {0,1}. There exists D ∈ [O]U such that PrDs (Reach(T ))= λ
if and only if there exists a scheduler σ ∈6[O]w such that Prσs (Reach(T ))= λ.
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Proof (⇒) Let D = (S,P) be a DTMC such that D ∈ [O]U and PrDs (Reach(T ))= λ. We
define the (memoryless) scheduler σD ∈6

[O]w of [O]w in the following way. Consider a
state s′ ∈ S, and let Bs′ ={(s′,s′′)∈ E|P(s′,s′′)> 0} be the set of edges with source s′ assigned
positive probability by D . Note that Bs′ ∈Valid(s′): this follows from the fact that P(s′,·) is
an assignment for s′ and by Lemma 1. Then, for any finite path r ∈ Paths[O]w∗ (s) ending in
state s′ (that is, last (r)= s′), we let σD (r)={w(Bs′) 7→ 1}, i.e., σD chooses (with probability
1) the distribution that corresponds to the witness assignment function applied to the
edge set Bs′ (this is possible because Bs′ ∈ Valid(s′) and 1w(s′)= {w(B)|B ∈ Valid(s′)}
by definition). From the fact that σD is memoryless, we can obtain the folded DTMC
D̃σD = (S,P̃) of σD . Now observe that the DTMC D and the folded DTMC D̃σD are
graph equivalent in the following sense: for any s′,s′′ ∈ S, we have P(s′,s′′)> 0 if and only
if P̃(s′,s′′)> 0 (which follows from the fact that, for all states s′ ∈ S, we have {(s′,s′′) ∈
S×S|P(s′,s′′)> 0} = Bs′ = {(s′,s′′)|s′′ ∈ support(w(Bs′))} = {(s′,s′′)∈ S×S|P̃(s′,s′′)> 0}).
Then, from (Chatterjee, Sen & Henzinger, 2008, Lemma 2), which specifies that the sets
of states satisfying any given qualitative ω-regular (and hence also reachability) property
in graph equivalent DTMCs are identical, we have that PrDs (Reach(T ))= λ implies
PrσD

s (Reach(T ))= λ.
(⇐) Assume that there exists a scheduler σ ∈6[O]w of [O]w such that Prσs (Reach(T ))= λ.
Given that [O]w is a finite MDP, from standard results (de Alfaro, 1997; Baier & Katoen,
2008), we can assume that σ is (a) pure (that is, for all finite paths r ∈ Paths[O]w

∗
, we have

that σ (r)= {µ 7→ 1} for some µ∈1w(last (r))) and (b) memoryless. Given (a) and (b),
we can write σ as a mapping σ : S→

⋃
s′∈S1w(s′). Then consider the DTMC D = (S,P),

where P(s′,·)= σ (s′) for all states s′ ∈ S. Note that, for all states s′ ∈ S, we have that σ (s′) is
an assignment, from the following two facts: (1) σ chooses a distribution w(B) for some
B∈Valid(s′), and (2) w is a witness assignment function, i.e., w(B) is an assignment. Given
that σ (s′) is an assignment for all s′ ∈ S, hence P(s′,·) is an assignment for all s′ ∈ S, and
thereforeD ∈ [O]U. The folded DTMC D̃σ and the DTMCD are graph equivalent. Hence,
given that Prσs (Reach(T ))= λ, we have PrDs (Reach(T ))= λ. �

In particular, Lemma 3 allows us to reduce the problem of computing S0,U
∃

to that
of computing the set S0,w

∃
= {s ∈ S|∃σ ∈6[O]w .Prσs (Reach(T ))= 0} on [O]w for an

arbitrary witness assignment function w . As in the case of standard finite MDP techniques
(see Forejt et al. (2011)), we proceed by computing the complement of this set, i.e., we
compute the set S \ S0,w

∃
= {s ∈ S|∀σ ∈ 6[O]w .Prσs (Reach(T ))> 0}. For a state set

X ⊆ S, let CPre(X) be the set of states for which there exists a distribution such that
all states assigned positive probability by the distribution are in X , defined formally as
CPre(X)= {s ∈ S|∃µ ∈1w(s).support(µ)⊆ X}. Furthermore, let CPre(X) be set of
states such that all available distributions make a transition to X with positive probability,
defined formally as CPre(X)= {s∈ S|∀µ∈1w(s).support(µ)∩X 6= ∅}. Note that CPre
is the dual of the CPre operator, i.e., CPre(X)= S\CPre(S\X). The standard algorithm
for computing the set of states of a finite MDP for which all schedulers result in reaching a
set T of target states with probability strictly greater than 0 operates in the following way:
starting from X0=T , we let Xi+1=Xi∪CPre(Xi) for progressively larger values of i≥ 0,
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until we reach a fixpoint (that is, until we obtain Xi∗+1 = Xi∗ for some i∗). However, a
direct application of this algorithm to [O]w results in an exponential-time algorithm, given
that the size of the transition function 1w of [O]w is in general exponential in the size of
O . For this reason, we propose an algorithm that operates directly on the IMC O , without
requiring the explicit construction of [O]w . We proceed by establishing that CPre can be
implemented in polynomial time in the size of O .
Lemma 4 Let s∈ S and X ⊆ S. Then:

• s∈CPre(X) if and only if E(s,X) is valid;
• the set CPre(X) can be computed in polynomial time in the size of O .

Proof The proof of the first part of Lemma 4 relies on Lemma 1 and the observation that for
any B,B′⊆ E(s,X) such that B⊆B′, if E(s)\B⊆ E [0,·〉 and B is large, then E(s)\B′⊆ E [0,·〉
and B′ is large (intuitively, the greater the subset of E(s,X), the easier it is to satisfy
realisability and largeness). Formally, the observation holds because E(s)\B′⊆ E(s)\B,
and, in the case of B⊂ B′, for e ∈ B′ \B, given that right(δ(e))> 0 (from the definition of
edges) and

∑
e ′∈Bright(δ(e ′))≥ 1 (because B is large), we must have

∑
e ′∈B′right(δ(e ′))> 1

(that is, condition (a) in the definition of largeness holds for B′, regardless of whether
condition (a) or (b) in the definition of largeness holds for B). Hence if there exists
B⊆ E(s,X) such that E(s)\B⊆ E [0,·〉 and B is large, then E(s)\E(s,X)⊆ E [0,·〉 and E(s,X)
is large. We now show formally the first part of Lemma 4:

s∈CPre(X)
⇔ ∃µ∈1w (s).support(µ)⊆X (definition of CPre)
⇔ ∃B⊆ E(s).B⊆ S×X ∧B∈Valid(s) (Lemma 1, definition of [O]w )
⇔ ∃B⊆ E(s).B⊆ S×X ∧E(s)\B⊆ E [0,·〉∧B is large (definition of Valid(s))
⇔ E(s,X)⊆ S×X ∧E(s)\E(s,X)⊆ E [0,·〉∧E(s,X) is large (observation above)
⇔ E(s)\E(s,X)⊆ E [0,·〉∧E(s,X) is large (definition of E(s,X))
⇔ E(s,X) is valid (definition of validity).

The second part of Lemma 4 follows from the first part of the lemma and the fact that
checking validity of E(s,X) (that is, checking that E(s) \ E(s,X)⊆ E [0,·〉 and E(s,X) is
large) can be done in polynomial time in the size of O . �

Example 2 In Fig. 3, we illustrate the intuition underlying Lemma 4, making reference
to an IMC fragment (left) and its corresponding qualitative MDP abstraction fragment
(right; note that probabilities are not represented for the qualitative MDP abstraction
to avoid clutter). Our aim is to determine whether s0 belongs to CPre(X) for X =
{s1,s2}. According to Lemma 4, determining whether s0 belongs to CPre(X) is equiv-
alent to determining whether E(s0,X) is valid. The edge set E(s0,X) is large (because
right(δ(s0,s1))+ right(δ(s0,s2))= 0.5+ 0.6= 1.1> 1) and realisable (because (s0,s3) ∈
E [0,·〉). Hence, by reasoning on the IMC, we can determine the existence of a distribution
from s0 in the qualitative MDP abstraction (indicated by the black square) such that the
distribution assigns positive probability only to states in X . For completeness, we also
note that state s0 is associated not just with the valid edge set {(s0,s1),(s0,s2)}, but also
with the valid edge sets {(s0,s1),(s0,s3)} and {(s0,s1),(s0,s2),(s0,s3)}, which correspond
to the distributions illustrated with the grey squares with the support sets {s1,s3} and
{s1,s2,s3}, respectively, in the qualitative MDP abstraction. �
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3Readers familiar with µ-calculus will
observe that the algorithm can be
expressed using the term νY .µX(T ∪
APre(Y ,X)) (de Alfaro, 1999).
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Figure 3. Example fragments of an IMC (left) and the corresponding qualitative MDP abstraction
(right).
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only to states in X . For completeness, we also note that state s0 is associated not just with the valid edge629
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Figure 3 Example fragments of an IMC (left) and the corresponding qualitative MDP abstraction
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Based on Lemma 4, instead of constructing and analysing the qualitative MDP
abstraction [O]w , we propose computing directly on O the sets X0 = T and Xi+1 =

Xi ∪CPre(Xi) for increasing indices i until a fixpoint is reached. Given that a fixpoint
must be reached within |S| steps, and the fact that Lemma 4 specifies that CPre(S \Xi),
and hence CPre(Xi), can be done in polynomial time in the size of O , we have that the set
{s ∈ S|∀σ ∈6[O]w .Prσs (Reach(T ))> 0} can be computed in polynomial time in the size
of O . The complement of this set is equal to S0,U

∃
, as established by Lemma 3, and hence

we can compute S0,U
∃

in polynomial time in the size of O .

Computation of S1,U
∃

We proceed in a manner analogous to that for the case of S0,U
∃

. First note that, by
Lemma 3, the set S1,U

∃
is equal to the set of states of [O]w for which there exists a

scheduler that results in T being reached with probability 1, i.e., S1,U
∃
= {s ∈ S|∃σ ∈

6[O]w .Prσs (Reach(T )) = 1}. Hence our aim is to compute
{s ∈ S|∃σ ∈6[O]w . Prσs (Reach(T ))= 1} on [O]w . We recall the standard algorithm for
the computation of this set on finite MDPs (de Alfaro, 1997; de Alfaro, 1999). Given state
sets X ,Y ⊆ S, we let

APre(Y ,X)={s∈ S|∃µ∈1w(s).support(µ)⊆Y ∧support(µ)∩X 6= ∅}.

That is, APre(Y ,X) is the set of states for which there exists a distribution such that (a)
all states assigned positive probability by the distribution are in Y and (b) there exists a
state in X that is assigned positive probability by the distribution. The standard algorithm
for computing the set of states for which there exists a scheduler that results in T being
reached with probability 1 proceeds as follows. First we set Y0 = S and X 0

0 = T . Then
sequence X 0

0 ,X
0
1 ,... is computed by letting X 0

i0+1 = X 0
i0 ∪APre(Y0,X 0

i0) for progressively
larger indices i0 ≥ 0 until a fixpoint is obtained, that is, until we obtain X 0

i∗0+1
= X 0

i∗0
for some i∗0 . Next we let Y1 = X 0

i∗0
, X 1

0 = T and compute X 1
i1+1 = X 1

i1 ∪APre(Y1,X 1
i1)

for larger i1 ≥ 0 until a fixpoint X 1
i∗1
is obtained. Then we let Y2 = X 1

i∗1
and X 2

0 = T , and
repeat the process. We terminate the algorithm when a fixpoint is reached in the sequence
Y0,Y1,....3 The algorithm requires at most |S|2 calls to APre. In an analogous manner to
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CPre in the case of S0,U
∃

, we show that APre can be characterised by efficiently checkable
conditions on O .
Lemma 5 Let s∈ S and let X ,Y ⊆ S. Then:

• s∈APre(Y ,X) if and only if E(s,X ∩Y ) 6= ∅, and E(s,Y ) is valid;
• the set APre(Y ,X) can be computed in polynomial time in the size of O .
Proof The intuition underlying Lemma 5 is similar to that of Lemma 4. In particular,
observe that if there exists B⊆ E(s,Y ) such that B∩ (S×X) 6= ∅, E(s) \B⊆ E [0,·〉 and B
is large, then E(s,Y )∩(S×X) 6= ∅, E(s)\E(s,Y )⊆ E [0,·〉 and E(s,Y ) is large. We first show
formally the first part of the lemma:

s∈APre(Y ,X)
⇔ ∃µ∈1w (s).support(µ)⊆Y ∧support(µ)∩X 6= ∅ !!(definition of APre)
⇔ ∃B∈ E(s).B⊆ S×Y ∧B∩ (S×X) 6= ∅∧B∈Valid(s) (Lemma 1, definition of [O]w )
⇔ ∃B∈ E(s).B⊆ S×Y ∧B∩ (S×X) 6= ∅∧E(s)\B⊆ E [0,·〉∧B is large (definition of Valid(s))
⇔ E(s,Y )⊆ S×Y ∧E(s,Y )∩ (S×X) 6= ∅∧E(s)\E(s,Y )⊆ E [0,·〉∧E(s,Y ) is large (observation above)
⇔ E(s,X ∩Y ) 6= ∅∧E(s,S\Y )⊆ E [0,·〉∧E(s,Y ) is large (definition of E(s,Y ))
⇔ E(s,X ∩Y ) 6= ∅∧E(s,Y ) is valid (definition of validity).

The second part of the lemma follows from the first part combined with the fact that
checking whether E(s,X ∩Y ) 6= ∅ and E(s,Y ) is valid can be done in polynomial time
in the size of O .

Hence we obtain an overall polynomial-time algorithm for computing {s ∈ S|∃σ ∈
6[O]w .Prσs (Reach(T ))= 1} which, from Lemma 3, equals S1,U

∃
.

Computation of S1,U
∀

We recall the standard algorithm for determining the set of states for which all schedulers
reach a target set with probability 1 on a finite MDP (see Forejt et al. (2011)): from the set
of states of the MDP, we first remove states from which the target state can be reached
with probability 0 for some scheduler, then successively remove states for which it is
possible to reach a previously removed state with positive probability. For each of the
remaining states, all schedulers result in the target set being reached with probability 1.

We propose an algorithm for IMCs that is inspired by this standard algorithm for finite
MDPs. Our aim is to compute the complement of S1,U

∀
, i.e., the state set S \ S1,U

∀
= {s ∈

S|∃D ∈ [O]U .PrDs (Reach(T ))< 1}.
Lemma 6 Let s ∈ S. There exists D ∈ [O]U such that PrDs (Reach(T ))< 1 if and only if
there exists a path r ∈ PathsO

∗
(s) such that last (r)∈ S0,U

∃
.

Proof (⇒) Let D = (S,P)∈ [O]U be a DTMC such that PrDs (Reach(T ))< 1. A bottom
strongly connected component (BSCC) V ⊆ S of D is a strongly connected component of
the graph of D (that is, the graph (S,{(s′,s′′)|P(s′,s′′)> 0})) such that there is no outgoing
edge from V (that is, for all states s′ ∈V and s′′ ∈ S, if P(s′,s′′)> 0 then s′′ ∈V ). Let V ⊆ 2S

be the set of BSCCs of D . Given that D is a finite DTMC, by standard results for finite
DTMCs (see, for example, Baier & Katoen (2008)), we have that BSCCs are reached with
probability 1, i.e., PrDs (Reach(

⋃
V∈V V ))= 1, and that once a BSCC is entered all of its

states are visited with probability 1. Hence PrDs (Reach(T ))< 1 implies that there exists
some BSCC V ∈ V such that V ∩T = ∅ and PrDs (Reach(V ))> 0. Next we repeat the
reasoning of Lemma 2 to show that there exists a finite path s0s1 ···sn ∈ PathsO∗ (s) such that
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sn ∈V . We now show that V ⊆ S0,U
∃

: for any state s′ ∈V , the fact that V ∩T =∅ and from
the fact that BSCCs do not feature outgoing edges, we have that PrDs′ (Reach(T ))= 0, and
hence s′ ∈ S0,U

∃
. Therefore, for the finite path s0s1 ···sn ∈ PathsO∗ (s), we have sn ∈ S

0,U
∃

, which
completes this direction of the proof.
(⇐) Let s0s1 ···sn ∈ PathsO∗ (s) be a finite path of O such that sn ∈ S

0,U
∃

. We assume w.l.o.g.
that s0s1 ···sn does not contain any cycle, and that si 6∈ S

0,U
∃

for all i< n. As in the proof of
Lemma 2, we can use these facts to conclude that there exists a DTMC D = (S,P)∈ [O]U
such that P(si,si+1)> 0 for each i< n. Furthermore, from the definition of S0,U

∃
, for any

state s′ ∈ S0,U
∃

, there exists a DTMC D s′
= (S,Ps′)∈ [O]U such that PrD

s′

s′ (Reach(T ))= 0.
In particular, from sn ∈ S

0,U
∃

, we have PrD
sn

sn (Reach(T )) = 0. Note that all states on
all paths in PathsD

sn
∗

(sn) are in S0,U
∃

(if this was not the case, that is there exists a path
in PathsD

sn
∗

(sn) featuring a state s′′ 6∈ S
0,U
∃

, then we must also have sn 6∈ S
0,U
∃

). The fact
that the set {s0,s1,...,sn−1} (i.e., the states before sn along the finite path) and the set
S0,U
∃

are disjoint means that we can combine the DTMCs D (along the finite path) and
D sn (within S0,U

∃
) to obtain a DTMC D ′ = (S,P′); formally, P′(si,·)= P(si,·) for i< n,

P′(s′,·)= Psn(s′,·) for s′ ∈ S
0,U
∃

, and P′(s′,·) can be defined by arbitrary assignments for all
other states, i.e., for s′ ∈ S \ ({s0,s1,...,sn−1}∪ S

0,U
∃

). Given that D,D sn ∈ [O]U, we have
that D ′ ∈ [O]U. Furthermore, in D ′, from s there exists a finite path to states S0,U

∃
in which

the DTMC is subsequently confined, and (by the trivial fact that S0,U
∃
⊆ S \T ) therefore

PrD
′

s (Reach(T ))< 1, completing this direction of the proof. �

Hence the set S1,U
∀

can be computed by taking the complement of the set of states for
which there exists a path to S0,U

∃
in the graph of O . Given that S0,U

∃
, and the set of states

reaching S0,U
∃

, can be computed in polynomial time, we have obtained a polynomial-
time algorithm for computing S1,U

∀
. Together with the cases for S0,U

∀
, S0,U
∃

and S1,U
∃

, this
establishes Theorem 1.

QUALITATIVE REACHABILITY: IMDP SEMANTICS
We now focus on the IMDP semantics of IMC O = (S,δ). Qualitative reachability
problems in this setting take a similar form to that seen for the UMC semantics, with the
key difference being the quantification over schedulers in 6[O]I in the IMDP semantics,
rather than over DTMCs in [O]U in the UMC semantics. For state s ∈ S, quantifier Q ∈
{∀,∃} and probability λ ∈ {0,1}, the (s,Q,λ)-reachability problem for the IMDP semantics
of O asks whether

Qσ ∈6[O]I .Prσs (Reach(T ))= λ

holds. To solve the (s,Q,λ)-reachability problem for the IMDP semantics of O , we
compute the set Sλ,IQ = {s

′
∈ S|Qσ ∈6[O]I .Prσs (Reach(T ))= λ}, then check whether

s ∈ Sλ,IQ . Portions of this text were previously published as part of a preprint (Sproston,
2018b). This section will be dedicated to showing the following result. We note that the
cases for S0,I

∀
, S0,I
∃

and S1,I
∃

proceed in a manner similar to the UMC case (using either
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graph reachability or reasoning based on the qualitative MDP abstraction); instead the
case for S1,I

∀
requires substantially different techniques.

Theorem 2 Let Q ∈ {∀,∃} and λ ∈ {0,1}. The set Sλ,IQ can be computed in polynomial
time in the size of the IMC.

A corollary of Theorem 2 is the membership in P of qualitative reachability problems
for the IMDP semantics of IMCs. In the rest of this section, we establish Theorem 2 for
Q∈ {∀,∃} and λ∈ {0,1}.

Computation of S0,I
∀

As in the case of UMCs, the computation of S0,I
∀

relies on a straightforward reachability
analysis on the graph of the IMC O to obtain the complement of S0,I

∀
. The correctness of

this approach is based on the following lemma.
Lemma 7 Let s ∈ S. There exists σ ∈6[O]I such that Prσs (Reach(T ))> 0 if and only if
there exists a path r ∈ PathsO

∗
(s) such that last (r)∈T. �

Proof (⇒) Let σ ∈6[O]I be a scheduler of [O]I such that Prσs (Reach(T ))> 0. Recall
that the DTMC Dσ

s is defined as (Pathsσ
∗
(s),Pσs ): the state set of D

σ
s comprises the finite

paths resulting from choices of σ from state s, and, for finite paths r,r ′ ∈ Pathsσ
∗
(s), we

have Pσs (r,r
′)> 0 if r ′= rµs′ such that µ∈1(last (r)), σ (µ)> 0 and µ(s′)> 0, otherwise

Pσs (r,r
′)= 0. Furthermore, we say that a path ρ of Dσ

s is in Reach(T ) if there exists a
finite path in Pathsσ

∗
(s), with last state in T , that is visited along ρ. For a path ρ of Dσ

s ,
we can obtain a path ρ ′ of O simply by extracting the sequence of the final states for
all finite prefixes of ρ: that is, from the path s0(s0µ0s1)(s0µ0s1µ1s2)··· of Dσ

s we can
obtain the path s0s1s2 ··· of O , because µi(si+1)> 0 implies that (si,si+1) ∈ E for all i ∈N
(from the definition of [O]I and Lemma 1). Observe that ρ ∈ Reach(T ) implies that
ρ ′ ∈Reach(T ). To conclude, Prσs (Reach(T ))> 0 implies that there exists ρ ∈ PathsD

σ
s
∞ (s)

such that ρ ∈Reach(T ), which in turn implies that there exists ρ ′ ∈ PathsO
∞
(s) such that

ρ ′ ∈Reach(T ), i.e., there exists a finite prefix r of ρ ′ (and therefore r ∈ PathsO
∗
(s)) such

that last (r)∈T .

(⇐) Let s0s1 ···sn ∈ PathsO∗ (s) be a finite path of O such that sn ∈ T . By the def-
inition of finite paths of O , we have (si,si+1) ∈ E for each i < n, which, by Lemma
1, implies in turn that there exists an assignment ai to si such that ai(si+1) > 0. We
consider a scheduler σ ∈ 6[O]I of [O]I defined in the following way: for each i < n,
for all paths r ∈ Paths[O]I∗ (s) such that last (r) = si, then we let σ (r) = ai (σ can be
defined in an arbitrary manner for all other finite paths). Observe that the finite path
r = s0(s0a0s1)(s0a0s1a1s2)···(s0a0 ···an−1sn) is a finite path of Dσ

s such that all infinite paths
of Dσ

s that have r as a prefix are in Reach(T ), and hence Prσs (Reach(T ))> 0. �
Therefore, to obtain S0,I

∀
, we compute the state set

S \ S0,I
∀
= {s ∈ S|∃σ ∈6[O]I . Prσs (Reach(T ))> 0}, which reduces to reachability on the

graph of the IMC according to Lemma 7, and then take the complement of the resulting
set.
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Computation of S0,I
∃

and S1,I
∃

In the following we fix an arbitrary witness assignment function w of O . Lemma 8
establishes that S0,I

∃
(respectively, S1,I

∃
) equals the set of states of the qualitative MDP

abstraction [O]w with respect to w for which there exists some scheduler such that T is
reached with probability 0 (respectively, probability 1).
Lemma 8 Let s ∈ S and λ ∈ {0,1}. There exists a scheduler σ ∈ 6[O]I such that
Prσs (Reach(T )) = λ if and only if there exists a scheduler σ ′ ∈ 6[O]w such that
Prσ

′

s (Reach(T ))= λ. �

Proof We first deal comprehensively with the case of λ= 0, and then consider the case of
λ= 1.

Case: λ= 0. (⇒) Let σ ∈6[O]I be a scheduler of [O]I such that Prσs (Reach(T ))= 0.
We show how we can define a scheduler f(σ )∈6[O]w such that Prf(σ )s (Reach(T ))= 0.

For any finite path r ∈ Paths[O]1∗ (s), let Bσr be the set of edges assigned positive
probability by σ after r . Formally:

Bσr ={(s,s
′)∈ E|s= last (r)∧∃µ∈1(s).(σ (r)(µ)> 0∧µ(s′)> 0)}.

We now define the partial function g : Paths[O]w∗ (s)→ Pathsσ
∗
(s), which associates with a

finite path of [O]w some finite path of [O]I (more precisely, of σ ) that features the same
sequence of states. For r = s0µ0s1µ1 ···µn−1sn ∈ Paths

[O]w
∗ (s), let g(r)= s′0µ

′

0s
′

1µ
′

1 ···µ
′

n−1s
′
n

such that:

• s′i= si for all i≤ n;
• g(s0µ0s1µ1 ···µi−1si)= s′0µ

′

0s
′

1µ
′

1 ···µ
′

i−1s
′

i for all i< n;
• σ (g(s0µ0s1µ1 ···µi−1si))(µ′i)> 0 and µ′i(s

′

i+1)> 0 for all i< n.
The first and third conditions, and s0 = s, ensure that g(r) ∈ Pathsσ

∗
(s); if these

conditions do not hold, then g(r) is undefined. The second condition ensures that g
maps paths of Paths[O]w

∗
(s) to paths of Pathsσ

∗
(s) in a consistent manner (for example,

the condition ensures that, if there are two finite paths r1 and r2 of [O]w with a common
prefix of length i, then g(r1) and g(r2) will also have a common prefix of length i). We
are now in a position to define the scheduler f(σ ) of [O]w : let f(σ )(r)= {w(Bσg(r)) 7→ 1}

for each finite path r ∈ Paths[O]w∞ (s) (recall that w(Bσg(r)) is an assignment that witnesses
Lemma 1 for Bσg(r)).

Next we need to show that Prf(σ )s (Reach(T )) = 0. Note that Prσs (Reach(T )) =
0 if and only if all paths ρ ∈ Pathsσ

∞
(s) are such that ρ 6∈ Reach(T ), and similarly

Prf(σ )s (Reach(T ))= 0 if and only if all paths ρ ∈ Pathsf(σ )∞ (s) are such that ρ 6∈Reach(T ).
Hence we show that the existence of a path ρ ∈ Pathsf(σ )∞ (s) such that ρ ∈ Reach(T )
implies the existence of a path ρ ′ ∈ Pathsσ

∞
(s) such that ρ ′ ∈Reach(T ). Assuming the

existence of some ρ ∈ Pathsf(σ )∞ (s) such that ρ ∈Reach(T ), we will identify a path ρ ′ ∈
Pathsσ

∞
(s) that visits the same states as ρ, and hence is such that ρ ′ ∈Reach(T ). Writing

ρ = s0µ0s1µ1 ···, and letting ri be the ith prefix of ρ (i.e., ri= s0µ0s1µ1 ···µi−1si), we now
show the existence of ρ ′ by induction, by considering prefixes ri′ of ρ ′ of increasing length.

(Base case.) Let r ′0= s0.
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(Inductive step.) Assume that we have constructed the finite path
r ′i = s0µ′0s1µ

′

1 ···µ
′

i−1si. We show how to extend r ′i with one transition to obtain the finite
path r ′i+1. The transition siµisi+1 along ρ implies that (si,si+1) ∈ Bσg(ri). This fact then
implies that there exists some µ′ ∈1(si) such that σ (g(ri))(µ′)> 0 and µ′(si+1)> 0. We
then let r ′i+1= r ′iµ

′si+1.
From this construction of ρ ′, we can see that ρ ′ ∈ Pathsσ

∞
(s) (because ρ ′ follows

the definition of a path of scheduler σ , and because the choice of µ′ after r ′i must be
consistent with the choices made along all prefixes of r ′i ). Furthermore, we have ρ ′ ∈
Reach(T ) (because ρ and ρ ′ feature the same states, and ρ ∈Reach(T )). Hence we have
shown that the existence of ρ ∈ Pathsf(σ )∞ (s) such that ρ ∈Reach(T ) implies the existence
of ρ ′ ∈ Pathsσ

∞
(s) such that ρ ′ ∈ Reach(T ). This fact means that Prσs (Reach(T ))= 0

implies Prf(σ )s (Reach(T ))= 0, concluding this direction of the proof.

(⇐) Let σ ∈6[O]w such that Prσs (Reach(T ))= 0. Given that [O]w is a finite MDP,
we can assume that σ is memoryless and pure. We now define σ ′ ∈6[O]I and show that
Prσ

′

s (Reach(T )) = 0. For a finite path r ∈ Paths[O]I∗ (s), let σ ′(r) = σ (last (r)) (recall
that, for all states s′ ∈ S, σ (s′)= {w(B) 7→ 1} for some B ∈ Valid(s′), where w(B) is an
assignment for s′, hence σ ′ is well defined). Then we have that the DTMCs Dσ

s and Dσ ′

s
are identical, and hence Prσs (Reach(T ))= 0 implies that Prσ

′

s (Reach(T ))= 0.
Hence the part of the proof for λ= 0 is concluded.
Case: λ = 1. (⇒) Let σ ∈ 6[O]I be such that Prσs (Reach(T )) = 1. We use the

construction of the scheduler f(σ ) of [O]I from the case of S0,I
∃

(i.e., the case λ = 0 of
this proof), and show that Prf(σ )s (Reach(T ))= 1. We show that Prσs (Reach(T ))= 1
implies Prf(σ )s (Reach(T ))= 1 by showing the contrapositive, i.e., Prf(σ )s (Reach(T ))<
1 implies Prσs (Reach(T )) < 1. To show this property, we use end components (de
Alfaro, 1997). An end component of finite MDP [O]w = (S,1w) is a pair (C,D) where
C ⊆ S and D : C → 2Dist(S) is such that (1) ∅ 6= D(s′) ⊆ 1w(s′) for all s′ ∈ C , (2)
support(µ) ⊆ C for all s′ ∈ C and µ ∈ D(s′), and (3) the graph (C,{(s′,s′′) ∈ C ×
C |∃µ ∈ D(s′).µ(s′′) > 0}) is strongly connected. Let E be the set of end components
of [O]w . For an end component (C,D), let sa(C,D) = {(s′,µ)|s′ ∈ C ∧µ ∈ D(s′)} be
the set of state-action pairs associated with (C,D). For a path ρ ∈ Paths[O]w∞ (s), we let
inf (ρ)= {(s,µ)|s and µ appear infinitely often along ρ}. The fundamental theorem of
end components (de Alfaro, 1997) specifies that, for any scheduler σ ′ ∈6[O]w , we have
that Prσ

′

s ({ρ|∃(C,D)∈E .inf (ρ)= sa(C,D)})= 1.
Now, given that [O]w is a finite MDP, from Prf(σ )s (Reach(T ))< 1 and the fact that

states in T are absorbing, there exists an end component (C,D) ∈ E such that C ∩T =∅
and Prf(σ )s ({ρ|inf (ρ)= sa(C,D)})> 0. We observe the following property: for any finite
path r ∈ Pathsf(σ )∗ (s), we have that {(last (r),s′)|w(Bσg(r))(s

′)> 0} = Bσg(r), due to the fact
that w(Bσg(r)) is a valid assignment for Bσg(r). From the definition of Bσg(r), we can see that
σ assigns positive probability only to those distributions that assign positive probability
to states that are targets of edges in Bσg(r). Putting these two facts together, we conclude
that, for any set X ⊆ S, we have support(w(Bσg(r))) ⊆ X if and only if {s′ ∈ S|∃µ ∈
1(last (g(ρ))).(σ (g(r))(µ)> 0∧µ(s′)> 0)} ⊆ X . This means that the existence of a
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finite path r ∈ Pathsf(σ )∗ (s) such that all suffixes of r generated by f(σ ) visit only states in C
implies that all suffixes of g(r) (which we recall is a finite path of σ , i.e., g(r)∈ Pathsσ

∗
(s))

generated by σ visit only states in C . Given that Prf(σ )s ({ρ|inf (ρ)= sa(C,D)})> 0, such
a finite path in Pathsf(σ )∗ (s) exists. Then, given that there exists a finite path in Pathsσ

∗
(s)

such that all suffixes generated by σ visit only states in C , and from the fact that C ∩T =
∅, we have that Prσs (Reach(T ))< 1. Hence we have shown that Prf(σ )s (Reach(T ))< 1
implies that Prσs (Reach(T )) < 1. This means that Prσs (Reach(T )) = 1 implies that
Prf(σ )s (Reach(T ))= 1. Hence, for σ ∈6[O]I such that Prσs (Reach(T ))= 1 there exists
σ ′ ∈6[O]w such that Prσ

′

s (Reach(T ))= 1.
(⇐) Let σ ∈6[O]w be such that Prσs (Reach(T ))= 1. As in the case of the analogous

direction of the case for λ = 0, we can show the existence of σ ′ ∈ 6[O]I such that Dσ
s

and Dσ ′

s are identical, and hence Prσs (Reach(T ))= 1 implies that Prσ
′

s (Reach(T ))=
1. �

Given that we have shown in Section ‘Qualitative Reachability: UMC semantics’ that
the set of states of the qualitative MDP abstraction [O]w for which there exists some
scheduler such that T is reached with probability 0 (respectively, probability 1) can be
computed in polynomial time in the size of O , we obtain polynomial-time algorithms for
computing S0,I

∃
(respectively, S1,I

∃
).

The following corollary summarises the relationship between the state sets satisfying
analogous reachability problems in the UMC and IMDP semantics, and is obtained by
combining Lemma 2, Lemma 3, Lemma 7 and Lemma 8.
Corollary 1 S0,U

∀
= S0,I
∀
, S0,U
∃
= S0,I
∃

and S1,U
∃
= S1,I
∃
. �

Computation of S1,I
∀

This case is notably different from the other three cases for the IMDP semantics, because
schedulers that are not memoryless may influence whether a state is included in S1,I

∀
.

In particular, we recall the example of the IMC of Fig. 1: as explained in Section ‘Intro-
duction’, we have s0 6∈ S

1,I
∀
. In contrast, for the UMC semantics, we have s0 ∈ S

1,U
∀

, and
s0 would be in S1,I

∀
if we restricted the IMDP semantics to memoryless (actually finite-

memory) schedulers. For this reason, a qualitative MDP abstraction is not useful for
computing S1,I

∀
, because it is based on the use of witness assignment functions that assign

constant probabilities to sets of edges available from states: on repeated visits to a state, the
(finite) set of available distributions remains the same in a qualitative MDP abstraction.
Therefore we require alternative analysis methods that are not based on the qualitative
MDP abstraction. In this section we introduce an alternative notion of end components,
defined solely in terms of states of the IMC, which characterise situations in which the
IMC can confine its behaviour to certain state sets with positive probability in the IMDP
semantics: for example, the IMC of Fig. 1 can confine itself to state s0 with positive
probability in the IMDP semantics. The key characteristic of these end components is
that the total probability assigned to edges that have a source state in the component but
a target state outside of the component can be made to be arbitrarily small (note that
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such edges must have an interval with a left endpoint of 0). We now define formally our
alternative notion of end components.
Definition 3 (ILECs): A set C ⊆ S of states is an IMC-level end component (ILEC) if, for
each state s∈C, we have (1) E〈+,·〉(s,S\C)=∅, (2)

∑
e∈E(s,C)right(δ(e))≥ 1, and (3) the

sub-graph (C,E∩ (C×C)) is strongly connected. �

Example 3 In the IMC O1 of Fig. 1, the set {s0} is an ILEC: for condition (1), the
edge (s0,s1) (the only edge in E(s0,S \ {s0})) is not in E〈+,·〉, and, for condition (2),
we have right(δ(s0,s0)) = 1. In the IMC O2 of Fig. 2, the set {s0,s1} is an ILEC: for
condition (1), the only edge leaving {s0,s1} has 0 as its left endpoint, i.e., δ(s1,s2)= (0,0.2],
hence E〈+,·〉(s0,{s2})= E〈+,·〉(s1,{s2})= ∅; for condition (2), we have right(δ(s0,s0))+
right(δ(s0,s1))= 1.6≥ 1 and right(δ(s1,s0))+ right(δ(s1,s1))= 1.3≥ 1. In both cases, the
identified sets clearly induce strongly connected subgraphs, thus satisfying condition (3).�

Remark 2 Both conditions (1) and (2) are necessary to ensure that the probability of
leaving C in one step can be made arbitrarily small. Consider an IMC with state s ∈ C
such that E(s,C)= {e1} and E(s,S\C)= {e2,e3}, where δ(e1)= [0.6,0.8], δ(e2)= [0,0.2]
and δ(e3) = [0,0.2]. Then condition (1) holds but condition (2) does not: indeed, at
least total probability 0.2 must be assigned to the edges (e2 and e3) that leave C . Now
consider an IMC with state s∈C such that E(s,C)= {e1,e2} and E(s,S\C)= {e3}, where
δ(e1)= [0,0.5], δ(e2)= [0,0.5] and δ(e3)= [0.1,0.5]. Then condition (2) holds (because
the sum of the right endpoints of the intervals associated with e1 and e2 is equal to 1), but
condition (1) does not (because the interval associated with e3 specifies that probability at
least 0.1 must be assigned to leaving C). Note also that if E(s,C)⊆ E [·,·)∪E(·,·) (all edges
in E(s,C) have right-open intervals) and

∑
e∈E(s,C)right(δ(e))= 1, there must exist at least

one edge in E(s,S\C) by well formedness. �
Let I be the set of ILECs of O . We say that an ILEC C ∈ I ismaximal if there does not

exist any C ′ ∈ I such that C ⊂C ′. For a path ρ ∈ Paths[O]I∞ (s), let infst (ρ)⊆ S be the states
that appear infinitely often along ρ, i.e., for ρ = s0µ0s1µ1 ···, we have infst (ρ) = {s ∈
S|∀i∈N.∃j > i.sj = s}. We present a result for ILECs that is analogous to the fundamental
theorem of end components of de Alfaro (1997): the result specifies that, with probability
1, a scheduler of the IMDP semantics of O must confine itself to an ILEC.
Lemma 9 For s∈ S and σ ∈6[O]I , we have Prσs ({ρ|infst (ρ)∈ I})= 1. �

Proof The proof is structured in the same manner as that for classical end compo-
nents in de Alfaro (1997). Consider C ⊆ S such that C 6∈ I. Our aim is to show that
Prσs ({ρ|infst (ρ)=C})= 0. Given that I is a finite set, the required result then follows.

First suppose that the condition (1) in the definition of ILECs does not hold, i.e., there
exists (s′,s′′)∈ E such that s′ ∈C , s′′ 6∈C and (s′,s′′)∈ E〈+,·〉. Observe that left(δ(s′,s′′))> 0.
The probability of remaining in C when visiting s′ is at most 1− left(δ(s′,s′′)), where
1− left(δ(s′,s′′)) is strictly less than 1. Given that s′ ∈ infst (ρ) for every ρ such that
infst (ρ)=C , we have that Prσs ({ρ|infst (ρ)=C})≤ limk→∞(1− left(δ(s′,s′′)))k = 0.

Suppose that condition (2) in the definition of ILECs does not hold for some s′ ∈ C ,
i.e.,

∑
e∈E(s′,C)right(δ(e))< 1. Therefore, for all µ ∈1(s′), we must have

∑
s′′∈Cµ(s

′′)≤
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∑
e∈E(s′,C)right(δ(e))< 1. Hence, the probability of remaining in C when visiting s′ is

strictly less than 1. Then, as in the case of the first condition in the definition of ILECs,
we conclude that Prσs ({ρ|infst (ρ)=C})≤ limk→∞(

∑
e∈E(s′,C)right(δ(e)))k = 0.

Now suppose that the condition (3) in the definition of ILECs does not hold, i.e., there
is no path from state s′ to state s′′ in the graph induced by C , where all states along the
path (including s′ and s′′) belong to C . Given that S is finite, from some point onwards,
any path ρ features only those states from infst (ρ). Then for any occurrence of s′ in the
suffix of ρ that features only states from infst (ρ), there cannot be a subsequent occurrence
of s′′ along the path. Hence we must have infst (ρ) 6=C , and thus Prσs ({ρ|infst (ρ)=C})=
0. �

We now show that there exists a scheduler that, from a state within an ILEC, can
confine the IMC to the ILEC with positive probability. This result is the ILEC analogue
of a standard result for end components of finite MDPs that specifies that there exists
a scheduler that, from a state of an end component, can confine the MDP to the end
component with probability 1 (see de Alfaro (1997) and Baier & Katoen (2008)). In the
case of IMCs and ILECs, it is not possible to obtain an analogous result for probability
1; in the example of Fig. 1, the singleton set {s0} is an ILEC, but it is not possible to find
a scheduler that remains in s0 with probability 1, because with each transition the IMC
moves to s1 with positive probability. However, for our purposes, it is sufficient to have a
result stating that, starting from a state within an ILEC, the IMC can be confined to that
ILEC with positive probability.
Lemma 10 Let C ∈ I and s∈C. There exists a scheduler σ ∈6[O]I such that Prσs ({ρ|ρ 6∈
Reach(S\C)∧ infst (ρ)=C})> 0. �

Proof The intuition underlying the proof of Lemma 10 is the definition of a scheduler
that assigns progressively decreasing probability to all edges in E〈0,·〉 that leave ILEC C ,
in such a way as to guarantee that the IMC is confined in C with positive probability.
This is possible because conditions (1) and (2) of the definition of ILECs specify that
there is no fixed lower bound on the probability that must be assigned to edges that leave
C . Furthermore, the scheduler is defined so that the remaining probability at each step
that is assigned between all edges that stay in C is always no lower than some fixed lower
bound; this characteristic of the scheduler, combined with the fact that we remain in C
with positive probability and the fact that C is strongly connected, means that we visit
all states of C with positive probability under the defined scheduler. The scheduler will
depend only on the current state and the number of transitions done so far.
In the following, we assume that there exists at least one state s′ ∈C such that E〈0,·〉(s′,S\
C) is non-empty, and consider the case in which this assumption does not hold at the end
of the proof. We define the scheduler σ ∈ 6[O]I according to the following approach:
first we define a lower bound on the probabilities that are assigned by the scheduler σ
to edges in E〈0,·〉 that have source and target states in C ; second we define a sequence of
probabilities that depend on the number of transitions done so far that is used by σ in
the assignment of probability to edges in E〈0,·〉 that have source in C and target states
not in C . Both of the aforementioned probabilities are sufficiently small as to allow the
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definition of the assignment chosen by σ for each state in C and each natural number
corresponding to the number of transitions done so far.
First, we define a constant probability that we will use subsequently to obtain a lower
bound on the probability that is assigned by the scheduler σ to each edge in E〈0,·〉 that
has source and target states in C . Let C̃ be the set of states s′ ∈ C such that E〈0,·〉(s′,C) is
not empty. In order to define a probability that is sufficiently small in order to allow the
definition of an assignment, for each state s′ ∈ C̃ of the ILEC, there are two factors to take
into account. On the one hand, the supremum total probability that can be assigned to
edges in E〈0,·〉(s′,C) is 1−

∑
e∈E(s′)left(δ(e)), i.e., at least probability

∑
e∈E(s′)left(δ(e))

must be assigned to edges in E(s′) that do not have 0 as their left endpoint. Taking into
consideration also the fact that we are aiming to identify a constant probability for all
edges in E〈0,·〉(s′,C), this means that this probability should not exceed

1−
∑

e∈E(s′)left(δ(e))
|E〈0,·〉(s′,C)| .

On the other hand, and more straightforwardly, the probability assigned to any edge
cannot exceed the edge’s right endpoint. This intuition underlies the following definition
of κs′ :

κs′ =min
{

min
e∈E〈0,·〉(s′,C)

right(δ(e)),
1−

∑
e∈E(s′) left(δ(e))
|E〈0,·〉(s′,C)|

}
.

Let κ = 1
2mins′∈C̃κs′ . We will subsequently use κ to define a lower bound on the probabil-

ity assigned to each edge in E〈0,·〉(s′,C) by the distribution chosen by σ from paths ending
in state s′ ∈ C̃ .
Next, we consider the definition of a constant that we will subsequently use to define a
sequence of probabilities that will be used to define assignments chosen by σ from states
in C that have outgoing edges with left endpoint 0 and target state not belonging to C . Let
Ĉ be the set of states s′ ∈ C such that E〈0,·〉(s′,S \C) is not empty. For s′ ∈ Ĉ , and using
intuition similar to that presented in the previous paragraph, we let:

λs′ =min
{

min
e∈E〈0,·〉(s′,S\C)

right(δ(e)),
1−κ−

∑
e∈E(s′) left(δ(e))

|E〈0,·〉(s′,S\C)|

}
.

Intuitively, λs′ is the supremum probability that can be assigned to edges with left
endpoint 0 from state s′ to states not in C , assuming that probability κ is assigned to
edges with left endpoint 0 that remain in C (note that this assumption is conservative,
because in some states there may be no outgoing edges with left endpoint 0 that remain
in C). Let λ= 1

2mins′∈Ĉλs′ , and let I equal the minimum index i≥ 2 such that 1
2i < λ.

Given s′ ∈C and i∈N, let ais′ be an assignment for s′ defined in the following way:

• If E〈0,·〉(s′,S\C) 6= ∅, then ais′(s
′′)= 1

2I+i for each s′′ ∈ S\C such that (s′,s′′)∈ E〈0,·〉(s′,S\
C).
• If E〈0,·〉(s′,C) 6= ∅, then ais′(s

′′)≥ κ for each s′′ ∈C such that (s′,s′′)∈ E〈0,·〉(s′,C).

The definitions of κ and λ allow us to complete the definition of ais′ for states not consid-
ered in these two points above, so that ais′ is an assignment for s′. The intuition here is as
follows. Condition (2) of the definition of ILECs specifies that obtaining an assignment
that obeys the above constraints and which sums to 1 is possible; the definitions of κ
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and λ guarantee that enough probability mass is available to edges that do not have a
left endpoint of 0 to equal or exceed their left endpoints, and that the probability that is
assigned to edges that do have a left endpoint of 0 does not exceed their right endpoint.
We now formalise the definition of σ . Let r ∈ Paths[O]I∗ (s), where r = s0µ0s1µ1 ···µn−1sn
and si ∈ C for all i ≤ n. We let σ (r) = {ansn 7→ 1}.
It remains to show that Prσs ({ρ|ρ 6∈Reach(S \C)∧ infst (ρ)= C})> 0. Given state set
X ⊆ S and k ∈N, we let Reach≤k(X) be the set of paths that reach X within k transitions;
formally, Reach≤k(X)= {ρ ∈ Paths[O]I∞ (s)|∃i≤ k .state[ρ](i) ∈X}. By definition, we have
Reach(X)=

⋃
k∈NReach

≤k(X), and Prσs (Reach(X))= limk→∞Prσs (Reach
≤k(X)). From

the fact that s ∈C , we have Prσs (Reach
≤0(S\C))= 0. From the definition of σ above, for

k ≥ 1, we have Prσs (Reach
≤k(S \C))≤ 1

4 +
∑k

i=1
1

2i+2
∏i−1

j=0(1−
1

2i+1 )≤
1
4 +

∑k
i=1

1
2i+2 =∑k

i=0
1

2i+2 . Observe that
∑k

i=0
1

2i+2 ≤
1
2 for all k ∈ N. Hence Prσs (Reach(S \ C)) =

limk→∞Prσs (Reach
≤k(S \C)) ≤ limk→∞

∑k
i=0

1
2i+2 ≤

1
2 . Therefore we have shown that

Prσs ({ρ|ρ 6∈ Reach(S \ C)}) ≥ 1
2 > 0.

Because the assignments used by σ dedicate a probability value to all edges with source
and target states in C that is no lower than some fixed lower bound, and because the
graph (C,E ∩ (C ×C)) is strongly connected, we have that Prσs ({ρ|ρ 6∈Reach(S \C)∧
infst (ρ)= C})= Prσs ({ρ|ρ 6∈ Reach(S \C)}). Hence we have shown that Prσs ({ρ|ρ 6∈
Reach(S \ C) ∧ infst (ρ) = C}) > 0.
Finally, we consider the case in which all states s′ ∈ C are such that E〈0,·〉(s′,S \C)= ∅.
Consider state s′ ∈ C . Given that E〈0,·〉(s′,S \C) is empty, then, because condition (1) in
the definition of ILECs specifies that E〈+,·〉(s,S\C) is empty, we have that E(s′,S\C)=
E〈0,·〉(s′,S \C)∪E〈+,·〉(s,S \C) is empty. Hence, if E〈0,·〉(s′,S \C) is empty for all s′ ∈ C ,
there is no edge (s′,s′′)∈ E such that s′ ∈C and s′′ 6∈C , and the graph (C,E∩ (C×C)) is a
bottom strongly connected component. From this fact, for any scheduler, the probability
of remaining in the ILEC is 1. It then remains to define a scheduler σ that selects only
assignments that assign fixed, positive probability to edges in E〈0,·〉 that have source states
in C (note that these edges remain in C) in a similar manner as in the previous case of
this proof. We can then conclude that Prσs ({ρ|ρ 6∈Reach(S\C)∧ infst (ρ)= C})= 1>
0. �

Remark 3 Note that we can confine the IMC to an ILEC with probability 1 if the only
edges leaving the ILEC belong to E [0,·〉; however, we do not require that result, and above
we settle for a simplified scheduler construction that does not distinguish between edges
in E [0,·〉 and E(0,·〉, and hence allows some progressively decreasing probability of exiting
from the ILEC even if the outgoing edges of the ILEC are only from E [0,·〉.. �

Let U¬T =
⋃
{C ∈ I|C ∩T =∅} be the union of the ILECs that do not contain states in

T . Using Lemma 9 and Lemma 10, we can show that the existence of a scheduler of [O]I
that reaches T with probability strictly less than 1 is equivalent to the existence of a path
in the graph of O that reaches U¬T .
Proposition 3 Let s∈ S. There exists σ ∈6[O]I such that Prσs (Reach(T ))< 1 if and only if
there exists a finite path r ∈ PathsO

∗
(s) such that last (r)∈U¬T . �
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Proof (⇒) Let σ ∈ 6[O]I be such that Prσs (Reach(T )) < 1. Then, by duality, we
have Prσs ({ρ|ρ 6∈ Reach(T )}) > 0. From this fact, and from Lemma 9, we obtain
Prσs ({ρ|ρ 6∈ Reach(T )∧ infst (ρ) ∈ I})> 0. For any path ρ ∈ Pathsσ

∞
(s), we have that

ρ 6∈ Reach(T ) and infst (ρ) ∈ I implies that ρ ∈ Reach(U¬T ) from the definition
of U¬T . Hence Prσs ({ρ|ρ ∈ Reach(U¬T )}) > 0. From Lemma 7, there exists a finite
path r ∈ PathsO

∗
(s) such that last (r) ∈ U¬T , completing this direction of the proof.

(⇐) The existence of a path r ∈ PathsO
∗
(s) such that last (r)∈U¬T implies that there exists

σ ∈6[O]I such that Prσs ({ρ|ρ ∈Reach(U¬T )})> 0 by Lemma 7. We define σ ′ ∈6[O]I

such that Prσ
′

s (Reach(T ))< 1 in the following way: the scheduler σ ′ behaves as σ until a
state in U¬T is reached; once such a state has been reached, the scheduler then behaves as
a scheduler defined in Lemma 10, which ensures that the states of an ILEC that does not
contain any state from T are henceforth visited infinitely often with positive probability.
The construction of the scheduler is standard, and we describe it here for completeness.
Let s′ ∈ U¬T , and let Cs′ ∈ I be the maximal ILEC such that s′ ∈ Cs′ and Cs′ ∩ T = ∅
(which exists by definition of U¬T ). Now let σs′ ∈ 6[O]I be such that Prσs′s′ ({ρ|ρ 6∈
Reach(S \Cs′)∧ infst (ρ)= Cs′})> 0, which exists by Lemma 10. For finite paths r =
s0µ0s1µ1 ···µn−1sn ∈ Paths

[O]I
∞ (s) such that si 6∈ U¬T for all i ≤ n, we let σ ′(r)= σ (r).

For a finite path r = s0µ0s1µ1 ···µn−1sn ∈ Paths
[O]I
∞ (s) such that there exists i ≤ n for

which sj 6∈U¬T for all j < i and sj ∈U¬T for all j ≥ i, we let σ ′(r)= σ si(siµi ···µn−1sn).
For other finite paths, the definition of σ ′ can be arbitrary. Given that Prσs ({ρ|ρ ∈
Reach(U¬T )})> 0, we have Prσ

′

s ({ρ|ρ ∈ Reach(U¬T )})> 0, and we know that there
exists a finite path r ∈ Pathsσ

′

∗
(s) (with positive probability) such that last (r)∈U¬T . Given

the definition of the behaviour of σ ′ after finite path r , we have Prσ
′

s ({ρ|r is a prefix of ρ∧
ρ 6∈ Reach(S \Clast (r))∧ infst (ρ)= Clast (r)})> 0. This then implies that Prσ

′

s ({ρ|ρ 6∈
Reach(S \ Clast (r)) ∧ infst (ρ) = Clast (r)}) > 0. Because we have assumed that all
states in T are absorbing, the set T is not reached along r (otherwise U¬T could not
contain the final state of r); then, given that Clast (r) ∩T = ∅, we have that Prσ

′

s ({ρ|ρ 6∈
Reach(T )})> 0, and by duality Prσ

′

s (Reach(T ))< 1. Hence this direction of the proof
is completed. �

Hence we identify the set S1,I
∀

by computing the complement of S1,I
∀
, i.e., the set

S \ S1,I
∀
= {s ∈ S|∀σ ∈ 6[O]I .Prσs (Reach(T )) < 1}. Using Proposition 3, this set can

be computed by considering reachability on the graph of O of the set U¬T . The set
U¬T can be computed in polynomial time in the size of O in a manner similar to the
computation of maximal end components of MDPs (see de Alfaro (1997) and Baier &
Katoen (2008)). First we compute all strongly connected components (C1,E ∩ (C1×

C1)),...,(Cm,E ∩ (Cm×Cm)) of the graph (S \T ,E ∩ ((S \T )× (S \T ))) of O . Then,
for each 1≤ i≤m, we remove from Ci all states for which conditions (1) or (2) in the
definition of ILECs do not hold with respect to Ci (these conditions can be checked in
polynomial time for each state), to obtain the state set C ′i . Next, we compute the strongly
connected components of the graph (C ′i ,E ∩ (C

′

i ×C ′i )), and for each of these, repeat the
procedure described above. We terminate the algorithm when it is not possible to remove
a state (via a failure to satisfy a least one of the conditions (1) and (2) in the definition of
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ILECs) from any generated strongly connected component. The generated state sets of the
strongly connected components obtained will be the maximal ILECs that do not contain
any state in T , and their union is U¬T . Hence the overall algorithm for computing S1,I

∀
is

in polynomial time in the size of O .

CONCLUSION
We have presented algorithms for qualitative reachability properties for open IMCs. In
the context of qualitative properties of system models with fixed probabilities on their
transitions, probability can be regarded as imposing a fairness constraint, i.e., paths for
which a state is visited infinitely often and one of its successors is visited only finitely
often have probability 0. In open IMCs, the possibility to make the probability of a
transition converge to 0 in the IMDP semantics captures a different phenomenon, which
is key for problems concerning the minimum reachability probability over all schedulers
being compared to 1. For the three other classes of qualitative reachability problems, we
have shown that the UMC and IMDP semantics coincide. We note that the algorithms
presented in this article require some numerical computation (a sum and a comparison
of the result with 1 in the CPre, APre and ILEC computations), but these operations
are simpler than the polynomial-time solutions for quantitative properties of (closed)
IMCs in Chen, Han & Kwiatkowska (2013) and Puggelli et al. (2013). Similarly, the CPre
and APre operators are simpler than the polynomial-time step of value iteration used
in the context of quantitative verification of Haddad & Monmege (2018). For the IMDP
semantics, our methods give directly a P-complete algorithm for the qualitative fragment
of the temporal logic PCTL (Hansson & Jonsson, 1994). Future work could consider
quantitative properties and ω-regular properties, and applying the results to develop
qualitative reachability methods for interval Markov decision processes or for higher-
level formalisms such as clock-dependent probabilistic timed automata (Sproston, 2021a;
Sproston, 2021b).
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