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ABSTRACT
The goal of dynamic community discovery is to quickly and accurately mine the
network structure for individuals with similar attributes for classification. Correct
classification can effectively help us screen out more desired results, and it also
reveals the laws of dynamic network changes. We propose a dynamic community
discovery algorithm,NOME, based on node occupancy assignment andmulti-objective
evolutionary clustering. NOME adopts the multi-objective evolutionary algorithm
MOEA/D framework based on decomposition, which can simultaneously decompose
the two objective functions of modularization and normalized mutual information
into multiple single-objective problems. In this algorithm, we use a Physarum-based
network model to initialize populations, and each population represents a group of
community-divided solutions. The evolution of the population uses the crossover and
mutation operations of the genome matrix. To make the population in the evolution
process closer to a better community division result, we develop a new strategy
for node occupancy assignment and cooperate with mutation operators, aiming at
the boundary nodes in the connection between the community and the connection
between communities, by calculating the comparison node. The occupancy rate of the
community with the neighbor node, the node is assigned to the community with the
highest occupancy rate, and the authenticity of the community division is improved.
In addition, to select high-quality final solutions from candidate solutions, we use a
rationalized selection strategy from the external population size to obtain better time
costs through smaller snapshot quality loss. Finally, comparative experimentswith other
representative dynamic community detection algorithms on synthetic and real datasets
show that our proposedmethod has a better balance between snapshot quality and time
cost.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Science, Network
Science and Online Social Networks, Social Computing
Keywords Community discovery, Dynamic networks, Evolutionary clustering, Node occupancy
assignment

How to cite this article Cai L, Zhou J, Wang D. 2023. Improving temporal smoothness and snapshot quality in dynamic network com-
munity discovery using NOME algorithm. PeerJ Comput. Sci. 9:e1477 http://doi.org/10.7717/peerj-cs.1477

https://peerj.com/computer-science
mailto:zjc81@sgmtu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1477
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1477


INTRODUCTION
With the diversified development of social platforms, the sharp increase of various social
software and social media users, thus generating a huge amount of data, wanting to mine
valuable network information from the huge amount of network data, the study of complex
networks becomes increasingly important. Community structure, as one of the important
properties of complex networks, has received the most attention from researchers (Zhou,
Wu & Jin, 2018; Fortunato, 2010; Fortunato & Hric, 2016). Some early researchers treated
real networks as static networks; however, in the real world, the growth of network data
changes dynamically over time, and the number of nodes and edges increases or decreases
accordingly, and thus the structure of the community changes as well. For example, in
the real world, some algorithms have been used to identify people with the same interests
in social networks (Tajeuna, Bouguessa & Wang, 2019), to find the writer’s collaboration
networks of writers formed by works done by academics in collaborating with other authors
(Girvan & Newman, 2002), and to predict protein functions (Lee, Gross & Lee, 2013) and
applied to recommendation systems (Jun et al., 2019). Thus dynamic community discovery
is gradually becoming a major research direction for researchers in many fields (Cai et al.,
2016; Jin et al., 2015; Perc et al., 2017).

Over the last two decades, more and more researchers have started to study dynamic
networks, and there are more and more approaches to solving the problem of community
partitioning in dynamic networks. Besharatnia, Talebpour & Aliakbary (2022) combined
the improved gray wolf optimizer algorithm and the label propagation algorithm for
better performance. This method introduces a certain randomness which can increase the
searchability of the algorithm.However, this can alsomake the algorithmunpredictable and
difficult to analyze theoretically. Jiang & Zhang (2022) proposed a dynamic community
detection algorithm based on assignment and segmentation to reduce error accumulation
in incremental methods and detected the final community structure by merging and
optimizing splitting. This method is limited by the accuracy of community division at
adjacent moments in the process of community discovery.

To improve the accuracy and stability of community discovery, the method based on the
evolutionary clustering algorithm has become one of themainstream algorithms for solving
dynamic network community discovery algorithms. The evolutionary clustering algorithm
was proposed by Chakrabarti, Kumar & Tomkins (2006) for revealing the continuous
change of the network over time, called the concept of temporal smoothness of network
evolution, who considered the evolutionary clustering method influenced by historical
network structure and historical community structure information. Later Folino & Pizzuti
(2014). proposed a community detection method based on evolutionary clustering and
considered the detection of time-smoothed communities as a multi-objective problem.
The basic idea is to ensure that the community quality of the network structure divided
at the current moment is as high as possible at the time of community discovery, while
the network structure divided at two adjacent time nodes does not change excessively.
Their work demonstrated the effectiveness and accuracy of multi-objective optimization
algorithms in solving the problem of community discovery in dynamic networks, and
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as a result, many methods based on multi-objective evolutionary algorithms have been
designed to detect communities in dynamic networks.

In multi-objective optimization-based dynamic network community discovery, most
researchers use modularity (Q) (Newman & Girvan, 2004) based on the quality of network
community segmentation at the current time step and normalized mutual information
(NMI) (Danon et al., 2005) based on two consecutive time steps as two conflicting objective
functions in the algorithm to evaluate the accuracy and reliability of dynamic network
community segmentation. Folino & Pizzuti (2010) proposed a dynamic multi-objective
genetic algorithm (DYN-MOGA) based on non-dominated ranking (Deb et al., 2002)
(NSGA-II) that usesmodularity andNMI as optimization objectives to solve the community
detection problem in dynamic networks. It automatically provides a solution representing
the best trade-off between the obtained clustering accuracy and the deviation from one time
step to successive steps. Niu, Si & Wu (2017) used a label-based dynamic multi-objective
genetic algorithm to detect community structures in dynamic networks with two objectives
maximizing snapshot quality and minimizing time cost. Wang et al. (2019) assessed the
accuracy of community discovery by proposing a population intelligence approach based
on an evolutionary clustering framework and labeling using a discrete particle swarm
algorithm that incorporates label propagation and genetic algorithm improvements,
while also introducing modularity and normalized mutual information. This method
can better identify the quality of the community structure, but the calculation speed
needs to be improved. To reduce the computational complexity of MOEAs, Zhang & Li
(2007) proposed a decomposition framework MOEA/D for multi-objective evolutionary
algorithms, which decomposes the multi-objective optimization problem into multiple
scalar optimization sub-problems and optimizes these sub-problems simultaneously.
Ma et al. (2014) proposed a decomposition-based dynamic social network (DYNDMLS)
using the MOEA/D framework for the first time, and also using modularity, and NMI as
optimization goals for dynamic community discovery. On this basis, Gao et al. (2018a)
and Gao et al. (2018b) proposed a decomposition-based multi-objective discrete particle
swarm optimization algorithm to discover dynamic structures, combining the particle
swarm optimization algorithm with the MOEA/D framework to optimize both modularity
density and NMI. However, it has the disadvantage of undesired premature shrinkage and
grain monotonicity due to highly selective stress. Wang, Song & Sun (2022) proposed a
dynamic community detection algorithm based on amulti-objective selectable path-guided
pity beetle algorithm in order to improve modularity and subsequent NMI at each time
step by combining the MOEA/D framework with an improved identification method for
module density and an individual implementation update strategy for neighborhood vector
competition. It can minimize the impact of community partitioning at the first time step
on subsequent time steps.

The researchers mentioned above have used many evolutionary clustering-based
methods to reveal the community structure in dynamic networks. However, they still
have some shortcomings in the efficiency of the search for the optimal solution. On the
one hand, their operator implements the generation of new candidate solutions but does
not avoid the existence of inter-community connectivity between nodes and their most
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occupied neighboring communities. On the other hand, the selection strategy based on
the optimal solution ignores the better time step partitioned communities by pursuing
only the highest quality communities, which leads to a limited search space for subsequent
time-steps. To address these issues, under the evolutionary community detection method
in dynamic social networks proposed by Liu et al. (2019), we propose a newmulti-objective
evolutionary algorithm, NOME, which is mainly used to better capture the evolutionary
patterns of communities in dynamic networks. The contributions of this article can be
summarized as follows: (i) In order to obtain a better community structure, we propose a
method of boundary node occupancy assignment cooperating with the mutation operator
in the classical genetic algorithm, while employing the genome (Li, Gao & Pu, 2014) to
represent the network and dividing the community towhich the node belongs by calculating
the percentage of the node’s neighbors in the community. (ii) In order to be able to find
a relatively better final solution from the optimal solution, we propose a rationalized
selection scheme based on the final Pareto optimal solution set at the current moment to
obtain a better temporal smoothness by losing a smaller snapshot quality.

The rest of this article proceeds as follows: Section 2 describes the multi-objective
optimization problem, the evaluation function, and the encoding approach for community
discovery in dynamic networks. A description of our proposed method is given in Section
3. Then the results of NOME and other advanced algorithms on different datasets are
compared in Section 4. Finally, Section 5 summarizes the conclusions.

BACKGROUND
Dynamic network problem description
A dynamic network can be defined as a set of multiple static network snapshots
G = {G1,G2,...,GT

}.Gt
= {V t ,E t

}, where V t is the set of nodes of Gt.E t is the set of
edges of Gt, denoting the set of edges at moment t (t∈ [1,T]) consisting of two different
nodes at that moment, and all the nodes and their connected edges form this network
structure.

Dynamic network community discovery problem description
Dynamic network community detection is to find the community structure division of
the network structure at each moment, it involves two main objectives in the process of
finding, one is to ensure the quality of the community division in the current time step, and
the other is to ensure that the community structure changes slowly in the continuous time,
i.e., there is no huge change. Suppose that after dynamic network community detection,
a network snapshot Gt of the community structure division is obtained at moment t,
denoted as C = {C1,C2,...,Ck}, where C t

i denotes the community structure of the i- th
community division, i∈ [1,k]. In general, to better accomplish these two objectives, we
use the Normalized Mutual Information (NMI) function to detect the similarity of two
neighboring temporal community divisions and the modularity function Q to assess the
quality of the current community division.
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Normalized mutual information function (NMI)
NMI (Danon et al., 2005) is used to detect the similarity of community division between
the current time sequence and the previous time sequence, and its formula is shown in Eq.
(1).

NMI
(
C t ,C t−1)

=

−2
∑mt

i=1
∑mt−1

j=1 Lij log
(
LijN
Li.L.j

)
∑mt

i=1Li.log
(

Li.
N t

)
+
∑mt−1

j=1 L.j log
(

L.j
N t−1

) (1)

where C t
= {C t

1,C
t
2,...,C

t
k} C

t−1
= {C t−1

1 ,C t−1
2 ,...,C t−1

k } denotes the community
structure divided at the moment t (t -1) and Lij denotes the number of nodes that are
both in community C t

i and in community C t−1
j . N is the number of nodes corresponding

to C t , mt and mt−1 denote the number of community divisions in C t
i and C t−1

j .Li. and
L.j are the sum of elements in row i and column j of the confusion matrix L, respectively,
NMI (C t ,C t−1)= 1. If NMI (C t ,C t−1)= 1, it means that C t and C t−1 have exactly the
same community division result; conversely, 0 means that these two communities have
completely different division results, so the closer the value of NMI is to 1 the more similar
C t and C t−1 are on the surface.

Modularity function (Q)
The modularity function Q (Newman & Girvan, 2004) was proposed by Newman et al.
to measure the quality of the division of the community structure, and a larger value of
modularity indicates that the result is closer to the real community structure. It is defined
as the expected value of the difference between the ratio of the number of edges inside the
network community to the number of edges in the whole network and the ratio of the
number of arbitrarily connected edges between nodes to the number of edges in the whole
network under the same community structure, and its formula is shown in Eq. (2).

Q=
1
2m

∑n

i=1

∑n

j=1

[
Aij−

kikj
2m

]
δ
(
ci,cj

)
(2)

where m denotes the number of edges, n is the number of network vertices, Aij is the
adjacency matrix that represents the relationship between edges before node i and node j,
ki and kj are the degrees of nodes, and ci is the community label of node i. If δ(ci,cj)= 1,
node i and node j are in the same community, otherwise δ(ci,cj)= 0. The value range of
module degree Q is [−0.5, 1].

Multi-objective optimization
Themulti-objective optimization algorithm can optimize two ormore conflicting objectives
at the same time. We define the multi-objective problem of community partitioning at
time t as{
minF

(
C t )
=
[
f1
(
C t ),f2(C t ),...,fm(C t )]

s.t .C t
∈�

(3)

where fi(C t ) is the i-th (i =1,2, . . . ,m) objective function, m is the number of objective
functions, C t is the community structure at time step t, and� is the feasible domain of the
set of all community structures at time step t.
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Suppose C t
1 and C t

2 are two feasible solutions to this dynamic network optimization
problem. We define the dominance relation of the solution of community partitioning
at time t as Eq. (4), and C t

1 is said to dominate C t
2 when and only if all the conditions of

formula (4) are satisfied.
∀i= 1,2,...,m;
fi
(
C t
1
)
≤ fi

(
C t
2
)
∧∃j ∈ [1,m];

fj
(
C t
1
)
< fj

(
C t
2
) (4)

If a solution is not dominated by any other solution, the solution is called an non-
dominated solution. All non-dominated solutions form a Pareto optimal set (PS), and the
set of PS mapped to the target space is called the Pareto front (PF).

Coding method
In performing the community discovery process, the community of each individual is
divided using coding. The main current encoding methods are the string encoding method
and the bit-adjacent encoding method (Gong et al., 2014). In this article, a combination of
string encoding and genomic matrix encoding is used for each individual.

Genomematrix coding refers to the representation of information about the community
and node-to-node information in the form of a genome. The individuals for which the
community finds a solution to the problem are encoded as n × n matrix genomes of
order n, where n equals the number of nodes |v |. eij is used in this article to represent the
relationship between node vi and node vj , while the value of eij proves whether vi and vj
belong to an edge within a community or between communities. where eij =−1, indicating
that vi and vj are connected to each other; eij = 0, indicating that there is no connection
between the two nodes; and eij = 1, indicating that vi and vj are nodes belonging to the
same community.

Figure 1A shows an original network and the original community, which can be encoded
into the form of a genome matrix using the genome matrix according to the connection
relationship between the network nodes, and then the genes in thematrix were updated after
the reorganization (crossover, mutation, and BNO assignment) operation, and finally, the
structure of the divided community was obtained by decoding. Figure 1B shows the divided
network, and nodes of the same color indicate that they are in the same community. In the
reconstructed matrix how to decode as string encoding method, we divide the sub-matrix
genes into the same community based on the relationship of inner connection in the matrix
until all the inner connection genes that are divided. As the yellow and green areas in the
matrix before decoding are the two largest inner-connected sub-matrices we find, and also
satisfy all inner-connected genes are divided, so the decoding operation is completed by
converting all the divided sub-matrices to string encoding.

Proposed algorithm
This section proposes an improved algorithm NOME to discover dynamic community
structures based on the work on evolutionary community detection in dynamic social
networks proposed by Liu et al. (2019). A decomposition-based MOEA/D algorithm
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Figure 1 Community division of the network.
Full-size DOI: 10.7717/peerjcs.1477/fig-1

framework is used to improve the quality of community detection by migrating nodes with
respect to their occupancy in neighboring communities. In addition, in order to obtain
a better time step for the division of the network structure, NOME uses a rationalized
selection scheme to obtain the final solution based on the final Pareto optimal solution set
at the current moment. Algorithm 1 shows the overall flow of NOME.
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Algorithm 1. NOME
Input:dynamic network G= {G1,G2,...,GT

}, population_size, maxgen
Output:Community structure for each snapshot C t

={C t
1 ,C

t
2 ,...,C

t
k }(t=1,2,...,T )

1 t =1 Single-objective optimization snapshot based on modularity G1 obtained C1

2 for t= 2:T do
3 // Initialization section
4 Initializing non-dominated solutions EP =∅
5 Generate a uniformly distributed weight vector λ={λ1,...,λN }
6 Generate neighbor information based on Euclidean distance B(i)={i1,i2,...,iT }
7 Initializing the population
8 Initialize reference points Z∗= {NMImax,Qmax}

9 for gen= 1: maxgen do
10 // Restructuring component
11 for pop_id=1: pop_size do
12 Select two different individuals from the neighborhood
13 Perform crossover operations
14 if rand(1)<pm then
15 Performing mutation operations
16 else
17 Execute the boundary node occupancy allocation method
18 end
19 Update Neighborhood Information
20 end
21 Find non-dominated solutions to add to the EP and remove all dominated solutions from
the EP
22 Update reference point z
23 end
24 end
25 Optimal solutions are obtained using rationalized selection schemes

Boundary node occupancy assignment
To improve the quality of community checking solutions in dynamic networks, we propose
the community boundary node occupancy (BNO) assignment method, which can better
classify nodes into the correct communities. This operation emphasizes the interconnection
of nodes within and between communities, and the BNO is specifically calculated as

Oi
c =


Bic

Nc−1
,i∈ c;

0,Nc = 1;
Bic
Nc
,others

(5)

where Oi
c means to calculate the occupancy rate of the current i-th node in the neighbor

community c. c represents the c th community in the node i neighbor community. Bic
represents the total number of neighbor nodes of node i in the c th neighbor community,
and Nc represents the total number of nodes in the c th community. If node i∈ c , then the
node itself needs to be subtracted when calculating the total number of nodes in the c-th
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Figure 2 Boundary node occupancy allocation.
Full-size DOI: 10.7717/peerjcs.1477/fig-2

community. If Nc = 1, then the occupancy of node i in the c-th neighboring community is
0. The value range of Oi

c is between [0,1].
Figure 2 illustrates the process of BNO through an example.Where the intra-community

and inter-community connections are represented by solid and dashed lines, respectively,
and nodes of the same color indicate being in the same community. Figure 2A shows the
structure of the divided network community. Node v3 is a boundary node of community
C1. v3′s neighboring nodes are {v1, v2, v4, v5, v6, v7}, where nodes v1 and v2 belong to
community C1, v4 and v5 belong to community C2, and v6 and v7 belong to community
C3, so its neighboring communities are C2 and C3. For a boundary node, we need to
calculate its occupancy in each neighboring community. The calculation by Eq. (5) shows
that since node v3 belongs to community C1, it needs to subtract the node itself when
calculating the total number of community nodes, so its total number of nodes is 3. And
there are two neighbor nodes of v3 in community C1, which are v1 and v2, so the final
calculation gets the occupancy of v3 in community C1 as 2/3. Similarly, the occupancy of
v3 in community C2 is 1 and in community C3 is 1/2. Finally, through the node occupancy
allocation method, node v3 will eventually be assigned to community C2, as in Fig. 2B.

There are three possible cases in the BNO allocation process, and we use different
allocation schemes for different cases. The first one is that the occupancy rate of the
community to which the boundary node belongs is higher than the occupancy rate of
its neighbor community, at which point the node will not be assigned out. The second
case is when there are multiple communities with the same maximum occupancy among
all neighboring communities of the boundary node, we randomly assign the node to
one of them. If one of the communities belongs to the node community, then we will
determine whether the node is assigned to the other maximum occupancy community
by the probability Pm. The third case is when the occupancy rate of the community to
which the boundary node belongs is lower than the occupancy rate of its neighboring
communities, in which case the node will be assigned to the neighboring community with
the highest occupancy rate.
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Initialization rules
Dynamic networks require us to perform initialization operations on the algorithm when
dividing the network at each time step. The specific initialization operations are as follows.

Initialize the weight vector
We use a uniformly distributed weight vector generation method (Ji, Zhang & Zhou, 2020)
where the population size is denoted by N and the N weight vectors can be expressed as
λ1,...,λN . Therefore, the population size and weight vectors can be set by expressing them
as

N =Cm−1
H+m−1 (6)

where N represents the population size and the number of weight vectors, m represents
the number of optimization objectives, and H is the parameter to be set to solve for the
desired number of populations by setting different parameters.

Initialize neighborhood
The T weight vectors closest to each weight vector are found by computing the Euclidean
distance between any two weight vectors. The neighbors of each weight vector obtained
are stored in B (i) for all i =1 to N, B(i)= i1,i2,...,iT .

Initialize population
The Physarum-based network model PNM (Gao et al., 2018b) is used to initialize the
population, PNM is an improvement on the mathematical model named PM (Tero,
Kobayashi & Nakagaki, 2007), whose main improvement is the modification of single-
entry single-exit to single-entry multiple-exit in the selection scheme for choosing whether
the vertices are entrances or exits. The core mechanism of PNM is the feedback relationship
between the cytoplasmic flux and the conductivity of the tube based on Poiseuille’s law. The
method can improve the efficiency of the community detection algorithm by identifying
the inter-community edges from the intra-community edges in the network and further
enhancing the positive feedback of the solving process in the algorithm. Therefore using this
method for initializing populations can give a better structure of the network community
at first.

Initialize reference points
By calculating the fitness value of the initialized population, the maximum value of fitness
of each target is used as the reference point Z∗. In this article, we mainly use two target
module degrees Q and NMI, so Z∗ can be expressed as Z∗= {NMImax,Qmax}.

Reorganization rules
The partitioning of dynamic network communities is solved in the decomposition-based
MOEA/D framework, whose reorganization part uses a genomic matrix-based crossover
and variation strategy combined with our proposed method of BNO assignment to find
community solutions with high quality and high temporal smoothness.
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Crossover
To increase population diversity, we used a genome-based crossover strategy. To generate
an individual, two different individuals from the neighbor population are selected as
parents in a random way, and then different nodes are randomly selected to exchange the
intra- and inter-community properties of the edges of the selected node connecting any
node.

Mutation
To avoid the population from falling into a local optimum, we use a genome-based
mutation strategy. Individuals are selected with a certain probability whether they mutate
or not, and individuals that mutate are selected in a random way to different nodes,
changing the intra- and inter-community properties of the edges of the selected nodes
connecting any node by taking the inverse operation.

Boundary node occupancy allocation
To improve the local search ability of the community and the quality of the network
community division, the nodes that are at the boundary should be attributed to the
community whose neighbors have the highest percentage of the corresponding community,
we propose the method of BNO assignment. Its details are made described in section 3.1.

Update rules
In the dynamic network community partitioning process, we use the relevant update
strategy in the decomposition-based multi-objective optimization algorithm in order to
retain a better community structure. In network snapshots with time steps greater than
2, the Tchebycheff method is used to update the neighbors of each sub-problem as a way
to eliminate the poorer community structure. For the neighbor x j(j ∈ B(i)) of the i-th
sub-problem y

′

i after reorganization, if g
te(y

′

i |λ
j,z)≤ gte(x j |λj,z), then the solution of that

sub-problem will replace its neighbor. Then all solutions of y
′

i are added to the external
population EP, and all dominated solutions are removed. Finally, themaximummodularity
Q and NMI values are found and the reference point Z∗= new {NMImax,Qmax} is updated.

Rationalized selection strategy
The result we obtain in the partitioning process of dynamic network communities based on
multi-objective optimization is a set of Pareto optimal solution sets consisting of multiple
non-dominated solutions. We know that in the process of dynamic network community
discovery, we need to choose a non-dominated solution from the optimal set of solutions at
the current time step as the final pole at the current moment and also as a reference for the
next moment. Most researchers choose the community structure with the highest snapshot
quality, but this can easily lose the community structure with better time cost. Therefore,
in order to accommodate such a situation, we propose to lose less snapshot quality in
exchange for a better time cost. First we find the solution with the highest snapshot quality,
then we use that solution as a reference to find other solutions in the range of 0.01 from
it, and finally we select the solution with the best time cost from all the solutions in that
range as the final solution.
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Table 1 The parameter setting for NOME in experiments.

Parameter Value

Maxgen 100
pop 100
num_neighbor 10
p_mutation 0.2
num_repeat 5

EXPERIMENT
In this section, we conduct extensive experiments on synthetic and real datasets and analyze
the results to evaluate our proposed algorithm. At the same time, we also compared the
algorithm with classical algorithms in dynamic community discovery and advanced
algorithms in recent years, including DYNMOGA, FacetNet (Lin et al., 2009), ECD, DECS
(Liu et al., 2020), and ePMCL (Wang et al., 2022). The experimental results show that
our proposed algorithm outperforms the comparison algorithm overall on the dynamic
community discovery problem.

This experiment is running on Windows 10 Professional OS, 11th Gen Intel(R)
Core(TM) i7-11700 @ 2.50 GHz and 16.0 GB RAM. The specific parameter settings
of the algorithm are shown in Table 1: Maxgn is the maximum number of iterations,
pop is the population size, num_neighbor is the number of neighbors, p_mutation is the
mutation operator, and num_repeat is the number of times to run the algorithm. Due to
the randomness of the algorithm process, we run the algorithm 5 times on each dataset to
get the average result of each algorithm.

Experiments on synthetic datasets
In this subsection, we conduct experiments on two synthetic datasets with known
community divisions, use the normalized mutual information function NMI introduced in
Section 2.2 to evaluate the accuracy of the algorithm, and analyze the experimental results.

SYN-FIX datasets
The SYN-FIX datasets has 128 nodes in the network containing four communities, each
community has 32 nodes at each time step, the average degree of each network is set to
16, and the edge connecting each node to a node that is not in the same community is
zout. The size of zout determines the fuzziness of the network, and the larger the zout
value the fuzzier the community structure. To simulate the evolutionary properties of
dynamic networks, three nodes are randomly selected from each community to move to
other communities at each time step, starting from the second time step. In this data,
experiments were performed for two dynamic networks with zout = 3 and zout = 5,
respectively, with a time step of 10.

As the results in Fig. 3 show, on the synthetic datasets SYN-FIX, algorithm NOME has
the same NMI value of size 1 in Fig. 3A zout = 3 as algorithms ECD and ePMCL at all
moments, both outperforming DYNMOGA and FacetNet. In Fig. 3B zout = 5, algorithms
NOME and ePMCL have NMI values of 1 at all moments. The specific values for the five
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Figure 3 Comparison of NMI values of NOME, DYNMOGA, FacetNet, ECD and ePMCL for synthetic
datasets SYN-FIX on (A) zout = 3 and (B) zout = 5.

Full-size DOI: 10.7717/peerjcs.1477/fig-3

Table 2 NMI values returned by NOME, DYNMOGA, FacetNet, ECD and ePMCL on the synthetic datasets SYN-FIX and zout =5. The best re-
sults are highlighted in bold.

Time steps 1 2 3 4 5 6 7 8 9 10

NOME 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DYNMOGA 0.940 1.000 0.969 0.974 0.974 1.000 0.940 0.980 0.895 0.856
FacetNet 0.453 0.453 0.467 0.465 0.464 0.463 0.462 0.462 0.451 0.469
ECD 0.914 0.913 0.943 0.971 0.971 0.943 1.000 0.971 0.971 1.000
ePMCL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

algorithms are given in Table 2, where DYNMOGA and ECD have NMI values of 1 for
only two moments. Therefore NOME and ePMCL outperform other algorithms overall on
this datasets.

SYN-VAR datasets
The network of the SYN-VAR datasets consists of 256 nodes divided into four communities,
each consisting of 64 nodes. Compared with the SYN-FIX datasets, SYN-VAR simulates the
creation and disappearance of nodes, while themeaning of the parameter zout in SYN-VAR
is the same as that of SYN-FIX. Experiments are also conducted in the SYN-VAR datasets
for two dynamic networks with zout = 3 and zout = 5, respectively. In order to generate a
dynamic network with a time step of 10, eight nodes are randomly selected from the four
communities in each of the first five time steps to synthesize a new community consisting
of 32 nodes as the newly generated nodes and communities in the next time step. In the
subsequent five time steps, the nodes will return to their original communities, so the
number of communities in this dynamic network with 10 time steps is 4, 5, 6, 7, 8, 8, 7, 6,
5 and 4. In addition, the average degree of each node in the community is set to half the
community size, and at each time step, 16 nodes are randomly removed from the network,
while 16 new nodes are added to the network.
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Figure 4 Comparison of NMI values of NOME, DYNMOGA, FacetNet, ECD and ePMCL for synthetic
datasets SYN-VAR on (A) zout = 3 and (B) zout = 5.

Full-size DOI: 10.7717/peerjcs.1477/fig-4

Figure 4 shows the results of the five algorithms on the synthetic datasets SYN-VAR. In
Fig. 4A zout = 3, algorithm ePMCL has slightly higher NMI values than NOME and ECD
at moments 3 and 5, and all three are better than the other two algorithms overall. In Fig.
4B zout = 5, combined with Table 3, it is clear that NOME has the optimal NMI value
for eight moments, ECD has the optimal NMI value for four moments, and ePMCL has
the optimal NMI value for nine moments. Therefore, the ePMCL and NOME algorithms
outperform the other algorithms overall in the synthetic datasets SYN-VAR.

Experiments on real datasets
For the experiments in this subsection we use two real datasets, Cellphone Calls and Enron
Mail, to evaluate our proposed algorithm using the modularity function of evaluation
metrics and normalized mutual information NMI introduced in Section 2.2 and compare
it with DECS, ePMCL and ECD.

Cellphone calls datasets
The Cellphone Calls datasets, developed by VAST2008 Mini-Challenge3, consists of
cellphone call records between members of the Paraiso movement, which cover 10 days
of calls from 400 cellphones in June 2006. To build a dynamic network, in this datasets, a
snapshot of the network at each time step consists of all phone call records during a day,
where a node represents a phone and an edge between nodes represents a call between two
phones that are available. Thus this data contains 10 network snapshots.

Enron mail datasets
The Enron Mail datasets is derived from a collection of emails from 1999 to 2002 from a
U.S. company called Enron Corporation. This experiment only selected email data from
2001 with potentially unusual emails, which contained 252,756 emails from 151 employees.
It is divided by month into 12 copies representing 12 network snapshots, each snapshot
consists of 151 nodes representing 151 employees. Also the node-to-node edges represent
users with emails to and from each other.
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Table 3 NMI values returned by NOME, DYNMOGA, FacetNet, ECD and ePMCL on the synthetic datasets SYN-VAR and zout = 5. The best
results are highlighted in bold.

Time steps 1 2 3 4 5 6 7 8 9 10

NOME 1.000 1.000 1.000 1.000 0.945 0.945 1.000 1.000 1.000 1.000
DYNMOGA 0.915 0.969 0.964 0.984 0.915 0.895 0.623 0.965 0.994 0.886
FacetNet 0.541 0.559 0.577 0.599 0.566 0.564 0.593 0.562 0.541 0.509
ECD 1.000 0.982 1.000 0.993 0.945 0.945 1.000 0.992 0.991 1.000
ePMCL 1.000 1.000 1.000 1.000 0.967 0.967 0.977 1.000 1.000 1.000

Table 4 The mean and standard deviation of NMI andmodularity returned by different algorithms on the real data set Cellphone Calls. The
best result is highlighted in bold.

Time steps 1 2 3 4 5 6 7 8 9 10

NMI-mean 0 0.643 0.716 0.714 0.718 0.728 0.715 0.731 0.744 0.712
NMI-±std 0 0.017 0.016 0.018 0.011 0.012 0.008 0.005 0.004 0.004
Q-mean 0.636 0.648 0.630 0.636 0.645 0.640 0.633 0.615 0.625 0.623

NOME

Q-±std 0.002 0.006 0.007 0.006 0.006 0.006 0.004 0.006 0.002 0.004
NMI-mean 0 0.594 0.667 0.661 0.646 0.648 0.665 0.637 0.671 0.640
NMI-±std 0 0.019 0.018 0.017 0.016 0.044 0.037 0.015 0.011 0.021
Q-mean 0.617 0.620 0.601 0.605 0.614 0.612 0.601 0.585 0.595 0.605

DECS

Q-±std 0.007 0.008 0.005 0.006 0.007 0.005 0.005 0.007 0.004 0.004
NMI-mean 0 0.590 0.648 0.650 0.633 0.643 0.653 0.626 0.663 0.609
NMI-±std 0 0.030 0.026 0.012 0.005 0.017 0.014 0.029 0.019 0.014
Q-mean 0.616 0.621 0.596 0.598 0.612 0.613 0.607 0.586 0.597 0.607

ECD

Q-±std 0.002 0.011 0.005 0.001 0.007 0.007 0.006 0.003 0.013 0.007

Table 4 shows the mean and standard deviation of NMI and modularity returned by
NOME, DECS, and ECD on the real dataset Cellphone Calls. It can be found that the mean
value of NMI and themean value ofmodularity obtained by our proposed algorithm during
the evolution process on continuous time steps are much higher than other algorithms. In
addition, the smaller the standard deviation, the more stable the algorithm. The standard
deviation values of our proposed algorithm are mostly better than other algorithms,
among which NMI accounts for seven out of 10-time scales and modularity accounts for 6.
Therefore, our proposed method has better accuracy and stability than other community
detection algorithms on this dataset.

Figure 5 shows the average NMI values obtained for NOME, DECS, ePMCL and ECD
on Fig. 5A Cellphone Calls and Fig. 5B Enron Mail datasets. As we observed, our algorithm
NOME has the highest NMI values at each time step on both real datasets, while ePMCL
performs the worst. The gap between the remaining ECD and DECS algorithms is not
very big, but there is still a certain gap compared with our proposed algorithm. The results
show that NOME can significantly improve the similarity between the time steps of the
community structure after using the strategy of rationalization rules, and also reveal that
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Figure 5 Comparison of NMI values for NOME, DECS, ePMCL and ECD on real datasets (A) Cell-
phone Calls and (B) EnronMail.

Full-size DOI: 10.7717/peerjcs.1477/fig-5

Table 5 The mean, standard deviation, and difference of NMI returned by different algorithms on the real data set EnronMail.

Time steps 2 3 4 5 6 7 8 9 10 11 12

mean 0.879 0.900 0.873 0.806 0.772 0.776 0.773 0.783 0.802 0.816 0.819
NOME

±std 0.007 0.006 0.006 0.019 0.016 0.005 0.010 0.030 0.017 0.016 0.012
mean 0.845 0.888 0.862 0.724 0.694 0.734 0.731 0.740 0.766 0.743 0.747

DECS
±std 0.016 0.009 0.006 0.026 0.021 0.021 0.015 0.016 0.010 0.015 0.011
mean 0.849 0.875 0.873 0.717 0.682 0.721 0.735 0.740 0.730 0.712 0.741

ECD
±std 0.011 0.013 0.009 0.012 0.030 0.019 0.025 0.019 0.011 0.024 0.016

DE-|NMI| diff 0.034 0.012 0.011 0.082 0.078 0.042 0.042 0.043 0.036 0.073 0.072
EC-|NMI| diff 0.030 0.025 0.000 0.089 0.090 0.055 0.038 0.043 0.072 0.104 0.078

the time cost of the evolving community structure on the Cellphone Calls and Enron Mail
datasets is better than other algorithms.

Tables 5 and 6, respectively, show the mean, standard deviation, and difference of
NMI and the mean, standard deviation, and difference of modularity Q returned by the
three algorithms NOME, DECS, and ECD on the real data set Enron Mail. Among them,
DE-|NMI| represents the difference between NOME and DECS, EC-|NMI| represents the
difference between NOME and ECD; DE-|Q| represents the difference between NOME and
DECS, and EC-|Q| represents the difference between NOME and ECD. To further compare
the pros and cons of the three different algorithms on the Enron dataset, we integrated the
difference between their NMI and Q into Table 7 for comparison.

Figure 6 shows the modularity values of NOME, DECS and ECD on the real datasets.
From Fig. 6A, we can see that the modularity values of the NOME algorithm are much
higher than the other two algorithms at each moment on the Cellphone Calls datasets,
so the performance of the NOME algorithm on the Cellphone Calls datasets is much
better than the other algorithms. However, in Fig. 6B the NOME algorithm has slightly
lower modularity values than the other two algorithms on the Enron Mail datasets for all
moments except the first moment. To better evaluate the effectiveness of the algorithms,
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Table 6 The mean, standard deviation, and difference of the modularity returned by different algorithms on the real dataset EnronMail.

Time steps 1 2 3 4 5 6 7 8 9 10 11 12

mean 0.626 0.638 0.641 0.628 0.539 0.661 0.610 0.539 0.613 0.552 0.585 0.612
NOME

±std 0.003 0.019 0.004 0.010 0.011 0.013 0.010 0.010 0.014 0.013 0.006 0.003
mean 0.623 0.669 0.655 0.656 0.558 0.672 0.641 0.576 0.645 0.580 0.630 0.619

DECS
±std 0.022 0.006 0.003 0.012 0.009 0.005 0.006 0.002 0.008 0.005 0.006 0.004
mean 0.631 0.662 0.662 0.657 0.551 0.673 0.639 0.574 0.620 0.556 0.618 0.624

ECD
±std 0.003 0.012 0.004 0.005 0.020 0.012 0.011 0.008 0.016 0.030 0.008 0.003

DE-|Q| diff 0.003 0.031 0.014 0.028 0.019 0.011 0.031 0.037 0.032 0.028 0.045 0.007
EC-|Q| diff 0.005 0.024 0.021 0.029 0.012 0.012 0.029 0.035 0.007 0.004 0.033 0.012

Table 7 For the comparison of the difference between |NMI| and |Q| in Tables 5, 6, the best results are highlighted in bold.

Time steps 1 2 3 4 5 6 7 8 9 10 11 12

DE-|NMI| 0.000 0.034 0.012 0.011 0.082 0.078 0.042 0.042 0.043 0.036 0.073 0.072
DE-|Q| 0.003 0.031 0.014 0.028 0.019 0.011 0.031 0.037 0.032 0.028 0.045 0.007
EC-|NMI| 0.000 0.030 0.025 0.000 0.089 0.090 0.055 0.038 0.043 0.072 0.104 0.078
EC-|Q| 0.005 0.024 0.021 0.029 0.012 0.012 0.029 0.035 0.007 0.004 0.033 0.012

Figure 6 Comparison of Modularity values of NOME, DECS and ECD on real datasets (A) Cellphone
Calls and (B) EnronMail.

Full-size DOI: 10.7717/peerjcs.1477/fig-6

we compare the three algorithms on the Enron Mail datasets in terms of the difference
between NMI and modularity, and we expect a smaller modularity in exchange for a larger
boost in NMI on this datasets.
From Table 7, we can see that in the comparison between NOME and DECS, there are

nine best results for NMI and only two best results for modularity, and in the comparison
between NOME and ECD, there are 10 best results for NMI and only one best result
for modularity. Therefore, the results show that the strategy of border node occupancy
distribution proposed by us can better assign nodes to the correct community, to improve
the quality of community division. Although affected by the rationalized selection strategy,
some sacrifices may have better community results, but overall it can be concluded that
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the NOME algorithm has better accuracy in dynamic community discovery than other
advanced algorithms.

CONCLUSIONS AND FUTURE RESEARCH
This study proposes a newmodel to improve the dynamic community discovery problem in
complex networks using the NOME algorithm. The model adopts a decomposition-based
multi-objective evolutionary clustering framework, takes modularity and normalized
mutual information as optimization objectives, and optimizes the time cost and snapshot
quality of dynamic network community discovery. To maximize the snapshot quality,
improve the clustering accuracy, and make the divided network have the relationship
that the nodes in the community are tightly connected and the nodes in the community
are sparsely connected, we propose a strategy of boundary node occupancy. It can grasp
the relationship between nodes very well, ensure that nodes can be divided into better
communities, and thus improve the clustering accuracy of communities. In addition,
we propose a rationalized selection strategy to minimize the cluster drift between two
consecutive time steps, so that the network can obtain the community with greater
similarity to the previous community when selecting the final solution of the community
partition. Finally, the proposed algorithm is evaluated by comparative experiments on
synthetic datasets and real datasets. Compared with classic and recent popular algorithms,
it is proved that the proposed algorithm has better performance than other algorithms in
dynamic network community discovery. In the process of network community division,
we did not consider that there may be some relationship between nodes, and the same
node may have problems in different community structures. Therefore, the algorithm is
only suitable for unweighted and undirected network models. In future research work, we
consider trying to develop overlapping or empowered social network discovery.
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