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ABSTRACT
Pre-trained language models such as Bidirectional Encoder Representations from
Transformers (BERT) have been applied to a wide range of natural language processing
(NLP) tasks and obtained significantly positive results. A growing body of research has
investigated the reason why BERT is so efficient and what language knowledge BERT
is able to learn. However, most of these works focused almost exclusively on English.
Few studies have explored the language information, particularly syntactic information,
that BERT has learned in Chinese, which is written as sequences of characters. In this
study, we adopted some probing methods for identifying syntactic knowledge stored in
the attention heads and hidden states of Chinese BERT. The results suggest that some
individual heads and combination of heads do well in encoding corresponding and
overall syntactic relations, respectively. The hidden representation of each layer also
contained syntactic information to different degrees. We also analyzed the fine-tuned
models of Chinese BERT for different tasks, covering all levels. Our results suggest
that these fine-turned models reflect changes in conserving language structure. These
findings help explain why Chinese BERT can show such large improvements across
many language-processing tasks.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning
Keywords Chinese, BERT, Syntax, Fine-tune, NLP

INTRODUCTION
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019), a
type of pre-trained languagemodel, has been widely used in the natural language processing
(NLP) community (Peng, Yan & Lu, 2019; Choi et al., 2020). BERT has greatly improved
the effects of many NLP tasks (Wang et al., 2018). Therefore, researchers have started to
explore the cause of BERT’s excellent performance (Rogers, Kovaleva & Rumshisky, 2020)
and what knowledge BERT learned from the corpus during pre-training (Wu et al., 2020;
Tenney, Das & Pavlick, 2019). In other words, there has been a focus on the interpretability
of the model (Ranaldi, Fallucchi & Zanzotto, 2022). Most of the work in this area has
centered on the knowledge, such as lexicon (Ravichander et al., 2020), syntax (Htut et al.,
2019; Clark et al., 2019), and reasoning competence (Aken et al., 2019) learned by English
BERT.

Unlike English, Chinese sentences involve a sequence of characters without explicit word
boundaries (Wang, Cui & Zhang, 2020). Relatively little research has been conducted on the
interpretability of Chinese BERT (Wang, Cui & Zhang, 2020; Koto, Lau & Baldwin, 2021;
Xiang et al., 2021). Chinese BERT stores the information about the relationships between
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characters, and previous works have studied the word structure captured by Chinese BERT
(Wang, Cui & Zhang, 2020). However, no research has ever explored whether Chinese
BERT has determined the relationship between words composed of characters, as well as
the syntactic information by which words can be organized into sentences. The research
on the syntactic knowledge encoded in Chinese BERT can not only reveal the reasons why
the model has achieved superb performance in many NLP tasks, but also guide the design
of a more targeted model. Therefore, this work aimed to explore the syntactic ability of
this model, Chinese BERT.

We designed a series of probing experiments, shown in Fig. 1. Our probs can be classified
into two parts: for original BERT and for fine-tuned BERT. For probing the original Chinese
BERT, each attention head of Chinese BERT was firstly detected. When a sentence was
input, the attention information between words was represented by each head of each
layer, which is the attention matrix of the sentence. We tested whether a specific head
existed so that a certain type of dependency relationship could be better determined and
exceed the baseline. We then explored whether the attention head was sensitive to the
relative position in syntactic relations. According to the particular linguistic phenomena in
Chinese, we investigated Chinese BERT’s ability in some typical sentence structures, such
as ‘‘bèi’’ construction, ‘‘bǎ’’ construction, and sentences using particles ‘‘zhe’’, ‘‘le’’, and
‘‘guò’’ to express aspects. Next, we combined all heads in the model to detect the prediction
performance on the entire syntactic relationship. Additionally, we studied the syntactic
knowledge learned by the hidden state of each layer. Following Conneau et al. (2018), we
designed three syntactic tasks in the Chinese version and developed the corresponding
datasets, namely tree depth, bigram shift, and dependency relation. By adding a simple
classifier on the hidden state, we explored whether syntactic knowledge was learned by
hidden representations, according to the results of the classifier on the three syntactic tasks.
For probing fine-tuned Chinese BERTs, we fine-tuned Chinese BERT to downstream tasks
at different levels. By comparing our results with the original Chinese BERT, we explored
whether there were changes in the syntactic knowledge stored in the fine-tuned models.

Our experiments showed that no individual attention head could effectively learn the
overall syntactic relationship, but some heads did capture the corresponding relationships.
By combining attention heads, BERT could parse a sentence well, meaning that BERT’s
attention heads encoded a large amount of syntactic knowledge. In addition, some attention
heads were able to learn certain linguistic phenomena in Chinese. Through probing relative
positions, we found that the performance of heads became worse as the distance between
the dependent word and head word increased. As for hidden states, syntactic information
was embedded in each layer to various degrees. When fine-tuning into downstream tasks,
we observed the changes in conserving syntactic knowledge. Part-of-speech (POS) tagging
strengthened syntactic information in Chinese BERT to some extent, while natural language
inference (NLI) enabled Chinese BERT to forget plenty of knowledge in the language’s
structure.

To our best knowledge, we are the first to investigate syntactic knowledge in
Chinese BERT from different perspectives, including attention heads, hidden states,
and downstream tasks. In addition, although our research took the most representative
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Figure 1 Illustration of syntactic probes.
Full-size DOI: 10.7717/peerjcs.1478/fig-1

Chinese language model, Chinese BERT, as research object, our approaches and thoughts
could be generalized to study other Chinese language models.

Our contribution can be summarized as the following:
(1) By referring previous work, we made out a series of comprehensive probes on

attention heads about Chinese syntactic knowledge. Then we provided detailed analysis of
these probing results.

(2) We modified the previous probing measure, which could be more applicable to
Chinese with a character-based sequence.

(3)We evaluated linguistic phenomena learned by attention heads, and tested the impact
of relative position on capturing syntactic knowledge.

(4) We released the Chinese datasets about three syntactic tasks: Bigram Shift (BShift),
Tree Depth (TreeDepth), and Dependency Relation (DepRel).

RELATED WORK
Researchers have proposed many methods to investigate the syntactic knowledge that
English BERT has learned. Clark et al. (2019) probed each attention head for various
syntactic relationships by calculating accuracy in terms of the attention weights of themost-
attended-to other word of each input word, and then they combined all attention heads to
measure the overall dependency parsing ability.Hewitt & Manning (2019) used a structural
probe to investigate whether syntax trees were embedded into a word representation
space of the neural network by way of linear transformation. They concluded that the
syntactic trees could be relatively recovered. In addition to exploring attention heads,
some researchers have studied syntactic knowledge stored in hidden states. Tenney et al.,
(2019) designed a classifier on the span representations to probe syntactic knowledge in
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BERT. They concluded that BERT encodes syntax more than semantics. Goldberg (2019)
fed complete sentences into BERT while masking out the single focus verb and then asked
BERT for word predictions of the masked position. It was determined that BERT learns
significant knowledge of syntax, particularly subject-verb agreement. Dai, Kamps & Sharoff
(2022) used some syntactic probing tasks to analyze the performance of BERT’s syntactic
dependencies and demonstrated that BERT ‘‘knows’’ about these knowledge. In addition,
they also found that BERT’s ability to recognize syntactic dependencies often decreases
after fine-tuning for NMT tasks. Besides, Ranaldi & Pucci (20230) found that syntactic
knowledge could be acted as a point to test the connection between the empirism in real
world and the knowledge derived from BERT. Based on the probing works in English,
Ningyu et al. (2022) evaluated the cross-lingual syntactic relations inmBERT. They overlaid
a linear classifier to decode the syntactic relation between head word and dependent word
of each language.Then visualized the output representations of each classifier to analyze
and summarize relations among languages. The above research was an insightful reference
for our study.

Another line of work has studied the linguistic knowledge that Chinese BERT has
encoded.Wang, Cui & Zhang (2020) investigatedword features in Chinese BERT according
to attention weight and some probing tasks, including Chinese Word Segmentation
(CWS) and various-level downstream tasks in NLP. They found that some attention
heads can implicitly capture word structure, and different Chinese tasks rely on word
information to different degrees. Koto, Lau & Baldwin (2021) introduced seven discourse-
related probing tasks to explore the discourse structure that Chinese BERT has learned.
By adding an MLP layer on top of the model, they tested the accuracy of the classifier on
predicting the competence of Chinese BERT comprehending discourse structure. Xiang
et al. (2021) constructed the corpus of Chinese linguistic minimal pairs (CLiMP) to study
the knowledge that Chinese language models have acquired, including 16 grammatical
contrasts in Mandarin, covering nine major Mandarin linguistic phenomena. However,
their work did not explore what syntactic relationship Chinese language models have
learned. They still determined the competence of models’ language understanding in terms
of the accuracy of the classifier on representation. Based on those works, we explored the
syntactic knowledge of Chinese BERT across various aspects, including attention heads,
hidden-state representation, and downstream tasks. The experimental results also showed
Chinese BERT’s abilities more thoroughly.

BACKGROUND: CHINESE BERT
We chose Chinese BERT, a very representative transformer-based model (Vaswani et
al., 2017), as the target for analysis. Chinese BERT (Devlin et al., 2019) is pre-trained on
Chinese simplified and traditional text from a ChineseWikipedia dump of about 0.4 billion
tokens.

In this work, we used the PyTorch implementation of Chinese BERT. All our experiments
were based on the BERT-based-Chinese model. This model contained 12 layers, and each
layer had 12 attention heads (110M parameters). Given a Chinese sentence s= c1, c2, . . . , cn,
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ci delegated a token in the sentence. An attention head took as input vectors a sequence of
e = [e1, e2, . . . , en], which corresponded to n tokens. For each token vector ei, an attention
head transformed it into query (qi), key (ki), and value (vi) vectors. An output vector (hi)
could be obtained via a weighted sum of value vectors based on attention distribution (α),
a kind of weight matrix between all pairs of tokens. Attention distribution can be calculated
using the dot product with a softmax function between the query and key vectors.

αij =
exp(qTi kj)∑n
l=1exp(q

T
i kl)

hi=
n∑

j=1

αijvj .

The output vector hi represents the hidden state of a head about token ci. The hidden
states of all heads from the same layer can be concatenated to obtain a hidden representation
ĥiabout token ci.

ĥi= [h1i ,h
2
i ,...,h

n
i ]

where hji represents the hidden state of j-th head ot token i.
When preprocessing the input text, the special tokens [CLS] and [SEP] were added to

the beginning and end of each sentence, respectively. Chinese BERT is pretrained on two
tasks: masked language modeling (MLM) and next sentence prediction (NSP). The MLM
task predicts the words masked randomly in the input, while NSP determines whether a
sentence is subsequent to another in the original document.

PROBING TASKS
It has been reported that BERT can implicitly encode linguistic knowledge (Jawahar, Sagot
& Seddah, 2019). To identify what knowledge Chinese BERT has learned, some experiments
have been designed to probe it. In this work, we first adopted two Chinese Dependency
Treebanks as golden datasets for experiments and evaluation. Then we designed two types
of probing tasks: attention-based tasks and hidden-state-based tasks. Attention-based tasks
include probing individual attention heads, relative positions, and linguistic phenomena
in Chinese which the attention head has learned. Hidden-state-based tasks evaluate the
syntactic competence stored in the hidden state according to three syntactic tasks.

Datasets
Different treebanks exist, with divergence in their annotation guidelines and corpus sources.
We chose two representative Chinese dependency treebanks for our experiments: the
Chinese Universal Dependencies treebank 2.11(UD 2.11) (https://universaldependencies.
org/) and Chinese Dependency Treebank 1.0 (CDT 1.0) (https://catalog.ldc.upenn.edu/
LDC2012T05).

Universal Dependency is an open community covering nearly 200 treebanks in over
100 languages. We selected all Chinese treebanks from Universal Dependencies 2.11.
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The Chinese Universal Dependencies treebanks contain 8,460 sentences (161,856 words).
The annotation guidelines can be found in Marneffe et al. (2021). Chinese Dependency
Treebank 1.0 was released by the Harbin Institute of Technology Research Center for Social
Computing and Information Retrieval (HIT-SCIR). From the People’s Daily newswire
stories published between 1992 and 1996, 49,996 Chinese sentences (902,191 words) were
randomly selected. For more details about the annotation guidelines, please refer to Che,
Li & Liu (2012). We shuffled the data for subsequent experiments.

Probing individual attention heads
Setup
In this subsection, we probed which individual heads could best learn dependency relations.
When we input a sentence into Chinese BERT, we obtained the attention matrix about
characters in this sentence for each head. Considering that no explicit word boundary exists
in Chinese sentences, we used the word segment of datasets in ‘Datasets’ as the standard.
Then, we summed the columns and averaged the rows corresponding to the constituent
characters of the standard words:

αwp→wq =
1
|wp|

∑
ci∈wp

∑
cj∈wq

αci→cj

where,wp andwq are the words in the input sentence. ci and cj are the constituent characters
in words wp and wq, respectively. α ∈(0, 1) n×n is the attention weight of a certain head
regarding the input sentence. | wp| is the number of characters in wp.

Figure 2 shows that an example sentence parsed by dependency relations and expressed
by attention weights from head 6-6. If an attention head learned a certain dependency
relation well, this head had a higher probability of allocating the maximum weight to the
head word in each row of the attention matrix. During the evaluation, we ignored the
direction between the dependent word and head word, and tested the performance of each
attention head on each dependency relation and overall relations. We used the undirected
unlabeled attachment score (UUAS) as our evaluation:

UUAS=
correct ki
|reli|

where, |rel i| is the number of dependency relation i in the datasets, and correctki is the
number of correct predictions of relation i for a given head k.

Baselines
We adopted positional offset and Random BERT as baselines. For the positional offset
baseline, we determined the most common position where the head word could occur for
each attention word. For the Random BERT baseline, we used a BERT-base model with
randomly initialized weights.

Results
Tables 1 and 2 show the results of our probing method and baselines on UD2.11 and
CDT1.0, respectively. The number in the parentheses in the line ‘‘positional offset’’ is the
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Figure 2 An example sentence parsed by dependency relations andmaximum attention weights.
Full-size DOI: 10.7717/peerjcs.1478/fig-2

Table 1 UUAS on UD2.11. The values with the bold style are the maximum values in each column among these methods or models.

Model Total nmod nsubj obj case compound nummod advmod mark

Positional Offset 27.1(1) 40.7(1) 32.2(1) 28.4
(−1)

34.8
(−1)

90.3(1) 91.8(1) 57.6(1) 33.4
(−1)

Random BERT 6.2 7.0 7.9 5.8 8.1 6.7 11.1 8.8 5.8
Chinese BERT 35.1

(5–5)
61.3
(7–11)

44.4
(7–11)

74.6
(7–2)

37.8
(4–10)

90.3
(6–3)

92.3
(7–4)

61.7
(5–5)

51.8
(6-11)

Model advcl conj obl aux ccomp clf amod parataxi xcomp
Positional Offset 12.8(2) 28.0

(−2)
34.8(1) 47.5

(−1)
14.1
(−3)

34.1(1) 43.8(1) 3.4
(−3)

38.3
(−1)

Random BERT 6.4 8.4 7.9 7.1 5.4 9.1 8.7 10.4 6.5
Chinese BERT 31.3

(8–7)
58.2
(8–11)

41.0
(5–9)

74.7
(5–5)

42.7
(5–7)

72.1
(8–8)

68.6
(8–5)

17.0
(11–1)

46.1
(7–2)

offset location with the best performance (e.g., (-1) means the head word was located to the
left of the dependent word). The number in the parentheses in the line ‘‘Chinese BERT’’
denotes the best performance head, i-j denotes the j-th head in the i-th layer. The 17 most
common relations are shown in Table 1 and all relations are shown in Table 2.

From the two tables, we found that Chinese BERT >Positional Offset >Random BERT
in terms of performance. This indicated that the attention heads in Chinese BERT learned
some dependency relations implicitly, while Random BERT captured very little syntactic
knowledge (<10%). Meanwhile, positional offset performed similarly on some dependency
relations, such as ‘‘compound’’ in Table 1 and ‘‘RAD’’ in Table 2. This could be because the
head word appeared fixed in the distance of the dependent word. The attention head could
only learn positional or distance information between the two words to achieve general
performance.

In addition, we also found that some dependency heads did significantly learn some
specific syntactic relations, sometimes achieving high accuracy, such as ‘‘obj’’ and ‘‘aux’’ in
Table 1, and ‘‘VOB’’ and ‘‘POB’’ in Table 2. However, no single heads performed well on
the total relations. The best single heads only obtained 35.1 UUAS on the two datasets. This
finding is similar to the work of Clark et al. (2019) on English treebanks. We also found
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Table 2 UUAS on CDT1.0. The values with the bold style are the maximum values in each column
among these methods or models.

Model Total ATT ADV VOB SBV COO RAD

positional offset 27.9(1) 61.6(1) 48.5(1) 28.1
(−1)

44.0(1) 18.7
(−2)

74.7
(−1)

random BERT 6.1 8.2 6.1 6.3 7.3 7.3 8.9
Chinese BERT 35.1

(9-9)
65.2
(9–9)

54.8
(6–6)

65.8
(6–8)

52.6
(9–3)

44.5
(6–1)

74.7
(7–4)

Model POB CMP LAD FOB DBL IOB
positional offset 34.2

(−1)
73.8
(−1)

58.3(1) 48.7(1) 50.0
(−1)

78.2
(−1)

random BERT 9.2 7.6 9.7 7.7 8.2 10.6
Chinese
BERT

77.7
(8-3)

83.5
(7–8)

73.0
(9–6)

68.3
(9–10)

69.5
(8–3)

85.9
(8–3)

that most of the heads with the best performance in the specific dependency relations
were located in the middle layers (layers 5–9). This was due to the fact that Chinese BERT
encodes how to organize words into a sentence mostly in the middle layer, similar to
English BERT (Jawahar, Sagot & Seddah, 2019).

Probing relative position
Setup
According to the previous subsection, we found that positional offset could also achieve
good performance on some dependency relations. Therefore, we investigated whether
the distance between dependent words and head words could affect the performance of
Chinese BERT in capturing syntactic knowledge. UUAS was still used as our evaluation
metric for this experiment.

Baselines
We adopted Random BERT as a baseline. For the full details, please refer to ‘Probing
individual attention heads’.

Results
Figure 3 shows the accuracy of relative positions on UD2.11 and CDT1.0, respectively. We
also found that Chinese BERT apparently exceeds Random BERT in different positional
distributions. In addition, the performance of Chinese BERT decreased as the distance
increased. This indicates that positional information between words is important for
Chinese BERT. The closer the distance between the head word and dependent word, the
better Chinese BERT can capture the dependency relation between the two. Among all
relative positions, Chinese BERT achieves very high performance (>99%) when the head
word and dependent word are next to each other (±1).

Furthermore, in order to analyze the influence of positional distribution on different
dependency relations, we calculated the accuracy of relative positions on the common
relations of the two datasets, shown in Fig. 4. From this figure, we can easily see that
the relation between model performance and dependency distance still exists in most
dependency relations.
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Figure 3 Accuracy of relative positions.
Full-size DOI: 10.7717/peerjcs.1478/fig-3

Figure 4 Accuracy of relative positions on common relations.
Full-size DOI: 10.7717/peerjcs.1478/fig-4

Probing linguistic phenomena in Chinese
Setup
Based on the findings from the previous subsections, we were very interested in exploring
particular linguistic phenomena existing inChinese, as well as determiningwhether Chinese
BERT had captured them. Hence, we designed a test suite for evaluation.

Our test suite covered two sentence constructions unique in Chinese and three auxiliary
words for expressing aspects in Chinese sentences. For sentence construction, we chose bǎ
(把) construction and bèi (被) construction. For auxiliary words, -zhe (着), -le (了), and
-guò (过) were adopted.

The particle bǎ (把) is commonly used in Chinese. It can change the word order from
‘‘subject - verb - object’’ to ‘‘subject - bǎ - object - verb’’ (Ye, Zhan & Zhou, 2007). The
construction is always used to express the result of the action on the object. Different from
English, the bèi (被) construction is used to express passive voice in Chinese. Due to lack of
morphological inflection, the particle bèi as a fixed word is used before an agent to express
passive voice (Wang & Xu, 2015). The basic structure consists of ‘‘object - bèi - subject
- verb - other components’’. The particles -zhe (着), -le (了), and -guò (过) in Chinese
can come after a verb to express aspects in Chinese sentences. The durative aspect can be
reflected by the marker -zhe, which describes an enduring or continuing situation. The
perfective aspect can be expressed by the markers -le and - guò. The perfective particle -le
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expresses a situation in its entirety, an event bounded at the beginning and the end, while
the other perfective particle -guò presents an event that has been experienced at some
indefinite time (Chen & Shirai, 2010). We give some example sentences for illustration:

(1)他把杯子打破了
(He ba cup break le.)
He broke the cup.
(2)杯子被他打破了
(Cup bei he break le.)
The cup was broken by him.
(3)他去北京了
(He go Beijing le.)
He went to Beijing.
(4)他去过北京
(He go guo Beijing.)
He has been to Beijing.
(5)门开着
(Door open zhe.)
The door is open.
In our experiment, we probed the model’s competence at capturing these phenomena

through an attention matrix. Specifically, we measured whether those particles allocated
the maximum attention weight to their dependency heads.

Baselines
We adopted positional offset and Random BERT as baselines. For the full details, please
refer to ‘Probing individual attention heads’.

Results
Our experimental results are displayed in Table 3. The number in the parentheses is the
specific head with the best performance. The performance still illustrates: Chinese BERT
>Positional Offset >Random BERT. Meanwhile, we also saw that the results of Chinese
BERT and Positional Offset were the same on the particles -zhe (着) and -guò (过).
By analyzing the corpus, we found that -zhe and -guò followed the main verb most of
time, indicating that Chinese BERT could only learn some positional information used
in predicting the dependency relations of the two particles. In particular, we discovered
that the two constructions (bèi and bǎ) were learned very well by the heads in the middle
layers (layers 4–6), while the three particles (-zhe, -le, and - guò) were captured best by
the heads in the lower layers (layers 2–4). This indicates that the structure information
about sentences exists in the middle layers. Some lexical or morphological knowledge is
embedded in the lower layers (Jawahar, Sagot & Seddah, 2019).

Probing attention head combinations
Setup
In ‘Probing individual attention heads’ we found that some single attention heads were
good at learning the corresponding dependency relations, but no heads could capture the
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Table 3 Accuracy on Chinese linguistic phenomena. The values with the bold style are the maximum
values in each column among these methods or models.

Datasets Model bǎ(‘‘把把把’’) bèi(‘‘被被被’’) -zhe(‘‘着着着’’) -le(‘‘了了了’’) -guo(‘‘过")

random BERT 11.65 8.06 6.45 7.62 10.00
positional offset 38.83 71.79 100.00 89.24 100.00UD

Chinses BERT 56.31
(6–10)

87.52
(6–11)

100.00
(2–1)

89.97
(4–8)

100.00
(2–1)

random BERT 6.51 7.22 5.05 5.55 4.38
positional offset 31.64 59.18 99.03 90.40 98.21CDT

Chinses BERT 84.66
(4–1)

90.25
(6–11)

99.03
(3–9)

90.65
(4–8)

98.21
(3–9)

whole dependency structures of sentences. Hence, we considered to combine all heads to
perform sentence parsing. We followed the setting from Clark et al. (2019) by training a
classifier combing with all attention heads linearly:

UUAS= softmax(
144∑
k=1

wkα
k
ij)

where softmax is a function for classification, 144 is the number of heads in Chinese BERT,
wk are weights for training, and akij is the attention weight of word i on word j produced by
head k. We refer to this method as ‘‘Attn’’.

Additionally, we also considered the impact of words in carrying out parsing tasks. We
incorporated word embeddings from Song et al. (2018) into the classifier. This method is
called ‘‘Attn + embeddings’’.

Baselines
Similar to Clark et al. (2019), ‘‘Random Initial Attention + embeddings’’, ‘‘Right
Branching’’, and ‘‘Distances + Embeddings’’ were adopted as baselines in this experiment.
‘‘Random Initial Attention + embeddings’’ used a randomized network and incorporated
the pre-trained word embeddings for head and dependent words. Meanwhile, ‘‘Right
Branching’’ predicts that the headwordwas always on the right of the dependent. ‘‘Distances
+ Embeddings’’ is used to replace the attention matrix of Chinese BERT with pre-trained
word and positional embeddings, and randomly initialized other weights.

Results
Results are exhibited in Table 4. We can see that both ‘‘Attn + embeddings’’ and ‘‘Attn’’
achieved better performances than the baselines on the two datasets. The accuracy of ‘‘Attn’’
was higher than 50%, and ‘‘Attn + embeddings’’ obtained nearly 70% accuracy. These
results are similar to the findings in English (Clark et al., 2019; Hewitt & Manning, 2019).
This indicates that the attention heads of Chinese BERT did acquire many organizational
structures in language. ‘‘Attn + embeddings’’ outperformed ‘‘Attn’’(∼15%), which proves
that specific vocabulary contributes to Chinese BERT capturing dependency relations.
Together with the findings from individual attention heads, we believe that Chinese BERT
encodes abundant information in syntax by a way of indirect supervision, even though the
word boundaries do not exist in the Chinese language.
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Table 4 Accuracy on dependency parsing. The values with the bold style are the maximum values in
each column among these methods or models.

Methods UD(%) CDT(%)

Random Init Attn + embeddings 11.47 11.01
Right Branching 29.59 31.37
Distances + embeddings 44.62 45.72
Attn 51.63 54.00
Attn + embeddings 67.68 68.24

Probing hidden state
Setup
Besides probing attention heads, we explored the ability of hidden representation in
capturing syntactic knowledge. Because no suitable datasets for testing Chinese syntax
were available, we designed three Chinese syntactic tasks by imitating the work in English
(Conneau et al., 2018): Bigram Shift (BShift), Tree Depth (TreeDepth), and Dependency
Relation (DepRel).

In the BShift task, we inverted two random adjacent characters and let the model predict
whether the sentence was inverted. In the TreeDepth task, the depth of the dependency tree
of a sentence was predicted. The task DepRel refers to the prediction of the dependency
relation of a phrase consisting of two words.

As shown in Fig. 5, we overlaid a one-layer MLP on the hidden state of each layer to
construct a classifier. After trying different parameter combinations, an optimal set of
parameters were finally determined. We then only trained each classifier one epoch, so
that the classifier was forced to pay attention to information encoded in the hidden state
representation as much as possible (Choenni & Shutova, 2020).

Baselines
We adopted Random BERT as a baseline. For the complete details, please refer to ‘Probing
individual attention heads’.

Results
Table 5 displays the prediction result of each layer. The number in parentheses denotes the
baseline from Random BERT. The bold numbers are the maximum values among all 12
layers in each task. According to the results, the best performances of Chinese BERT were
all achieved in the final layer (layer 12). Chinese BERT still outperformed Random BERT
in most of the layers across the three tasks. Compared to probing in the attention head, the
performance of the hidden state from Random BERT was not very poor. This indicates that
these hidden states contain some information that will contribute to predicting syntactic
knowledge. Interestingly, we found the prediction results from Random BERT were better
than Chinese BERT’s corresponding to lower layers (layers 1–3) in the TreeDepth task. This
could be because a relatively complete structure is needed to be captured in the TreeDepth
task. However, Chinese BERT may not encode structural information well in the lower
layers. Therefore, its performance was outperformed by Random BERT.
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Figure 5 Probing syntactic knowledge in hidden states.
Full-size DOI: 10.7717/peerjcs.1478/fig-5

Table 5 Accuracy on three syntactic tasks. The values with the bold style are the maximum values in
each column among these methods or models.

Layer TreeDepth BShift DepRel

1 42.32(43.44) 87.55(70.45) 84.71(76.76)
2 42.46(43.54) 86.30(71.03) 92.80(90.08)
3 40.99(43.77) 83.65(66.72) 89.26(93.80)
4 50.11(43.84) 91.78(75.59) 92.90(93.05)
5 51.28(45.31) 94.36(69.52) 94.43(94.28)
6 47.76(43.47) 87.50(68.43) 95.85(87.82)
7 44.00(42.85) 93.70(50.00) 95.72(75.44)
8 62.89(42.06) 76.41(57.76) 91.94(78.45)
9 75.13(43.78) 84.46(51.39) 93.73(75.69)
10 77.85(43.43) 80.97(50.93) 94.30(73.76)
11 78.03(43.08) 88.91(54.26) 95.70(73.67)
12 79.82(41.84) 94.88(50.13) 97.87(68.30)

FINE-TUNING ON DOWNSTREAM TASKS
When Chinese BERT is fine-tuned into downstream tasks, does its syntactic knowledge
change? In order to explore this question, we selected tasks with different levels to fine-tune
Chinese BERT. These tasks covered low-level tasks, such as word segment and POS
tagging, and high-level tasks involving semantic comprehension, including NLI and
question matching. We carried out the experiments on the following datasets:
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Figure 6 UUAS for fine-tunedmodels and Chinese BERT.
Full-size DOI: 10.7717/peerjcs.1478/fig-6

Word segment (WS). We adopted CTB8.0 (Xue et al., 2013) as the dataset.
POS tagging. CTB8.0 was used (Xue et al., 2013) as the dataset.
NLI. Original Chinese NLI (OCNLI)(Hu et al., 2020) is a CLUE task used to infer whether
a premise sentence entails, contradicts, or is neutral towards a hypothesis sentence.
Questionmatching (CQ). We used the Large-scale Chinese Question Matching Corpus
(LCQMC) (Liu et al., 2019), which is a large-scale Chinese corpus.

We refer to these fine-tuned models as WS-BERT, POS-BERT, NLI-BERT, and CQ-
BERT. These fine-tuned BERTs will be compared with the original Chinese BERT in the
following experiments.We ran each downstream task three times and stored the model
parameters. And our probing results are the averages of every three experiments.The
findings will be described as follows.

Probing individual attention heads for fine-tuned BERTs
We still adopted positional offset and RandomBERT as baselines. Figure 6 shows the UUAS
of the individual heads on the overall relations for these different BERTs. One can easily
see that the performance of NLI-BERT decreased dramatically (≈27%), suggesting that
inference tasks do not need syntactic knowledge. Additionally, WS-BERT and CQ-BERT
showed small loss consistently, which indicates that the two tasks could also forget some
language structures during training. POS-BERT showed a little improvement compared
to Chinese BERT. This may be because this task needed some relation information from
surrounding words so that the POS of the current word could be identifiedmore accurately.
The accuracy results of the common relations of individual heads on fine-tuned BERTs are
displayed in Fig. 7. Our findings from the overall relation are still roughly suitable to these
frequent dependency relations. However, there exists some different cases. POS-BERT
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Figure 7 UUAS on common relations for fine-tunedmodels and Chinese BERT.
Full-size DOI: 10.7717/peerjcs.1478/fig-7

outperformed Chinese BERT on VOB and SBV. SBV and VOB act as the subject and object
for a verb in a sentence, respectively (Marneffe et al., 2021). These relations could be useful
for POS-BERT to determine the POS of a word. Also, Chinese BERT performed better than
CQ-BERT on nmod, a kind of nominal modifier. This indicates that this relation could
may not be necessary for the CQ task.

Relative position for fine-tuned BERTs
The accuracy of relative positions for fine-tuned models and Chinese BERT is displayed
in Table 6. We found that NLI-BERT only reserves some dependency knowledge in
the relative position following fine-tuning. Compared with Chinese BERT, other BERTs
maintain the performance when the dependent word and head word are next to each other.
While the distance extends to two, these fine-tuned models improved their competence
on capturing dependency relation. However, when the distance becomes longer, they are
mostly exceeded by Chinese BERT. The reason could be that these fine-tuned BERTs pay
more attention to local information between words. Therefore, when the dependent word
and head word are very close, these fine-tuned models can obtain better results.

For exploring the changes of fine-tuned BERTs in frequent relations, we carried out
the corresponding experiments on the two datasets (Figs. 8 and 9). In general, the margin
between WS-BERT and Chinese BERT grew as the relative position became longer. This
demonstrates that WS-BERT’s ability to preserve common syntactic relations decreases
as the distance increases. Additionally, the performance gap between Chinese BERT and
CQ-BERT in most relations remained small, indicating that dependency knowledge is
not forgotten by CQ-BERT. POS-BERT’s performance surpassed Chinese BERT on some
relations, such as nsubj, obj, VOB, SBV, and COO, which suggests that these relations are
important for POS tagging task.

Probing attention head combinations for fine-tuned BERTs
Table 7 shows the results of the dependency parsing accuracy after combining attention
heads. The differences in performance among these BERTs were similar to the results in
the previous subsections. Notably, POS-BERT outperformed Chinese BERT on CDT, but
displayed a loss in performance on UD. We believe that this phenomenon is related to the
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Table 6 Accuracy of relative positions for fine-tunedmodels and Chinese BERT. The values with the
bold style are the maximum values in each column among these methods or models.

UD

Methods ±1 ±2 ±3 ±4 ±5 ±6 ±7

Chinses BERT 99.37 59.68 47.95 40.16 36.49 31.16 29.16
WS-BERT 99.58 61.38 47.32 36.10 34.38 29.63 26.65
POS-BERT 99.60 60.43 49.01 38.91 34.51 29.14 27.10
CQ-BERT 99.20 60.43 47.41 39.21 36.56 26.50 29.48
NLI-BERT 8.67 8.86 8.43 9.42 8.78 8.54 9.31

CDT

Methods ±1 ±2 ±3 ±4 ±5 ±6 ±7

Chinses BERT 99.45 60.05 50.51 45.86 42.62 38.82 35.28
CWS-BERT 99.64 60.05 48.58 42.90 40.29 35.06 31.32
POS-BERT 99.69 62.17 52.10 45.41 42.44 38.28 35.54
CQ-BERT 99.22 61.37 48.54 46.12 42.61 38.82 35.66
NLI-BERT 9.80 8.96 9.08 9.29 9.22 9.36 9.64

Figure 8 Accuracy of relative positions on UD2.11 for fine-tunedmodels and Chinese BERT.
Full-size DOI: 10.7717/peerjcs.1478/fig-8

smaller size of the UD dataset, so that the classifier failed to learn the information encoded
in the fine-tuned BERTs.

Probing hidden state for fine-tuned BERTs
Figure 10 displays the best performance among all 12 layers of each BERT on three syntactic
tasks. NLI-BERT still performed very poor. Chinese BERT still outperformedWS-BERT on
all tasks, which indicates that the syntactic knowledge in hidden states of WS-BERT could
be forgotten to some extent. Very interestingly, both POS-BERT and CQ-BERT showed
improvement on BShift and DepRel. However, only CQ-BERT surpassed Chinese BERT
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Figure 9 Accuracy of relative positions on CDT1.0 for fine-tunedmodels and Chinese BERT.
Full-size DOI: 10.7717/peerjcs.1478/fig-9

Table 7 Accuracy on dependency parsing for fine-tunedmodels and Chinese BERT. The values with
the bold style are the maximum values in each column among these methods or models.

Methods Chinese BERT WS-BERT POS-BERT CQ-BERT NLI-BERT

UD

Attn 51.63 41.14 44.48 43.24 7.02
Attn + embeddings 67.68 51.35 53.98 53.09 10.88

CDT
Attn 54.00 49.93 56.62 53.20 7.07
Attn + embeddings 68.24 64.21 69.59 66.80 10.17

on Tree Depth. The reason could be that POS-BERTmight capture some local information
about the relations between words. Hence, POS-BERT is very suitable to BShift and
DepRel tasks. CQ-BERT can learn the organization structure of the whole sentence better,
Therefore, this model can acquire more obvious progress on the TreeDepth task.

CONCLUSION
We explored the competence of Chinese BERT in encoding syntactic knowledge across two
aspects: attention heads and hidden states.We observed that certain attention heads learned
specific dependency relations and syntactic phenomena. By combining attention heads,
we succeeded in parsing the sentences. Hidden states also reflected some competence
in encoding syntactic knowledge. When Chinese BERT was fine-tuned into different
downstream tasks, we found some changes of different models in preserving language
structure. POS tagging reinforced syntactic information in Chinese BERT to some extent,
while NLI enabled Chinese BERT to lose knowledge in learning sentence structure.

Those findings above can guide the design of model distillation algorithms in term of
those heads encoding syntactic knowledge. Furthermore, we can be aware that whether
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Figure 10 Accuracy on three syntactic tasks for fine-tunedmodels and Chinese BERT.
Full-size DOI: 10.7717/peerjcs.1478/fig-10

syntactic knowledge is of importance when finishing a specific NLP downstream task.
Meanwhile, some specific syntactic information can be introduced more precisely to
improve the task performance according to our findings.
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