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ABSTRACT

Training deep neural networks requires a large number of labeled samples, which are
typically provided by crowdsourced workers or professionals at a high cost. To obtain
qualified labels, samples need to be relabeled for inspection to control the quality of
the labels, which further increases the cost. Active learning methods aim to select the
most valuable samples for labeling to reduce labeling costs. We designed a practical
active learning method that adaptively allocates labeling resources to the most
valuable unlabeled samples and the most likely mislabeled labeled samples, thus
significantly reducing the overall labeling cost. We prove that the probability of our
proposed method labeling more than one sample from any redundant sample set in
the same batch is less than 1/k, where k is the number of the k-fold experiment used
in the method, thus significantly reducing the labeling resources wasted on
redundant samples. Our proposed method achieves the best level of results on
benchmark datasets, and it performs well in an industrial application of automatic
optical inspection.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Data
Science, Neural Networks
Keywords Active learning, Automated optical inspection, Label quality control

INTRODUCTION

In recent years, deep neural networks have been widely used. To train a deep neural
network well, a large number of labeled samples are usually required. Commonly used
benchmark datasets, such as MNIST (LeCun et al., 1998), CIFAR (Krizhevsky, 2009), and
ImageNet (Krizhevsky, Sutskever ¢ Hinton, 2012), contain tens of thousands or even
millions of labeled samples. These labels are usually provided by human annotators and
require high labor costs. For datasets in professional domains such as Automated Optical
Inspection (AOI) (Abd Al Rahman ¢ Mousavi, 2020), the labeling task usually needs to be
performed by domain experts, and the scarcity and busyness of domain experts make the
labeling task costly. For datasets in non-professional domains, crowdsourcing platforms,
such as Amazon Mechanical Turk, are often used to perform labeling tasks. In
crowdsourced labeling, it is difficult to guarantee the quality of the label, so additional
inspections are required to control the quality of the label, which significantly increases the
labeling cost. For example, in order for the final labeling accuracy to meet the desired
requirements, each sample in the ImageNet dataset requires 2-5 annotators to label
independently (Li, 2010), which increases the sample labeling cost by 1-4 times.

To reduce the cost of labeling samples, active learning has been widely studied. Active
learning allows an algorithm to choose which samples to label, whereas supervised learning
requires labels for all samples. Active learning aims to use as few labeled samples as
possible to achieve high accuracy, thereby minimizing the cost of obtaining labeled
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samples. As the number of labeled samples increases, the performance of active learning
will eventually converge to that of supervised learning. Common active learning methods
can be divided into stream-based methods and pool-based methods. When a new sample is
received, stream-based methods must decide whether to label the sample or ignore it. It is
typically used in situations where unlabeled samples can be acquired continuously, such as
cameras in self-driving cars that can take pictures continuously. Pool-based active learning
methods typically start with a small set of labeled samples and a large set of unlabeled
samples (Kumar ¢» Gupta, 2020). Then, these methods iteratively train a model with
labeled samples and use the model to select unlabeled samples for labeling until the model
accuracy meets the requirements or reaches the budgeted limit for labeling cost. To
increase speed, a batch of unlabeled samples is typically selected at each iteration, so the
similarity between samples within the batch needs to be reduced (Kirsch, Van Amersfoort
¢ Gal, 2019). In this article, we study pool-based methods for classification problems.
Common pool-based active learning methods for classification problems include
uncertainty (Settles, 2009), variation ratio (Beluch et al., 2018), and core-set (Sener &
Savarese, 2018).

Noisy labeling results are often obtained due to annotator oversight or difficulty in
distinguishing samples. For example, labeling errors exist in datasets such as MNIST and
ImageNet (Northcutt, Jiang ¢ Chuang, 2021). Most active learning does not care about
label quality control, and it is assumed that all labels have passed quality control, but this
leads to a waste of labeling resources. When the labeled sample size is small, a large number
of low-quality labeled samples can lead to better performance than a small number of high-
quality labeled samples; when the labeled sample size is large, improving the quality of
existing labels can help to further improve performance. Combining active learning with
label quality control can help reduce the cost of labeling. Active learning methods such as
bidirectional active learning (BDAL) (Zhang, Wang ¢ Yun, 2015) also take into account
the presence of noise in the labels, but they require fast computation of model parameters
after sample labels are changed, making it difficult to apply to methods with long training
times, such as deep neural networks. Other methods, such as active learning from
imperfect labelers (ALIL) (Yan, Chaudhuri ¢ Javidi, 2016), require exponential
computation as the input dimensionality increases, making it difficult to apply to high-
dimensional samples such as images.

We combine active learning with label quality control to reduce the overall cost by
adaptively allocating labeling resources for both active learning and quality control in each
iteration. If we treat the annotator as a “model”, for quality control purposes we select
samples that are prone to be mispredicted by this “model” and then check their labels. This
is similar to the goal of active learning: select samples that are prone to misprediction and
label them. We devise a metric to measure whether a sample is prone to misprediction or
mislabeling. Based on the same metric, we can adaptively allocate labeling resources for
active learning and label quality control. We design a practical algorithm based on this
metric and prove that the algorithm reduces the cost of redundant labeling by labeling
multiple samples from any redundant sample set with less than 1/k probability in one
iteration, where k is the number of fold experiments that can be arbitrarily chosen in the
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method. By adaptively adjusting the allocation ratio of labeling resources as the number of
labeled samples increases, the algorithm significantly improves the efficiency of labeling
resource utilization, thus reducing the overall labeling cost. Our proposed method not only
outperforms the compared methods on the benchmark dataset, but also performs well in
real industrial applications.

The main contributions of this work are threefold:

e We propose a method that can adaptively allocate labeling resources for active learning
and label quality control, and design a practical algorithm for it.

e We prove that the algorithm only labels multiple similar samples in the same batch with
small probability, thus saving labeling resources.

e Our proposed method achieves state-of-the-art results on benchmark datasets and
performs well in a real industrial application.

RELATED WORK

In this section, we first introduce the pool-based active learning methods, then introduce
the active learning methods with noisy labels, and finally introduce the label quality control
methods.

Pool-based active learning
Uncertainty: Let the classification probability vector predicted by model M for sample x be
P=(p1,-..,pq)" - Then, the uncertainty method labels samples with high entropy H(P).

q
H(P) = = pilogpi. (1)
i=1

When the number of categories g is 2, the uncertainty method degenerates to select the
sample with p; closest to 0.5, which is equivalent to the active learning metric used in the
dataset alignment active learning (Ben et al., 2022) method.

CEAL: The cost effective active learning (CEAL) (Wang et al., 2016) method improves
the uncertainty method. It not only labels samples with high entropy values but also
pseudolabels samples whose entropy values are less than a given threshold. CEAL methods
benefit from the use of unlabeled samples, but choosing an appropriate threshold is
difficult.

Variation ratio: The variation ratio method trains ¢ neural networks with different
random initializations. They have the same network structure and use the same training
set. The variance ratio method labels samples with large differences V(x) between the
predictions of ¢ neural networks.

fu(x) 2

Vix)=1- -

where f,,(x) is the number of predictions falling into the modal class for sample x. The
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variation ratio method performs well but requires additional computing resources to train
multiple neural networks.

Core-set: The core-set method selects the labeled samples such that the spheres
centered on the samples in the labeled dataset cover all samples. Let the labeled sample set
be L and the unlabeled sample set be U. T is the sample set that needs to be labeled, and
2 (x1,x) is the distance between samples x; and x,. The core-set method chooses T to
minimize

max _A(x;, xj). 3)
x€U,x5€LUT

The core-set method has an intuitive geometric interpretation, but it is often difficult to
choose a suitable definition of the distance / (x;, x;).

BatchBALD: The BatchBDAL (Kirsch, Van Amersfoort ¢» Gal, 2019) method selects a
set of samples to minimize the uncertainty of the model parameters. With appropriate
transformations, it chooses to label a set of samples x;.;, to maximize

H(yl:b|x1:ba Dtmin) - Ep(w\D,m,-n)H(yl:h‘xlzba w, Dtmin)a (4)

where H denotes the conditional entropy. The BatchBDAL method is the original BDAL
(Gal, Islam & Ghahramani, 2017) method when b is 1. The BatchBDAL method reduces
the probability of labeling multiple similar samples in the same batch, which results in
better performance.

Learning loss: The learning loss (Yoo ¢ Kweon, 2019) method adds a loss prediction
model to the task model. The model takes the features from the task model as input and
then predicts the loss value of the task model for each sample. The learning loss method is
widely applicable to various tasks, but its loss prediction model is closely related to the
structure of the task model, so the loss prediction model needs to be redesigned when using
different task models, which increases the workload of using it.

VAAL: The Variational Adversarial Active Learning (VAAL) (Sinha, Ebrahimi ¢
Darrell, 2019) method first trains an auto-encoder using labeled and unlabeled samples,
and then trains a discriminator to predict whether a sample is already labeled based on the
features extracted by the auto-encoder. If an unlabeled sample is predicted to be labeled by
the discriminator, the variational adversarial method believes that the sample can be well
represented by the existing labeled samples and therefore does not deserve to be labeled.
The variational adversarial method chooses to label those unlabeled samples that the
discriminator is confident are unlabeled.

EADA: The Energy-based Active Domain Adaptation (EADA) (Xie et al., 2022)
method is concerned with the application of active learning to knowledge transfer in the
target domain. It combines domain features and instance uncertainty to select samples to
be labeled. The EADA method also reduces the domain gap by compactly aligning the free
energy of the target domain around the source domain through regularization terms. The
EADA method reduces the labeling cost required to solve the domain adaptation problem
and also expands the application scenario of active learning.
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More active learning methods can be found in these surveys (Kumar & Gupta, 2020,
Ren et al., 2021).

Active learning with noisy labels

BDAL: The BDAL method calls the active learning process of selecting samples for
labeling the forward process, and adds the backward process of selecting samples for
inspection. In the backward process, the BDAL method checks whether the label of sample
xp; is correct, where

Xp = argrrLlinZP(yi|x; QL\(X_},;)) . Z H(y"|x", QL\(X’},;)). (5)
xXe i

xteU—x

01\ (x,y;) represents the model parameters trained after removing sample x and its label
y; in the labeled sample set L. The BDAL method combines active learning and label
quality control but requires multiple recalculations of model parameters after the training
set changes, which is difficult to apply to deep neural networks.

ALIL: The ALIL method allows annotators to not label indeterminate samples and has
satisfactory query complexity in specific cases. However, its computations grow
exponentially as the sample dimension increases, which is difficult to apply to sample types
such as images.

Label quality control

Simple method: The simple label quality control method gives each sample to multiple
annotators for independent labeling, and then takes the most frequent of the multiple label
results as the final label result. Although this method increases the labeling cost several
times, it is widely used (Li, 2010) because it is easy to implement and is independent of the
chosen machine learning method.

Confident learning: The confident learning (Northcutt, Jiang ¢» Chuang, 2021) method
first estimates the joint distribution matrix of the noise label and the true label based on the
predicted probability output by the model, and then selects the samples that may be
mislabeled based on the distribution matrix. For example, the distribution matrix indicates
that a sample of class A is mislabeled as B with probability p; then, for the sample labeled as
B, the confident learning method considers the first n * p samples most likely to belong to
class A to be mislabeled, where # is the sample size.

GLAD: The Generative model of Labels, Abilities, and Difficulties (GLAD) (Whitehill
et al., 2009) method better aggregates the label results of multiple independent annotators.
Different from the traditional method that uses the label supported by the most annotators
as the final label, the GLAD method establishes a probability model to analyze the difficulty
of labeling the sample and the professional level of the annotator, thereby obtaining more
accurate label results.
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PROPOSED APPROACH

In this section, we first combine active learning with label quality control to adaptively
allocate labeling resources. Then, we propose a practical algorithm for our approach.
Finally, we prove that the algorithm is less affected by redundant samples.

Active learning with label quality control

Both active learning and label quality control consume labeling resources. If all labeling
resources are allocated to active learning, the performance of the model may be limited by
samples with low label quality. If each sample is labeled multiple times to fully inspect its
label quality, the same labeling resources will yield fewer high-quality labeled samples,
which will also limit the performance of the model. When the number of labeled samples is
small, we tend to increase the number of labeled samples; when the number of labeled
samples is sufficient, we tend to improve the label quality of the labeled samples. Therefore,
allocating labeling resources to active learning and label quality control in a fixed
proportion will not achieve the best performance, and we need to allocate labeling
resources adaptively with the training progress.

Active learning and label quality control typically use different metrics for sample
selection. Therefore, it is difficult to evaluate whether the benefit of labeling a new sample
is greater than the benefit of inspecting an existing label. If active learning and label quality
control use the same sample selection metric, we can adaptively allocate labeling resources
based on this metric. A human annotator can be considered as a model whose predictions
may be wrong due to oversight or other reasons. The goal of label quality control is to
inspect samples that the model (human annotator) may predict incorrectly, which is
similar to the goal of active learning. Based on this, we propose a sample selection metric
that can be used for both active learning and label quality control.

If we let the label space be Y, within this space, the actual label of sample x is y, the label
given by the annotator is y, and the prediction given by model M is . Let D (y1, y,) be the
distance in the label space. The smaller the distance is, the closer y; is to y,. We call
dyre = D (y, ) the predicted distance, dyu, = D (y,y) is the annotation distance, and
dops = D (7, 7) is called the observation distance. For active learning, we choose to label
samples with a large predicted distance d,.; to control the label quality, we choose to
inspect samples with a large annotation distance d,,,. Therefore, to combine active
learning and label quality control, we choose to label samples with a large max (dyre, dann)-

Since the actual label y of the sample x is usually unknown, it is difficult to obtain the
value of max (dpye, dann). If the distance D (y1,y,) in the sample space Y satisfies the
triangle inequality, as shown in Fig. 1, then

max(dprea dann) > %dobs- (6)

Therefore, we choose to label or inspect samples with a large observation distance d,ps,
which represents the lower bound of the predicted distance d,, and the annotation
distance dg,,.
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Predicted Label ¥ Annotation Label y
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Actual Label y

Figure 1 The relationships between observation distance, annotation distance and predicted
distance. Full-size K&l DOT: 10.7717/peerj-cs.1480/fig-1

For various common machine learning tasks, such as classification and regression, the
label space Y usually belongs to a high-dimensional vector space. The L; distance and L,
distance, efc. in the high-dimensional vector space satisfy the triangular inequality, and
we usually choose the L, distance for the stability of the gradient in the training
process. For example, in the g-classification problem, the elements in the label space
Y={(p1,.-- ,pq)T :0<p; <1,1<i<q; > L pi= 1} are all possible classification
probability vectors. Since the sample is difficult to distinguish, the actual label y is not
necessarily a one-hot vector, but the label y given by the annotator is often a one-hot
vector. We use the L, distance as the distance metric D in the label space Y, and then define
the observation distance d,ps, annotation distance dgy,,, and prediction distance d.

Practical algorithm

To apply our proposed method to practical problems, two issues need to be addressed.
First, each sample must have a label. Second, neural networks often overfit the training set
and thus underestimate the observation distance.

To make each sample have a label, we introduce the pseudolabel method. After updating
the labeled sample set, we first train the model on the labeled sample set, and then use the
trained model to assign a pseudolabel to each sample in the unlabeled sample set.
Pseudolabel methods are widely used in semisupervised learning and are widely applicable
to various problems.

To obtain a more accurate observation distance, the model M used to calculate the
observation distance of the unlabeled sample x should be trained on a dataset that does not
contain x. To reduce the number of calculations, we randomly divide the entire dataset
(including the labeled dataset and the unlabeled dataset with pseudolabels) into k groups.
Each time, training is performed on k — 1 of the groups, and the trained model is used to
calculate the observation distance on the remaining group.

After obtaining the observation distances of all samples, we select the sample with the
largest observation distances. If the sample has already been labeled, we re-label it and then
update the label based on the results of all previous labels. For example, we update the label
to the most frequent label among all previous results. If the sample has not been labeled, we
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Figure 2 Flow chart of our proposed method. The red line indicates the label quality control process,
and the blue line indicates the active learning process.  Full-size K&l DOI: 10.7717/peerj-cs.1480/fig-2

label it and add it to the labeled dataset. The complete process is shown in Algorithm 1,
and the flowchart of the proposed method is shown in Fig. 2.

Algorithmic property

Next, we prove that our proposed algorithm is less affected by redundant samples in the

dataset.

Theorem 1. If there are duplicate samples in the unlabeled dataset U = {xy,...,x,}, we
refer to Up = {Xg(1), - - - Xrem)} € U as a repetitive subset of U, where

XR(1) = XR(2) = *** = XR(m)> M > 2. If the neural network has sufficient fitting ability, for

any Ug, the sample set T to be labeled selected by Algorithm 1 satisfies
P(|T N Ug| > 2) < 1/k, where k is the number of folds when calculating the observation
distance.

Proof. In the folding experiment, if the samples in Uy are divided into different groups,
the samples in Uy will appear in both the training set and the sample set used to calculate
the observation distance. Because the neural network is fully fitted, the observation
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Algorithm 1 Active learning with label quality control.
Input: Unlabeled samples U, initially labeled samples L, batch size b, maximum iteration number N, number of folds k
Output: Model M
for i — 1 to N do
Train model MY on L;
Use model M! to pseudolabel the sample in U to get the pseudolabeled samples LY;
Let L = LULY, then randomly divide L into k subset {I:l, .. ,I:k} of the same size;
foreach I:]- do
Train model M; on I:/I:,
Use model M; to calculate the observation distance d of the sample in L;;
end
Choose b samples from L with the largest d as the samples T;
foreach x € T do
if x € L then
Label x again, then update the label of x;
end
if x € U then
Label x, add x to L, and remove x from U;
end
end
end
M = Ensemble (M, ..., M;);

return M

distance of the sample is 0, so it will not be selected for labeling. In summary, it may be
selected for labeling only when the samples in Uy are divided into the same group, hence

! <-. (7)

> <
(TN U 22) < g <1

If the number of folds k is 5, then for any redundant sample group Uk, the probability
that there are redundant samples from Uy in the sample set to be labeled by Algorithm 1
does not exceed 1/5. It can be seen that our method avoids labeling redundant samples.
Although the proof is only for redundant samples, the experiment in Section “Experiments
of Active Learning” shows that our proposed method also performs well for similar
samples.

EXPERIMENTAL RESULTS

First, we conduct experiments under noisy labels to evaluate the performance of our
proposed method for adaptive allocation of labeling resources. Then, we compare with
several active learning methods and verify the anti-redundancy of our proposed method to
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evaluate the active learning performance of our proposed method. Finally, we compare our
proposed method with the mainstream label quality control methods to evaluate the label
quality control performance of our proposed method.

Experiments under noisy label
We first describe the experimental settings used and then compare it to the no quality
control, full quality control, and fixed ratio quality control methods.

Experimental settings

We conduct experiments on the MNIST dataset based on simulated labeling noise. Due to
the difficulty of obtaining the original noisy label results, we use the labels provided in the
MNIST dataset as the actual labels and simulate the labeling noise on the MNIST dataset.
We assume that the annotator has a 95% probability of providing the actual label and a 5%
probability of providing an incorrect label. For example, if the actual label is the number 0,
the probability that the label result is the number 0 is 95%, and the probability that the
label result is any other number is 1/180.

All images are resized to 32 x 32 and no data augmentation is used. We use the LeNet5
(LeCun et al., 1998) network and the cross-entropy loss function. We use SGD optimizer
and set the batch size to 32, then train 1,000 epochs. The initial learning rate is set to 0.1,
momentum is set to 0.9, weight decay is set to 1e—4, and the learning rate is adjusted to 0.01
after 500 epochs. To prevent overconfidence in the classification probability vector output
by the neural network, we use temperature scaling (Hinton, Vinyals ¢» Dean, 2015) method
to improve the performance of the model after the model training is completed. In the k-
fold experiment, we use the set of data not used for training to calculate the optimal
temperature.

We randomly select 100 samples from the training set of the MNIST dataset as the
initial set of labeled samples, and in each iteration, we label or inspect 100 samples until we
have consumed 1,000 labeling resources. We perform 10 random experiments, each with
different initial 100 random samples, and then take the average of the results of the 10
experiments as the final result. The methods used for comparison include: “ALQC” is our
proposed method, “CEAL” is the cost effective active learning method, “Core” is the core-
set method, “Rand” is the method of randomly selecting samples to be labeled, “Var” is the
variation ratio method, and “Unc” is the uncertainty method. See Section “Related Work”
for details on these methods.

Compare with no quality control

We first compare with active learning methods without label quality control. These active
learning methods directly use low-quality labeled datasets thus obtain more labeled
samples. The experimental results in Fig. 3 and Table 1 show that our proposed ALQC
method outperforms the other methods. When consuming the same label cost, the ALQC
method achieves higher test set accuracy than other methods, thus achieving optimal
efficiency in the use of labeling resources. The excellent performance of the ALQC method
shows that ignoring label quality control and directly using low-quality labels does not
achieve the best performance. This highlights the necessity of combining active learning
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Figure 3 Experimental results of active learning methods without label quality control on the

MNIST dataset.

Full-size 4] DOT: 10.7717/peerj-cs.1480/fig-3

Table 1 Test set accuracy of active learning methods without label quality control on the MNIST

dataset.

Label cost ALQC CEAL Core Rand Var Unc
100 0.7967 0.7862 0.7877 0.7868 0.7877 0.7833
200 0.9107 0.8468 0.8565 0.8712 0.8867 0.8472
300 0.9447 0.8747 0.9073 0.9050 0.9328 0.9021
400 0.9623 0.8710 0.9320 0.9209 0.9561 0.9212
500 0.9732 0.8600 0.9400 0.9315 0.9669 0.9403
600 0.9777 0.8526 0.9497 0.9353 0.9742 0.9539
700 0.9819 0.8433 0.9535 0.9420 0.9773 0.9609
800 0.9849 0.8393 0.9567 0.9456 0.9801 0.9660
900 0.9865 0.8316 0.9635 0.9470 0.9817 0.9713

1,000 0.9876 0.8276 0.9652 0.9510 0.9831 0.9759

with label quality control. The CEAL method is limited by the large number of false
pseudolabels and therefore performs poorly, which also illustrates the importance of label

quality control in active learning.

Compare with fully quality control

We then compare our proposed method with active learning methods that use a simple

label quality control method for label quality control. The simple label quality control
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Figure 4 Experimental results of active learning methods with the simple label quality control
method on the MNIST dataset. Full-size K&l DOT: 10.7717/peerj-cs.1480/fig-4

Table 2 Test set accuracy of active learning methods with the simple label quality control method on

the MNIST dataset.

Label cost ALQC CEAL Core Rand Var Unc
100 0.7967 0.7076 0.7090 0.7073 0.7135 0.7071
200 0.9107 0.7947 0.8043 0.8325 0.8335 0.8177
300 0.9447 0.8061 0.8595 0.8806 0.9012 0.8621
400 0.9623 0.7683 0.8921 0.9017 0.9213 0.8826
500 0.9732 0.7310 0.9045 0.9145 0.9445 0.9110
600 0.9777 0.7211 0.9237 0.9261 0.9575 0.9231
700 0.9819 0.7173 0.9331 0.9345 0.9649 0.9385
800 0.9849 0.7100 0.9447 0.9397 0.9690 0.9479
900 0.9865 0.7031 0.9482 0.9425 0.9728 0.9520

1,000 0.9876 0.6985 0.9531 0.9476 0.9754 0.9607

method requests multiple labels for each sample until a category appears twice in the label
results. Then we select that category as the final label result. If the method does not stop
after five times of labeling, one of the five labeling results is randomly selected as the final
labeling result. All samples are first run through this simple method to control the labeling
quality and then used for active learning, so the average number of annotations required to
obtain a labeled sample is 2.1. The accuracy of the labeling results obtained from this
process is greater than 99.9%. The results in Fig. 4 and Table 2 show that our proposed

Wang et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1480 12/24


http://dx.doi.org/10.7717/peerj-cs.1480/fig-4
http://dx.doi.org/10.7717/peerj-cs.1480
https://peerj.com/computer-science/

PeerJ Computer Science

n
[o)
o
> o — ALQC
g8 o - ---- Unc
3 ° 10%CL+90%Unc
b 20%CL+80%Unc
3 50%CL+50%Unc
'_
n
o
pa;
o
o0
o
T T T T T
200 400 600 800 1000

Label Cost

Figure 5 Experimental results of the uncertainty method combined with the confident learning
method on the MNIST dataset. Full-size 4] DOT: 10.7717/peerj-cs.1480/fig-5

method also outperforms other methods. The ALQC method uses fewer labeling resources
than other methods to achieve the same test set accuracy, thus reducing labeling costs. The
excellent performance of the ALQC method shows that forcing all samples to be labeled
with high quality does not achieve the best performance either. Therefore, it is necessary to
properly allocate labeling resources between active learning and label quality control.

Compare with fixed ratio quality control

Finally, we compare the proposed method with methods that allocate labeling resources to
active learning and label quality control in a fixed ratio. In each iteration, we allocate 10%,
20%, and 50% of the labeling resources to the confident learning method to improve label
quality, and the remaining labeling resources to the uncertain method to select samples
worth labeling. The experimental results in Fig. 5 and Table 3 show that our proposed
method still outperforms the other methods. This shows that simply allocating a fixed ratio
of labeling resources to improve labeling quality does not achieve the best performance,
and highlights the importance of adaptively allocating labeling resources. Our proposed
ALQC method is based on the same sample selection metric, and thus can adaptively
allocate labeling resources to achieve the best performance. As can be seen in Fig. 6, the
ALQC method allocates almost 0% of the labeling resources to inspect the quality of
existing labels at the beginning, and adaptively increases the allocation percentage to about
15% as the labeling sample size increases, demonstrating a good adaptive labeling resource
allocation capability.
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Table 3 Test set accuracy of the uncertainty method combined with the confident learning method

on the MNIST dataset.

Label cost ALQC  Unc 10% CL + 90% Unc  20% CL + 80% Unc  50% CL + 50% Unc
100 0.7967 0.7833 0.8008 0.7916 0.8030
200 0.9107 0.8472 0.8667 0.8569 0.8700
300 0.9447  0.9021  0.9100 0.9099 0.9049
400 0.9623 0.9212 0.9258 0.9282 0.9314
500 0.9732 0.9403 0.9431 0.9432 0.9427
600 0.9777 0.9539 0.9535 0.9507 0.9476
700 0.9819  0.9609  0.9638 0.9619 0.9552
800 0.9849 0.9660 0.9681 0.9684 0.9606
900 0.9865 0.9713 0.9734 0.9716 0.9665

1,000 0.9876  0.9759  0.9767 0.9732 0.9692
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Figure 6 The ratio of labeling resources allocated to label quality control by the ALQC method on
Full-size K&l DOT: 10.7717/peerj-cs.1480/fig-6

the MNIST dataset.

The above experiments show that adaptive allocation of labeling resources can achieve

better performance compared to no quality control, full quality control, and fixed ratio

quality control. By allocating the labeling resources to the highest value samples to be

labeled and samples to be inspected, our proposed ALQC method improves the utilization

of labeling resources and thus achieves the best performance.
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Figure 7 Experimental results without label noise on the MNIST dataset.
Full-size 4] DOT: 10.7717/peerj-cs.1480/fig-7

Experiments of active learning

Assuming that the labeling is absolutely correct, we compare the proposed method with
various active learning methods on the MNIST dataset and the CIFAR-10 dataset to
observe its active learning performance, and experimentally observe the redundancy
resistance of our proposed method.

First, we experiment with the MNIST dataset. The experimental settings are the same as
in the “Experimental Settings” section. Instead of simulating the noisy noise, we use the
labels provided by the dataset directly. We add comparisons with the recent active learning
methods: “LLAL” is the learning loss method, “VVAL” is the variational adversarial active
learning method, and “BBALD” is the BatchBALD method. We use the code provided by
the authors of the relevant articles for our experiments and try to make the training
settings as similar as possible. The network structure, the data augmentation methods, the
way and number of initial sample sets are selected, the number of labeled samples per
iteration, and the forbidding of additional labeled validation sets are all consistent with our
experimental settings. The experimental results are shown in Fig. 7 and Table 4. It can be
seen that our proposed ALQC method outperforms other methods on the active learning
task without noise labeling.

We also compare the performance of the ALQC method using the L; distance metric
and the L, distance metric. The experimental results in Fig. 8 show that the ALQC method
is robust to the choice of distance metric. The ALQC method relies only on the support of
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Table 4 Test set accuracy of active learning methods without label noise on the MNIST dataset.

Label cost ALQC CEAL Core Rand Var Unc LLAL VAAL BBALD
100 0.8392 0.8256 0.8278 0.8313 0.8347 0.8287 0.8694 0.8296  0.8309
200 0.9351 0.8765 0.9013 0.9020 0.9181 0.8934 0.9288 0.8904 0.8863
300 0.9614 0.8805 0.9319 0.9265 0.9536 0.9279 0.9522 09173 0.9261
400 09728 0.8784 0.9460 0.9394 0.9665 09427 0.9618 09311 0.9454
500 0.9803  0.8840 0.9589 0.9465 0.9739 09564 0.9665 0.9380  0.9557
600 0.9840 0.8861 0.9661 0.9514 0.9800 0.9639 0.9721 0.9440 0.9645
700 0.9857 0.8866 0.9692 0.9560 0.9819 0.9722 0.9755 0.9475 0.9723
800 0.9876 0.8865 0.9722 0.9595 0.9845 0.9780 0.9783 0.9495 0.9738
900 0.9890 0.8872 0.9745 0.9618 0.9856 0.9805 0.9788 0.9525 0.9777
1,000 0.9899 0.8877 0.9760 0.9635 0.9863 0.9836 0.9810 0.9556 0.9810
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Figure 8 Experimental results of the ALQC method using L, and L, distance metrics in the MNIST
Full-size K&l DOT: 10.7717/peerj-cs.1480/fig-8

dataset.

the distance metric for the triangular inequality and does not require a specially designed

distance metric.

Then we conduct the experiments on the CIFAR-10 dataset. Most of the experimental

settings are the same as in Section “Experimental Settings”, with the following main
differences. We switch to use the ResNet-18 (He et al., 2016) network. We also use the SGD
optimizer and update the batch size to 128, then train 200 epochs. The learning rate is

adjusted to 0.2 times the previous one after 60, 120, and 160 epochs. We use RandomCrop,
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Figure 9 Experimental results without label noise on the CIFAR-10 dataset.
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Table 5 Test set accuracy of active learning methods without label noise on the CIFAR-10 dataset.

Label cost ALQC CEAL Core Rand Var Unc LLAL VAAL
1,000 0.5444 0.5289 0.5214 0.5250 0.5307 0.5261 52.3380 54.1160
2,000 0.6975 0.6528 0.6452 0.6440 0.6532 0.6553 66.6740 66.8880
3,000 0.7756 0.7133 0.7213 0.7106 0.7330 0.7132 76.2580 72.8600
4,000 0.8300 0.7765 0.7684 0.7521 0.7858 0.7738 82.1780 75.5400
5,000 0.8610 0.8176 0.8078 0.7829 0.8270 0.8163 84.9720 78.7960
6,000 0.8854 0.8463 0.8403 0.8123 0.8525 0.8403 87.4140 80.3160
7,000 0.9070 0.8744 0.8585 0.8332 0.8664 0.8582 88.5320 81.3820
8,000 0.9178 0.8910 0.8750 0.8425 0.8785 0.8752 89.9800 82.5960
9,000 0.9295 0.9013 0.8838 0.8566 0.8954 0.8860 90.3420 83.0160

10,000 0.9348 0.9136 0.8907 0.8662 0.9017 0.8960 90.8620 83.5040

RandomHorizontalFlip, and Cutout (DeVries ¢ Taylor, 2017) methods for data

augmentation. We randomly select 1,000 samples from the training set in the CIFAR-10

dataset as the initial set of labeled samples, and for each iteration, we label or inspect 1,000

samples until we have consumed 10,000 labeling resources. The experimental results are

shown in Fig. 9 and Table 5. It can be seen that our proposed method also outperforms the

other methods.
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Figure 10 Experimental results on the CIFAR-10 dataset when using pseudolabeling.
Full-size k&) DOT: 10.7717/peerj-cs.1480/fig-10

Although our proposed method uses pseudolabels to calculate the observation distance,
the performance improvement does not come from the use of pseudolabels. In the above
experiments, our proposed method outperforms the CEAL method that also uses
pseudolabels. This is because our proposed method keeps improving the labeling quality of
the training set, but the CEAL method accumulates more and more incorrect pseudolabels,
which limits its performance. We also add pseudolabels to the random and uncertain
methods and compare them with our method. The experimental results are shown in
Fig. 10. It can be seen that our proposed method still outperforms the other methods when
using pseudolabels. Thus, the performance improvement mainly stems from the good
redundancy resistance rather than simply using pseudolabels.

Since our proposed method has excellent redundancy resistance, it reduces the labeling
resources wasted on labeling multiple redundant samples and thus achieves better active
learning performance. To further verify the redundancy resistance of our proposed
method, we simulate the presence of redundant samples in the dataset. We randomly select
20% of the samples in the training set of the MNIST dataset to replicate, add random noise
from a normal distribution N (0, 0.01) to the replicated samples, and then add them to the
original dataset. Training starts with 100 randomly selected labeled samples and labels 100
new samples at each iteration until a total of 1,000 labeled samples are obtained. We test
the redundant sample rate of the selected sample set under different numbers of folds k
and compare it with its 95% confidence interval. As shown in Fig. 11, with the increase of
the number of folds, the redundancy rate of the selected sample set becomes lower. This is

Wang et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1480 18/24


http://dx.doi.org/10.7717/peerj-cs.1480/fig-10
http://dx.doi.org/10.7717/peerj-cs.1480
https://peerj.com/computer-science/

PeerJ Computer Science

® 7 95% Lower Bound
—— 95% Upper Bound
- Experimental Results
~ -
[}
[®))
©
c ©
[0}
o
e
& w0 -
j
(]
o
o
p=}
3
x Y
o -
~ 4

T T T T T
2 4 6 8 10

Folds

Figure 11 Experimental results for the redundant dataset.
Full-size K&l DOT: 10.7717/peerj-cs.1480/fig-11

consistent with the conclusion in Theorem 1 that our method has good anti-redundancy
performance.

The above experiments show that our proposed method has excellent active learning
performance due to good redundancy resistance, and thus can achieve excellent
performance in active learning tasks under noise labeling.

Experiments of label quality control

We randomly select 1,000 samples from the training set in the MNIST dataset and label
them with 95% accuracy. We then use our proposed method to inspect samples that may
be mislabeled to improve the quality of the labels. We inspect 100 existing labels per
iteration until 1,000 inspections are performed. We compare it with the simple label
quality method and the confidence learning method mentioned in the “Related Work”
section. The result is shown in Fig. 12. It can be seen that our proposed method can select
samples that may be mislabeled more effectively than the simple method and achieve
similar performance as the confidence learning method.

The experimental results in this section show that our proposed method can allocate
labeling resources to the most valuable tasks and has good active learning capability with
labeling quality capability, thus achieving leading performance in active learning tasks
under noisy labeling.
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Figure 12 Experimental results of label quality control. Full-size Kl DOT: 10.7717/peerj-cs.1480/fig-12
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Figure 14 Experimental results on the AOI dataset. Full-size K&l DOI: 10.7717/peerj-cs.1480/fig-14

PRACTICAL APPLICATION

We introduce the proposed method into the Automated Optical Inspection (AOI) system,
which solves the high labeling cost problem caused by extreme redundancy and data
imbalance in the AOI system.

Problem description

AQI is an optical-based detection system that uses images captured by a camera to detect
defects in printed circuit boards (PCB). The AOI system is constantly receiving so many
new unlabeled samples that there are not enough resources to label all of them. Therefore,
it is necessary to use the active learning method to select samples worthy of being labeled.

The redundancy of the AOI dataset is extremely serious. There are multiple similar

defect samples in the dataset. Theorem 1 shows that our proposed method can resist the
interference of redundant samples, so we apply it to the AOI system.

Method adaptation

Since too many redundant samples waste computational resources, we modify the original
method workflow. Samples with a small observation distance mean that the current model
can accurately classify them, so they are more likely to be redundant samples. After
computing the observation distances, we permanently remove samples with sufficiently
small observation distances from the unlabeled dataset, thereby speeding up the method.
The adapted workflow is shown in Fig. 13.
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Table 6 Test set accuracy of each methods on the AOI dataset.

Label cost ALQC CEAL Core Rand Var Unc
100 59.8050 59.4920 59.4920 59.4920 59.4920 59.4920
200 65.5930 63.9100 64.9340 61.6800 63.8380 63.9460
300 70.3480 68.9960 68.5180 63.3980 69.6720 68.9600
400 72.7530 71.0780 70.4580 66.0700 72.6890 70.3460
500 74.1310 72.9780 72.6140 68.3380 73.4720 72.1740
600 75.0650 73.6000 75.0620 69.0680 74.0220 74.0380
700 76.0620 75.0280 75.2460 69.6140 75.8300 75.3200
800 76.3540 75.8660 76.1600 70.4940 75.8320 75.2440
900 76.8320 75.5380 76.4180 70.0900 77.0380 76.1600

1,000 76.7060 76.3060 76.3040 69.8700 76.1220 75.4660

Results and analysis

There are a total of 3,100 samples in the AOI dataset, and all experiments start with 100
randomly selected labeled samples. In each iteration, 100 unlabeled samples are labeled,
and 100 samples are removed from the unlabeled dataset. The experimental results are
shown in Fig. 14 and Table 6. It can be seen that the proposed method outperforms other
methods in this real application. In addition, the performance of the ALQC method
steadily improves as the label cost increases, and its robust performance is more suitable
for the needs of practical industrial applications.

CONCLUSION

In this work, we propose a new active learning method. By using the same sample selection
metric as label quality control, we adaptively allocate labeling resources to active learning
and to label quality control, thus improving the utilization of labeling resources. We design
a practical algorithm for this method and prove that the algorithm only labels multiple
duplicate samples with low probability, thus reducing the waste of labeling resources. The
algorithm achieves the best results on both the benchmark datasets and the industrial
application dataset. In the future, we plan to apply it to more practical problems.
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