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ABSTRACT
Precise short-term load forecasting (STLF) plays a crucial role in the smooth
operation of power systems, future capacity planning, unit commitment, and
demand response. However, due to its non-stationary and its dependency on
multiple cyclic and non-cyclic calendric features and non-linear highly correlated
metrological features, an accurate load forecasting with already existing techniques is
challenging. To overcome this challenge, a novel hybrid technique based on long
short-term memory (LSTM) and a modified split-convolution (SC) neural network
(LSTM-SC) is proposed for single-step and multi-step STLF. The concatenating
order of LSTM and SC in the proposed hybrid network provides an excellent
capability of extraction of sequence-dependent features and other hierarchical spatial
features. The model is evaluated by the Pakistan National Grid load dataset recorded
by the National Transmission and Dispatch Company (NTDC). The load data is pre-
processed and multiple other correlated features are incorporated into the data for
performance enhancement. For generalization capability, the performance of LSTM-
SC is evaluated on publicly available datasets of American Electric Power (AEP) and
Independent System Operator New England (ISO-NE). The effect of temperature, a
highly correlated input feature, on load forecasting is investigated either by removing
the temperature or adding a Gaussian random noise into it. The performance
evaluation in terms of RMSE, MAE, and MAPE of the proposed model on the NTDC
dataset are 500.98, 372.62, and 3.72% for multi-step while 322.90, 244.22, and 2.38%
for single-step load forecasting. The result shows that the proposed method has less
forecasting error, strong generalization capability, and satisfactory performance on
multi-horizon.

Subjects Data Mining and Machine Learning, Data Science, Neural Networks
Keywords Deep learning, LSTM, CNN, Hybrid, Short-Term Load Forecasting (STLF), Electrical
load consumption, Smart grid, time-series forecasting

INTRODUCTION
Electrical energy is a crucial commodity for the country’s economic growth and is also
essential to fulfilling daily activities in every walk of life. Therefore, its demand is rising
exponentially worldwide due to its widespread use in both the production industrial sector
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and non-production sectors. To fulfill this huge demand for electrical energy, and to
reduce this huge pressure on the generation sector, some prosumers or independent power
producers produce electrical energy by using environmentally friendly, carbon-free clean
renewable energy sources such as wind and solar energy. They also share their energy with
other smart microgrids. These renewable energy resources are highly intermittent in
nature due to their dependency on weather conditions and other temporal features.
Similarly, the load consumption behavior of consumers also depends on environmental
and social factors. This increasing penetration of intermittent renewable generations and
the complex nature of utility-customer behaviors add an extra level of system complexity
and uncertainty in terms of electrical load demand. Therefore, accurate, precise load
forecasting is highly challenging in dynamic situations due to its non-stationary behavior
and its dependency on multiple calendric, meteorological, and other environmental and
social factors.

To provide a reliable and sustainable power source to consumers at a consistent unit
price for the best customer satisfaction and secure, economical, and reliable operation of
the power system, accurate short-term load forecasting (STLF) is necessary. STLF also
plays a vital role in electric load scheduling at different time horizons, future planning of
power systems and energy resources, and tariff adjustment. It helps in the economical
trading of electrical energy in the energy market for instance day ahead, intraday, and
balancing markets. So, an inaccurate prediction leads to huge economic loss in-term of the
operational cost of the power system, customer dissatisfaction cost, and poor management
of energy sources (Nti et al., 2020). Therefore, electrical energy generation, transmission,
and distribution networks governed by electric companies over the world need an accurate
prediction of short-term load (STLF) for reliable and economical operations of power
systems (Khan et al., 2020).

Load forecasting is broadly classified into three categories: short-term load forecasting
(STLF), medium-term, and long-term load forecasting (LTLF). STLF predicts the load for
the next hour to a few days and is useful for smooth operation and control of the power
system. It is also helpful in energy management and load scheduling. On the other hand,
medium-term load forecasting (MTLF) covers prediction from weeks to months while
LTLF predicts from a few months to years. These two are important for long-term power
system infrastructure planning (Xia, Wang & McMenemy, 2010; Al Mamun et al., 2020).

Electrical power can be viewed as time series data, and have all the specific attributes of
time series data, such as seasonality, trend, and noise. It depends non-linearly on different
environmental and social factors. In short, the power consumption data is sequence-
dependent and non-stationary in nature. It can be analyzed more efficiently by extracting
both its temporal features and spatial features. Therefore, for STLF many classical time
series forecasting techniques and the recent machine learning and deep-learning
techniques are used. Initially, many statistical methods such as auto-regressive integrated
moving averages (ARIMA), and multiple linear regression are useful for predicting high-
frequency time-series power consumption data. In contrast to statistical methods, artificial
neural networks (ANN) are more powerful, especially in representing nonlinear behaviors
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of the data, and performed better for STLF. However, deep ANN comes with the problem
of over-fitting and slow convergence and also neglects the temporal or sequence-
dependent features of load which is a key characteristic of time series data. To overcome
this problem, first, recurrent neural networks (RNN) that emerged in the 1980s have the
characteristic of extracting sequence-dependent features. However, this method has
vanishing gradient problems which causes difficulty in the training process. To cover the
problem of vanishing and exploding gradient, RNN architecture is modified and its new
variant named long short term memory (LSTM) emerged in 1997. LSTM has received
enormous attention for learning long-term dependencies in power consumption curve
patterns using the special gated mechanism (Sherstinsky, 2020). Therefore, LSTM is widely
used as a state-of-the-art method in the literature for STLF.

On the other hand, for extracting spatial features of time series load data such as trends,
convolutional neural networks are used in literature which have special characteristics of
extracting spatial patterns of data. To improve further the performance of STLF, hybrid
networks are developed in the literature to handle both local trends and sequence-
dependent features in an efficient way. In this regard, CNN-LSTM, CNN-BiLSTM is used
in literature for STLF, in which CNN captures the local trends in load data pattern whereas
the LSTM model captures the sequence-dependent pattern in electrical load which
improve the prediction accuracy (Rafi, Deeba & Hossain, 2021).

However, in literature, the most recent hybrid methods CNN-LSTM are used in which
stack of CNN layers preceded the LSTM layers. In this order, the CNN layers capture the
spatial features and then pass through LSTM networks for temporal feature extraction
which deteriorates the performance of hybrid models. To further enhance the performance
of hybrid model, this study aims to exploit the potential, strengths, and weaknesses of
different deep learning techniques on a real-time Pakistan National Grid data set. For this
purpose, the article presents a novel hybrid technique based on long short-term memory
(LSTM), and a modified split-convolution (SC) neural network (LSTM-SC) is proposed for
single-step and multi-step STLF. In the proposed model, LSTM precedes and captures
sequence-dependent features before extracting spatial features. Later CNN is also modified
into a split parallel convolutional layer having different kernels size for extracting
hierarchical spatial features. This specific order and modification improve the performance
of STLF. The load data is also pre-processed and multiple other correlated features are
incorporated into the data for performance enhancement. For generalization, the proposed
model is also evaluated on publicly available datasets of American Electric Power (AEP)
and Independent System Operator New England (ISO-NE). The performance evaluation
in terms of RMSE, MAE, and MAPE of the proposed model is compared with the existing
state-of-the-art models. The result reveals that the proposed method has better
performance than existing methods and has strong generalization capability.

Related work
The load data is non-stationary, weather-sensitive, and depends upon many temporal
correlated features such as festivals, holidays, and other calendric features. This makes the
STLF very challenging and demanding in the presence of non-linear electrical load
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consumption. In this regard, various research has been done in the literature. The
traditional statistical methods for time series data forecasting such as multiple linear
regression (Lee & Ko, 2011; Amral, Ozveren & King, 2007) exponential smoothing
(Christiaanse, 1971; Taylor, 2003) and auto-regressive integrated moving average
(ARIMA) (Lee & Ko, 2011) are used for STLF. Similarly, machine learning method such as
support vector regressions (SVR) (Chen et al., 2017; Che & Wang, 2014; Li et al., 2007) is
used for performance enhancement. These statistical and machine learning methods
performed well for time series data prediction but do not yield high accuracy in large
amounts of uncertain and non-linear electrical load data.

On the other hand for a large amount of non-linear electrical load, deep learning
techniques are widely used in literature for achieving better results. In Ekonomou,
Christodoulou & Mladenov (2016), Sahay & Tripathi (2013) authors used an ANN-based
method along with the wavelet signal processing techniques for performance
enhancement. However, the issue associated with ANN is the poor generalization due to
trapping in local minima, which causes over-fitting and slow convergence. Another
problem with ANN is that it neglects the intrinsic characteristics existing in the time series
data. To resolve this issue, the long short-term memory (LSTM) introduced by Hochreiter
and Schmidhuber (Yu et al., 2017) has received enormous attention in the realm of
sequence learning. Therefore, LSTM is widely used in the literature for STLF. Kong et al.
(2017) used two layers LSTM network, trained on 69 houses’ load data, and compared the
results with several other existing state-of-the-art models. In Ageng, Huang & Cheng
(2021), LSTM-DP combines data preparation with LSTM, the author pre-processes
building load data and then extracts the pattern by using stack LSTM layer for next-hour
load predictions. Son et al. (2022)makes a stack of LSTM layers, in which the first layer is a
bidirectional LSTM layer, followed by two LSTM layers. The initial bidirectional layer
extracts temporal features from the energy consumption sequence in both forward and
backward directions. Similarly, in Marino, Amarasinghe & Manic (2016), two LSTM
networks: standard LSTM and LSTM-based sequence to sequence (S2S) architecture are
used for load forecasting. In S2S both the encoder and decoder are developed by using
LSTM. The input to the encoder is the date and time information along with the load and
the load is delayed by one step. On the other hand, the input to the decoder is the date and
time of the corresponding load which is to be forecasted. The result shows that S2S works
better than standard LSTM. In Ijaz et al. (2022), the combination of ANN and LSTM is
used for short-term electrical load forecasting. This method is trained and tested on the
Malaysian electric supply company dataset. The methods incorporated different weather
and temporal features with load data such as humidity, holidays and date-time features.
On the other hand, Shao & Kim (2020) used three parallel channels of LSTM and K-means
classifier for multi-step STLF.

In addition to the above techniques, convolutional neural network (CNN) which has an
excellent ability to capture the spatial features is excessively applied for STLF. In Cho et al.
(2014), data is reshaped into an image and then applied CNN for STLF. In Kuo & Huang
(2018), Deep Energy, a powerful model, based on a convolutional neural network and
CNN-based bagging approach is used for predicting the load. It is also pertinent to
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mention that CNN is one of the most popular algorithms of deep learning and developed a
lot. Many articles in the literature are inspired from advance CNN architectures. For
instance, in Chen et al. (2018) historical load and temperature with intelligent past days
data framing are applied to a complex architecture based on the DenseNet (Huang et al.,
2017) and ResNet (He et al., 2016) i.e., skip connections for STLF.

LSTM network has the ability to extract the sequence pattern information from data
and is used to exploit short-term and long-term dependencies. On the other hand, CNN is
used to extract valuable spatial features. In addition, CNNmay filter out the noise from the
input data which eventually enhances the deep learning model performance. So, the
integration of CNN and LSTM as a hybrid model, keeping the synergy of both for STLF,
for performance enhancement, recently emerges its use in literature. In Rafi, Deeba &
Hossain (2021) and Alhussein, Aurangzeb & Haider (2020), a hybrid model (CNN-LSTM)
composed of CNN layers cascaded in series with LSTM layers followed by an output dense
layer. In Rafi, Deeba & Hossain (2021), only load data is used as input to the network for
feature extraction. In contrast, in Alhussein, Aurangzeb & Haider (2020) other three well-
known co-related calendric features i.e., an hour of the day, a day of the week, and a
holiday indicator are incorporated with load data for better prediction. The model
(Alhussein, Aurangzeb & Haider, 2020) outperforms the famous state-of-the-art
forecasting models (Kong et al., 2017). Similarly, in Sajjad et al. (2020) a stack of two layers
of CNN is followed by two layers of GRU while in Ullah et al. (2019), a two-layer CNN is
followed by Multi-layer Bi-Directional LSTM (M-BDLSTM) layer. Similarly, Chen et al.
(2023), Hussain et al. (2022), used hybrid models composed of CNN and RNN variants for
load forecasting. However, in Chen et al. (2023), the authors used CNN followed by four
ResNet modules. These existing hybrid models outperform the previous state-of-the-art
models.

However, these articles use a stack of CNN layers, which precede the LSTM layers. In
this order of hybrid network, the time-series data is first passed through CNN which
extracts spatial features before extracting intrinsic time-dependent features which degrade
the overall performance of the hybrid network. Although, it extracts some valuable features
and enhances the results as compared to the individual LSTM. For extracting non-linear
features using non-linear deep neural network modules, the arrangement of sub-modules
in the network does matter. Therefore, it is logical to anticipate that by reversing the order
in a hybrid model and keeping care of the temporal nature of load data improves the
performance. Hence, keeping LSTM before CNN captures the sequence-dependent
features of the load data in an efficient way and further passing it through CNN reduces
forecasting errors. In addition, the stack CNN is further modified by a special split
convolution (SC) network that extracts both local and global features. This hybrid network
of LSTM with modified SC has not been yet implemented. To this end, this article intends
to make the following contributions.

� A hybrid model of LSTM, modified SC is proposed for Multi-horizon short-term
electrical load forecasting. This hybrid network is designed in such a way that the
synergy of LSTM and SC is exploited.
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� A unique strategy “split-transform-merge” is adopted for the CNN network instead of a
stack of layers. This strategy is powerful for extracting embedded hierarchical both local
and global features from the data pipeline. Moreover, the complicated network
parameters—the filter size, number, activation, etc.—are uniquely tailored for energy
consumption data.

� The proposed model is developed and evaluated on the Pakistan power system (PPS)
load consumption data. The PPS load consumption data is not strictly following a
consistent pattern and there are many perturbing and uncertain parameters for the load
variation in Pakistan. Furthermore, the model’s generalization is assessed by evaluating
the model performance on two publicly available datasets: AEP and ISO-NE.

� The model is used to forecast both single-step and multi-step. In single-step, the model
predicts the next hour’s load, while in multi-step the model predicts the next 12 and 24 h
ahead load consumption.

The rest of the article is organized as follows. ‘Methodology’ presents the methodology
which covers exploratory data analysis (EDA), data set pre-processing, data framing, and
model architecture. Then, ‘Result and Discussion’ comprises results and discussion. Next,
‘Limitations and future work’ contains future work, and finally, the ‘Conclusion’ concludes
the article.

METHODOLOGY
Explanatory data analysis
In this section one of the three datasets is pre-processed, analyzed, and discussed in detail.
Similarly, the other two datasets are processed. The hourly load profile data of Pakistan
National grids from 1st January 2015 to 30th April 2020, recorded by NTDC is used. Some
information regarding dataset is given in Table 1. Further sections describe more about the
process of refilling the missing value, outliers handling, correlated features classification
and correlation, seasonality, and non-stationary of electrical load consumption data
behaviors in detail.

Table 1 The description of dataset.

Parameter Value

Number of samples before processing 46,606

Number of the sample with NaN 2

Minimum before processing 473

Maximum before processing 24,786

Missing values 120

Date error 53

Outliers 10

Number of samples after processing 46,728

Minimum after processing 1,648

Maximum after processing 22,696
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Data cleaning
Missing values handling

Missing values cause lousy forecasting, if not handled (Wang et al., 2018). Therefore, after
analyzing data comprehensively, it is found that the data is missing in two ways, either
many data points are missing consecutively or one or few points at different locations, the
detail is given in Table 2. The one or few missing points are filled by interpolating with
parameter time while many consecutive missing points are filled by averaging a load of last
and next week, in such a way that the same hour of the missing day is filled by the average
of the same hour load of last and coming week as shown in Fig. 1.

Table 2 Missing values details.

Missing data points Location

Complete day 29 February 2016

24 consecutive data points 16 points on 5th May and eight points on

6th June in 2015, 16, 17 and 18

Two consecutive 14 points

Single point 40 points

Figure 1 Missing values in the dataset. Full-size DOI: 10.7717/peerj-cs.1487/fig-1
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Outliers handling

Similarly, the outliers are sudden high or low values at certain points which make load
forecasting very challenging and difficult (Shao & Kim, 2020) and are identified by using
the interquartile range (IQR) method (Seo, 2006) as shown in Fig. 2A. These are first
removed from the data and then handled just like missing values. The other repeated
values are also removed and handled like missing values.

Figure 2 Box plot at different steps of exploratory data analysis (A) outliers in dataset (B) peak hours: one for peak and 0 for non-peak hours
(C) days of the week (D) yearly load (E) one for holiday and 0 for the working day (F) 24 h load consumption (G) power consumption of
different month of the year (H) cyclic feature encoding of the month of the year, days of the week, and hours of the day.

Full-size DOI: 10.7717/peerj-cs.1487/fig-2
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Co-related features
After data cleaning, the load is shown in Fig. 2D which shows a clear increasing trend and
variation over the years which makes it highly non-stationary. The load consumption also
vary with the different season over the year as shown in Fig. 2G, each and every season
have different peak and off-peak hours in each day as shown in Figs. 2B and 2F. The
complete detail of peak hours in different seasons is given in Table 3 (National
Transmission & Despatch Company (NTDC), 2019). Similarly, working days, weekend
days, and other public holidays also affect the load consumption as shown in Figs. 2C and
2E. Moreover, the correlation coefficient of all of the above features is tabulated in Table 4.

Data set prepossessing
Table 4 shows that the load data variation has a correlation with other categorical features.
So, the incorporation of these correlated features along with load data increases the
forecasting accuracy. Hence, the input vector has both numerical load data (L) and
categorical data and the later is further classified into cyclic categorical data which repeat
itself after certain duration such as a month of the year (M), a day of the week (D) and an
hour of the day (H) while non-cyclic categorical data are Holidays (Ho) either national
holidays or weekends. Note that both public holidays and weekends are treated as a single
binary variable. In the future, it may be split into cyclic and non-cyclic. Similarly, peaks
hours depend on seasons: winter peak (Wp), spring peak (Sp), summer peak (SUp) and
autumn peak (Ap). Since this vector is used as input vector to deep learning models which

Table 3 Peak hours and off-peak hours.

Season Peak hours Off-peak timing

Winter (Dec to Feb inclusive) 5 to 9 pm The remaining 20 h

Spring (March to May inclusive) 6 to 10 pm The remaining 20 h

Summer (June to Aug inclusive) 7 to 11 pm The remaining 20 h

Autumn (Sept to Nov inclusive) 6 to 10 pm The remaining 20 h

Table 4 Spearman correlation with features.

Feature Spearman correlation

Month of year 0.227

Day of week −0.018

Hour of day 0.148

Holiday −0.012

Winter peak −0.134

Summer pear 0.255

Spring peak 0.023

Autumn peak 0.053
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are sensitive to data scaling, the load data and all the other categorical features are
transformed to the ranges 0 and 1.

Numerical data

The numerical load is normalized between 0 and 1 inclusive using min-max normalization
as per Eq. (1) (Farsi et al., 2021).

LTNorm ¼ Lt � Lmin

Lmax � Lmin
(1)

where the LTNorm is the normalized values between 0 and 1 while Lt is the original value at
time t and Lmax and Lmin are the maximum and minimum values of the load respectively.

Categorical data
The categorical data are mostly calendric features, having both cyclic and non-cyclic
behavior and encoded accordingly.

Cyclic features

The cyclical features are encoded via trigonometric transform, in which each sample is
represented as (x, y), coordinates of a unit circle. The motivation behind this
transformation is that the initial value of the cyclical feature is next to the final value. For
instance, January is near to December in order and away from June, which is exactly
captured by this transformation shown in Fig. 2H.

Non-cyclic features

The non-cyclical features are encoded by one hot encoding.

Input matrix
All the processed input features are combined in a single matrix. The detail of the input
vector is shown in Table 5. All these vectors are concatenated into a single vector

X ¼ fL;H;D;M;Ho;Wp; Sp; SUp;Apg (2)

Table 5 Detail of the input vector.

Data Description Encoding technique Shape

Numerical Load (L) Min-max normalization 1

Cyclic Hour of the day (H) Trigonometric Transform 2

Days of week (D) 2

Month of year (M) 2

Non-cyclic Holidays (Ho) One-hot encoding 2

Winter peak-hr (Wp) 2

Spring peak-hr (Sp) 2

Summer peak-hr (SUp) 2

Autumn peak-hr (Ap) 2
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which makes a vector of size 17� 1. The complete flow diagram of preprocessing is shown
in Fig. 3.

Data framing for single-step and multi-step forecasting
The concatenated data are a series of data points. To input this data into the LSTM, CNN,
or hybrid models it must be in the shape (sample, time step, features) and corresponding
labels. The labels depend on the task at hand. In this work, two types of tasks are a
consideration, one is a single step ahead and another is multi-step. For the load data
generation in proper framing for single-step ahead Algorithm 1 is used and for multi-step
Algorithm 2 is used.

Figure 3 Complete data processing flowchart. Full-size DOI: 10.7717/peerj-cs.1487/fig-3
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Algorithm 1 Pseudo-code of load data generator for single step.

Ensure: Tset < length of Dset

1: Dset: numpy array

2: Tset: Time-step

3: Ifcst: Index of Forecasting Column in Dset

4: Create two list A,B

5: for i < length of Dset-1 do

6: Ix = I + Tstep

7: if Ix > length of Dset-1 then

8: Break

9: end if

10: Temp = data in Dset from i to Ix

11: Append Temp in A

12: Temp = Data in Dset at Ix, Iforecast

13: Append Temp in B

14: end for

15: return Array of A,B

Algorithm 2 Pseudo-code of load data generator for multi step.

Ensure: Tset < length of Dset

1: Dset: numpy array

2: Tset: Time-step

3: Ifcst: Index of Forecasting Column in Dset

4: Flen: Forecast Duration

5: Create two list A,B

6: for i < length of Dset-1 do

7: Ix = I + Tstep

8: if Ix + Flen > length of Dset-1 then

9: Break

10: end if

11: Temp = data in Dset from i to Ix

12: Append Temp in A

13: array = Ifcst of Dset

14: Temp = Data in array from Ix to Ix + Flen

15: Append Temp in B

16: end for

17: return Array of A,B
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Model architecture
The model is tailored for forecasting the load. The hybrid model is composed of two LSTM
layers, two modified SC modules, and three skip connections. Each LSTM layer has 48
units and these LSTM layers extract temporal features from the load. These features are
passed through two modified SC modules. The SC is inspired by Szegedy et al. (2017, 2015,
2016). Each SC module has three parallel paths for data flowing and each of these paths has
a different number of CNN layers having different filter sizes to extract both global and
local features. In addition, the three skip connections are made in such a way that two out
of three are taken from the output of the second LSTM layer and concatenated with the
output of first and second SCmodules. However, this introduces unequal representation to

Figure 4 Architectural ingredients of the proposed model (A) convolutional block (B) SC module.
Full-size DOI: 10.7717/peerj-cs.1487/fig-4
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the SC and LSTM extracted features and also increases the hidden layer parameters. So,
both paths are followed by a convolutional block having 64 filters with a kernel of size 1.
The third skip connection is from the output of the first SC module to the output of the
second SC module. The concatenated features are flattened and pass through an activation
layer having tanh activation. The activation layer is followed by a dropout layer and finally
followed by a dense layer having activation function sigmoid and the number of neurons
according to the forecasting interval. Note that in this network convolution layers are used
multiple times, so every time the convolution layer is followed by a batch normalization
layer and activation function selu, named as a convolutional block shown in Fig. 4A.In
addition, L2 regularization with k ¼ 0:0005 is used in all convolution layers. The SC
module has three parallel paths as shown in Fig. 4B. The first path applies convolution

Table 6 SC module hyperparameters FP: First path, SP: Second path, TP: Third path.

Model Inception 1 × 1 (FP) 1 × 1 (SP) 3 × 3 (SP) 1 × 1 (TP) 5 × 5 (TP)

Proposed hybrid Inception 1 32 32 64 8 32

Inception 2 64 48 64 16 64

Figure 5 The proposed forecasting model architecture. Full-size DOI: 10.7717/peerj-cs.1487/fig-5
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having a kernel of size 1 which learns local features. The second path has two convolution
layers: the first layer with a kernel of size 1 that reduces the dimensions and the second
layer has a kernel of size 3. Similar to the second path, the third path also has two
convolution layers, in which the first one has a kernel of size one and the second has a
kernel of size 5 as shown in Fig. 4B. The hyper-parameters of two inception modules of the
model are given in Table 6. The complete architecture is shown in Fig. 5.

RESULT AND DISCUSSION
The model is developed and trained for the next 24 h load forecasting. All the results and
analysis are based on 24-h ahead load forecasting and the same training procedure has
been maintained throughout the article unless stated otherwise. Models are developed in
tensorflow2.

Datasets description
The model is trained, debugged, and tested using the NTDC dataset. To validate the
generalization capability of the proposed model, the model is evaluated on other two
publicly available datasets: AEP (Mulla, 2018), a power company under Pennsylvania-New
Jersey Maryland (PJM), and ISO-NE (Chen, 2021). PJM is a Regional Transmission
Organization (RTO). Some preliminary information about these datasets is tabulated in
Table 7. All these datasets are split into the train, validation, and test sets in the proportion
of 70%, 20%, and 10% respectively.

Evaluation matrices
In order to evaluate the forecasting performance of the proposed model and its
comparison with other deep learning models, three well-known evaluation matrices of
time series forecasting are used. These are mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE). All these matrices calculate
the error between the actual and predicted load values, called residual. These matrices are
negatively oriented scores, implying that the lower values of these matrices show the
betterment of the result. The mathematical expressions are given below (Shcherbakov
et al., 2013).

MAE ¼ 1
N

XN
i¼1

jLf � Lj (3)

Table 7 Basic information of NTDC, AEP, and ISO NE datasets.

Dataset name Start time End time Recording interval Samples

NTDC 2015-01-01 00:00:00 2020-04-30 23:00:00 Hourly 46,944

AEP 2004-10-01 01:00:00 2018-08-03 00:00:00 Hourly 121,296

ISO NE 2004-01-01 00:00:00 2014-12-31 23:00:00 Hourly 96,432
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðLf � LÞ2
vuut (4)

MAPE ¼ 1
N

XN
i¼1

j Lf � L

L
j (5)

whereN is the number of data points in the test dataset, L is the actual value of the load and
Lf is the predicted load.

MAE is the mean of the absolute value of the residual which shows that each residual is
contributed equally. On the other hand, in RMSE the residual is contributing quadratically
or in terms of weighted mean, the weight of each residual is itself which implies a high
residual is weighted more. Therefore, RMSE is always greater than MAE and only equal if
the residual is uniformly distributed throughout the test dataset. Thus, RMSE is more
sensitive to high residuals. On the other hand, MAPE is the mean percentage of absolute
relative error, in which the error is divided by the original. Thus, MAPE is not sensitive to
the sample values except where the original sample becomes zero, on which the MAPE
becomes undefined. In addition, the MAPE is smaller on a symmetrical error, for the one
whose actual value is smaller. But MAPE is the percentage equivalent of MAE and thus
easily interpretable. Note that the model is trained on normalized load data, so the data
needs to be transformed back to actual load values to calculate these parameters.

Training procedure
The models are built in the tensorflow2 library. Adam optimizer (Kingma & Ba, 2014) is
used for network training while MAE is used as a loss function. The initial learning rate is
0.001 and batch size is 32. During the training process, callbacks are used to save the model
whenever there is an improvement in validation loss. The model which is fine-tuned is
either at stagnation range or overfitting point, which is referred to as the best model. The
model is further trained and fine-tuned. Fine-tuning is achieved either by reducing the
learning rate which decreases the validation loss (Krizhevsky, Sutskever & Hinton, 2017) or
by increasing the batch size. The batch size increase is also used for tuning with fewer
parameter updates (Smith et al., 2017).

The validation loss curve has fluctuations at the beginning epochs because of the high
initial learning rate and the small batch size shown in Fig. 6. When the validation curve is
stagnant and no improvement occurs in the validation loss, or the validation curve deviates
from training, the training is stopped. The best model is loaded for calculating MAE,
RMSE, and MAPE for all models shown in Table 8. The learning rate is reduced by a factor
of 10 and increases the batch size to 256 and starts training. The validation curve
fluctuations reduce as shown in Fig. 6. The training is stopped again either by stagnation
range or overfitting points. The best model is loaded to calculate MAE, RMSE, and MAPE.
It is also pertinent to mention that this method of reducing the learning rate for fine-tuning
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gave more fine-grained control to the observer in contrast to the built-in Keras callbacks.
In addition, the observer does not know the optimal initial learning rate, the number of
epochs at which the learning rate needs to be changed, and the upper and the lower limit
on the learning rate.

Figure 6 Loss curve for the models in ablation study (A) LSTM (B) SC (C) SC-LSTM (D) LSTM-SC with skip connection (E) proposed hybrid
LSTM-SC. Full-size DOI: 10.7717/peerj-cs.1487/fig-6

Table 8 Performance evaluation for ablation study.

Model RMSE MAE MAPE % improvement

LSTM 566.66 428.79 4.26 14.82

SC 517.17 388.68 3.9 5.12

SC LSTM 619.59 483.04 4.8 29.38

LSTM SC with Skip 502.14 372.53 3.72 0.27

Proposed LSTM SC 500.98 372.62 3.71
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Ablation study of the proposed model
In this section, the original structure of the model is maintained, some components are
removed, and trained the model without them, to show their impact and significance. In
addition, LSTM and SC are rearranged in SC LSTM configuration to verify the significance
of the LSTM SC configuration. First only the two LSTM layers are trained independently,
and the result is tabulated in Table 8. The result shows that the proposed method improves
the MAPE on the test dataset by around 14.82%. In the next experiments, only the SC is
trained. The improvement of the proposed method is 5.12%, which shows the performance
boost of the SC structure. In the following scenario, a hybrid model is developed composed
of the cascaded SC and LSTM which further reduces the performance of LSTM by 12.67%.
In contrast to the previous case, the LSTM layers are followed by SC layers and the MAPE
is 3.71%. Finally, skip connections are introduced in the network, but it has no effect on the
performance of the network. This is because the network is not deep and skip connections
work well only in deep networks. In the future, this idea will be further exploited.
Therefore, the proposed model in the coming experiments is the LSTM-SC. The result of
all experiments along with the percentage improvement in MAPE in comparison with the
LSTM-SC configuration is tabulated in Table 8. The result shows the significance of the
LSTM followed by the SC arrangement. In this arrangement, the LSTM first processes the
load consumption data and extracts temporal features. The features are then processed by
SC, which extracts hierarchical spatial features. In contrast to the SC-LSTM structure, all
the hidden states of LSTM are processed by different size filters which would correct the
error in a hidden state, if it occurred at a specific instant. When LSTM directly connects
with a dense network, only the final hidden state is processed which may cause an error.
Note that all these analyses are based on the same training procedures and on the NTDC
dataset. The detail of the sub-experiments is shown in Table 9 and the loss curves for all
sub-experiments are shown in Fig. 6. The little fluctuation at the beginning of the loss
curve is due to the small batch size of 32 and the high learning rate of 0.001. The MAPE of
the proposed model after 16 epochs is 3.81%. It is consistently learning when it is loaded
for tuning. The validation curve also closely follows the training curve which is a perfect
trade-off between bias and variance.

Table 9 Performance evaluation parameters at different fine-tuning steps (Ablation study): FE: First
best-saved model at epoch and SE: Second best-saved model at epoch.

Model FE MAPE SE MAPE

LSTM 15 4.26 4 Not improved

SC 20 4.2 1 3.9

SC LSTM 25 5.29 28 4.8

LSTM SC with skip 19 4.29 5 3.72

Proposed LSTM SC 16 3.81 29 3.71
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State-of-the-art methods
In this section, the recent state-of-the-art (SOTA) models (Ryu, Noh & Kim, 2016; Kong
et al., 2017;Marino, Amarasinghe & Manic, 2016; Rafi, Deeba & Hossain, 2021; Alhussein,
Aurangzeb & Haider, 2020; Ullah et al., 2019; Ijaz et al., 2022; Chen et al., 2023; Hussain
et al., 2022; Shao & Kim, 2020) are selected from the literature and compared their results
with the proposed model. All these models are reproduced by one-to-one correspondence
with the source article. Many other relevant articles (Ding, Liu & Zou, 2021; Son et al.,
2022; Chen et al., 2021; Elsaraiti & Merabet, 2022) are not reproducible in their true spirit
because their many hyper-parameters are not listed. Research article (Ryu, Noh & Kim,
2016) used a deep neural network, (Kong et al., 2017) used LSTM, and (Marino,
Amarasinghe &Manic, 2016) used sequence to sequence. On the other hand (Shao & Kim,
2020) used three parallel channels of LSTM and K-means classifier. Similarly, (Rafi, Deeba
& Hossain, 2021; Alhussein, Aurangzeb & Haider, 2020; Ullah et al., 2019; Ijaz et al., 2022;
Chen et al., 2023; Hussain et al., 2022) used hybrid models composed of CNN and RNN
variants for load forecasting.

24-h forecasting comparative analysis
The proposed model is used to forecast the coming 24 h load consumption. The model is
trained, validated, and tested on all three datasets with the given number of samples as in
Table 7. The results of the proposed and all SOTA models are shown in Table 10. The
result indicates that the proposed model outperforms all the comparative models on all
three datasets. In all cases, RMSE is greater thanMAE because the residual is not uniformly
distributed and the test data has outliers, as the test data include last month’s data which
has outliers as shown in Fig. 2D. In addition, the features incorporated along with load
consumption have a strong correlation with load consumption. To investigate their effect
on MAPE, these features are removed from the NTDC dataset and retrained the model
only on the load data. The MAPE is increased to 3.96% which clearly indicates the

Table 10 Multi-step (24-h) forecasting comparison of the proposed model with SOTA on three datasets: NTDC, AEP, and ISO-NE.

Multi-step

Model Model name AEP NTDC ISONE

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Alhussein, Aurangzeb & Haider (2020) CNN-LSTM 824.11 636.88 4.33 752.98 585.56 6.06 764.08 565.46 3.86

Kong et al. (2017) LSTM 742.8 521.3 3.39 602.55 451.53 4.49 634.78 437.45 2.97

Marino, Amarasinghe & Manic (2016) S2S 1262.83 982.4 6.66 924.76 707.69 7.31 851.78 638.78 4.36

Rafi, Deeba & Hossain (2021) CNN-LSTM 718.66 536.42 3.64 603.37 438.69 4.39 659.7 466.13 3.2

Ryu, Noh & Kim (2016) DNN 772.3 574.57 3.87 591.9 455.75 4.55 632.05 441.24 3.01

Ullah et al. (2019) M-BDLSTM 790.1 580.23 3.86 576.16 435.76 4.3 726.47 499.96 3.39

Chen et al. (2023) ResNet-LSTM 735.02 539.12 3.62 600.55 459.44 4.57 649.23 450.31 3.07

Ijaz et al. (2022) ANN-LSTM 748.16 571.31 3.94 1,341.3 1,017.5 7.33 734.07 535.97 3.71

Hussain et al. (2022) Hybrid 690.38 499.28 3.33 581.68 425.35 4.29 602.43 412.92 2.84

Proposed LSTM-SC 731.3 518.81 3.46 500.98 372.62 3.72 631.93 400.67 2.7
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effectiveness of the proposed preprocessing. The corresponding loss curve is shown in
Fig. 7H. The curve fluctuates more at the beginning because the model is not learning most
of the load features without calendric features at batch size 32 and a learning rate of 0.001.
After the learning rate reduction and batch size increase the model starts learning and the
model improves. Furthermore, the temperature present in ISO-NE datasets has a strong
correlation with load consumption. When it is removed, the model is trained and tested
again while keeping all the conditions remains the same. The MAPE has increased to 2.9%
which is a 7.4% increase. As the temperature is a highly correlated feature that varies
differently from previous historical data and depends on changing environments with
time. So, a small noise in temperature data can affect the forecast very much. For this, the
effect of randomness is investigated by modifying the actual temperature date by adding
Gaussian noise with a standard deviation of 1, 2, and 3 degrees. This increases the MAPE

Figure 7 Loss curve for the LSTM-SC model for single-step and multi-step forecasting (A) single-step AEP (B) single-step ISO-NE (C) single-
step NTDC (D) multi-step AEP (E) multi-step ISO-NE (F) multi-step NTDC (G) multi-step ISO-NE without temperature (H) multi-step ISO-
NE without features. Full-size DOI: 10.7717/peerj-cs.1487/fig-7
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from 2.70 to 2.73, 2.80, and 2.91 respectively. This clearly indicates that the proposed
model performance varies a little bit due to temperature variation. The Loss curves for
temperature and without temperature case is shown in Figs. 7E and 7H respectively. The
curves are similar but the curve for the temperature inclusion case comes a little down. The
loss curves for AEP, ISO-NE, and NTDC are shown in Figs. 7D–7F respectively. The Loss
curve of NTDC data set is a little bit higher than the other two dataset because of the small
amount of data in NTDC dataset.

12-h forecasting comparative analysis
The performance of proposed model is also compared with recent state-of-the-art model
(Shao & Kim, 2020) for forecasting next 12 h load consumption. The model was trained on
multiple datasets but for comparison purposes, only AEP is chosen. The results are
compared with Table 3 of the article. The summarized results are tabulated in Table 11.
The result shows the reduction in forecasting error.

Single-step forecasting comparative analysis
The actual power consumption and the predicted power of the proposed model and all
other state-of-the-art models are plotted in Fig. 8. The prediction is done for the complete
test dataset, but a few days from the beginning are drawn to be more visible. In addition,
the performance evaluation matrices are tabulated in Table 12. These results show the
effectiveness of the proposed hybrid model. The loss curves of the proposed model on
AEP, ISO-NE, and NTDC datasets are shown in Figs. 7A–7C respectively. These curves are
asymptotic on the epoch axis which shows that single-step forecasting is an easy task in
comparison to the multiple-step ahead task. In addition, in the case of ISO-NE, the curves
touch the epoch axis because the data includes temperature, an extra input variable, and it
helps the model to learn more.

LIMITATIONS AND FUTURE WORK
The specialized proposed architecture LSTM-SC which is the combination of special
neural network modules enhanced the performance of STLF. Similarly, there are many
other recent deep neural network architectures, specialized for different data types and
applications. Therefore, by carefully analyzing the nature of the data and selecting an

Table 11 The performance evaluation of the proposed model and SOTA models on 12 step ahead
load forecasting on AEP datasets.

Dataset Reference Model name MAE RMSE MAPE

AEP Shao & Kim (2020) TL-MCLSTM 430.9 551.8 3.1

Xue et al. (2019) XGBoost 718.0 551.8 5.2

Kong et al. (2017) LSTM 434.4 560.0 3.1

Yan et al. (2018) Hybrid 646.3 802.9 4.84

Shao, Kim & Sontakke (2020) CNN-LSTM 510.6 646.2 3.7

Proposed LSTM-SC 386.17 549.92 2.58
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appropriate model for each type of data, and then appropriately connecting them in a
hybrid model may improves the performance. This combination may be either in parallel
or series or any other combination.

For proper energy management, for the smooth operation of smart grid needs an
optimal forecasting algorithm which helps in decision making. In the future, the proposed

Figure 8 Actual and predicted load consumption of LSTM-SC and SOTA models.
Full-size DOI: 10.7717/peerj-cs.1487/fig-8

Table 12 Single-step forecasting comparison of the proposed model with SOTA on three datasets: NTDC, AEP, and ISO-NE.

Single-step

Model Model name AEP NTDC ISONE

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Alhussein, Aurangzeb & Haider (2020) CNN-LSTM 381.66 305.71 2.15 570.66 439.79 4.49 394.26 289.62 2.01

Kong et al. (2017) LSTM 133.25 97.36 0.66 368.43 277.54 2.74 132.17 69.73 0.48

Marino, Amarasinghe & Manic (2016) S2S 975 758.58 5.11 925.16 734.03 7.19 571.82 403.24 2.76

Rafi, Deeba & Hossain (2021) CNN-LSTM 153.65 118.06 0.82 351.63 271.56 2.69 161.3 98.26 0.7

Ryu, Noh & Kim (2016) DNN 140.34 107.68 0.74 359.89 275.66 2.72 138.13 74.41 0.52

Ullah et al. (2019) M-BDLSTM 355.42 271.86 1.83 569.19 436.18 4.36 323.78 229.61 1.57

Chen et al. (2023) ResNet-LSTM 332.35 249.08 2.48 310.97 234.68 2.32 140.7 78.39 0.54

Ijaz et al. (2022) ANN-LSTM 157.2 115.54 0.8 877.03 643.37 4.54 175.98 93.37 0.65

Hussain et al. (2022) Hybrid 148.29 110.24 0.75 267.46 355.84 2.62 139.98 73.7 0.51

Proposed LSTM-SC 130.08 97.78 0.67 322.99 244.22 2.38 140.03 67.59 0.47
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model can be tested in combination with energy management algorithms like
reinforcement learning in some energy management applications.

The proposed model forecasts a single value. However, future uncertainty can best be
described by a range of possible values or a distribution. The cause of this uncertainty is
either due to the stochastic nature of deep learning models or due to the uncertainty in the
input matrix. The model uncertainty is due to different reasons like parameter
initialization and updating them in a stochastic way. On the other hand, the uncertainty in
other input co-related quantities like temperature is due to noise or variation with time.
However, most of the dataset have not included all co-related features and are usually small
in size. Therefore, in the future, a large dataset with all co-related features is required.
Furthermore, the methodology of the proposed work can be extended to include such
stochastic variation in both model and data.

Smart grid operation required the forecasting of different complex varying quantities
like load demand, generation by intermittent renewable energy resources, different market
situations, and weather or environmental conditions. Therefore, a single forecasting
algorithm that can forecast all these quantities becomes a need of the hour. The proposed
model is a multi-horizon on three different regional datasets. In the future, the proposed
model can be trained and tested for different data and may also used for transfer learning.

CONCLUSION
This article addresses the issue of multi-horizon short-term load forecasting in a more
precise way. This article proposed a novel hybrid method with the integration of LSTM
and a modified split-convolution network. The results show that the preceding LSTM from
CNN and further modification of CNN by splitting the CNN into parallel paths, each
having kernel of different sizes for extracting both local and global features. Furthermore, it
also processes all hidden states instead of the last hidden state, which improves
performance. The performance of the model is evaluated on the Pakistan National Power
dataset and two other publicly available datasets: AEP and ISO-NE. Further, it is also
investigated that combining multiple correlated features with load data improves the
performance of the proposed network which shows that the network is effectively designed
for extracting features from the data. In addition, random Gaussian noise with different
standard deviations is added to temperature in the ISO-NE dataset and its effects are
investigated. Comparing the results of the proposed model with other state-of-art models
on different publicly available datasets indicated that it has a strong generalization
capability and less error in forecasting.
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