
Submitted 11 April 2023
Accepted 8 June 2023
Published 11 July 2023

Corresponding author
Qiaohong Liu, hqllqh@163.com

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.1467

Copyright
2023 Han et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

LOANet: a lightweight network using
object attention for extracting buildings
and roads from UAV aerial remote
sensing images
Xiaoxiang Han1,2,*, Yiman Liu3,4,*, Gang Liu5, Yuanjie Lin2 and Qiaohong Liu1

1 School of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai,
People’s Republic of China

2 School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai,
People’s Republic of China

3Department of Pediatric Cardiology, Shanghai Children’s Medical Center, School of Medicine,
Shanghai Jiao Tong University, Shanghai, People’s Republic of China

4 Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication &
Electronic Engineering, East China Normal University, Shanghai, People’s Republic of China

5Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration,
Wuhan, Hubei, People’s Republic of China

*These authors contributed equally to this work.

ABSTRACT
Semantic segmentation for extracting buildings and roads from uncrewed aerial
vehicle (UAV) remote sensing images by deep learning becomes a more efficient and
convenient method than traditional manual segmentation in surveying and mapping
fields. In order to make the model lightweight and improve the model accuracy, a
lightweight network using object attention (LOANet) for buildings and roads from
UAV aerial remote sensing images is proposed. The proposed network adopts an
encoder-decoder architecture in which a lightweight densely connected network
(LDCNet) is developed as the encoder. In the decoder part, the dual multi-scale context
modules which consist of the atrous spatial pyramid pooling module (ASPP) and the
object attention module (OAM) are designed to capture more context information
from feature maps of UAV remote sensing images. Between ASPP and OAM, a feature
pyramid network (FPN) module is used to fuse multi-scale features extracted from
ASPP. A private dataset of remote sensing images taken by UAV which contains 2431
training sets, 945 validation sets, and 475 test sets is constructed. The proposed basic
model performs well on this dataset, with only 1.4M parameters and 5.48G floating
point operations (FLOPs), achieving excellent mean Intersection-over-Union (mIoU).
Further experiments on the publicly available LoveDA and CITY-OSM datasets have
been conducted to further validate the effectiveness of the proposed basic and large
model, and outstanding mIoU results have been achieved. All codes are available on
https://github.com/GtLinyer/LOANet.
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Keywords Remote sensing image, Semantic segmentation, Context features, Lightweight
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INTRODUCTION
Uncrewed aerial vehicles (UAVs) have some advantages such as being less susceptible to
atmospheric interference, low flight altitude, high resolution and low operating costs (Osco
et al., 2021). They have been widely used in land surveying and mapping, ecological
environment monitoring, resource survey and classification, etc. Compared with other
aerial photography collection methods, the high-resolution remote sensing images taken
by UAVs are more suitable for extracting various important ground objects such as roads
and houses.

In recent years, with the rapid development of deep learning, models based on
convolutional neural networks have shown superior performance in some computer
vision tasks such as image classification, detection, and segmentation. Compared with
traditional machine learning algorithms with manual feature extraction, deep learning
can automatically extract features including color, texture, shape and spatial position
relationship of the image. Fully convolutional network (FCN) (Long, Shelhamer & Darrell,
2015), as the first semantic segmentation of natural images only using convolutional
operation, realized the pixel-level classification of the images. Then, there aremore semantic
segmentation models (Badrinarayanan, Kendall & Cipolla, 2017; Ronneberger, Fischer &
Brox, 2015;Zhao et al., 2017;Chen et al., 2014;Chen et al., 2017a;Chen et al., 2017b;Chen et
al., 2018) that significantly improved the segmentation performance. All of these algorithms
predict the pixel-level labels based on the semantic information represented by image pixels.
Recently, some new deep learning methods have been proposed for extracting buildings or
roads from UAV remote sensing images. Liu et al. (2019) introduced a chain-based U-Net
network to address the problem of incomplete building boundary extraction. Boonpook,
Tan & Xu (2021) proposed a multi-feature semantic segmentation network for extracting
buildings from UAV photogrammetry. Additionally, Sultonov et al. (2022) designed a
lightweight hybrid method based on U-Net for road extraction. Li et al. (2019) achieved
good results in road extraction from UAV images by improving D-LinkNet to obtain
BD-LinkNetPlus. However, these methods can only extract buildings or roads separately.
Therefore, a lightweight network is needed that can simultaneously extract buildings and
roads from UAV images.

Different from natural images, UAV remote sensing images are often very large in size,
usually with a resolution of tens of thousands by tens of thousands. UAV remote sensing
image segmentation is a challenging task due to the large variations in the size, shape, color,
and location of the ground objects, as shown in Fig. 1. Figures 1A and 1D show different
styles of buildings, even though they belong to the same ground object. In other cases, the
surface feature elements of different ground objects may be similar. As shown in Figs. 1B
and 1E, the top of a concrete building is very similar to the surface of a concrete road,
leading to difficulties in feature extraction. There is a lot of greenery on both sides or in the
center of the road, and vehicles on the road cover the road, which would affect the road
surface segmentation results, as shown in Figs. 1C and 1F. Additionally, buildings with
different scales are likely to affect the performance of the model, requiring a model with a
strong ability to extract multi-scale context features.
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Figure 1 Some examples from our private dataset. Image source credit: Xiaoxiang Han. (2023). A
dataset of aerial images taken by UAV that we collected [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
7809659. CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/legalcode.

Full-size DOI: 10.7717/peerjcs.1467/fig-1

To address these issues, we propose a new deep neural network structure called LOANet
for the extraction of buildings and roads fromUAV remote sensing images.WhileDenseNet
(Huang et al., 2017) has strong feature extraction ability, its parameters and calculations
are too large. Moreover, Liu et al. (2022) developed a convolutional neural network (CNN)
called ConvNeXt, which achieved superior performance beyond Swin-Transformer (Liu et
al., 2021) by improving ResNet (He et al., 2016). Inspired by this, we propose a lightweight,
high-performance convolutional neural network named LDCNet, which serves as the
backbone structure of LOANet for semantic segmentation of remote sensing images. Our
goal is to extend LDCNet to become a new generation backbone network for lightweight
semantic segmentation algorithms. LOANet is an encoder–decoder structure that employs
LDCNet as the encoder, which has demonstrated excellent segmentation results. In the
decoder, we propose an object attention module (OAM) that is combined with the spatial
pyramid pooling (ASPP) (Chen et al., 2017b). The feature pyramid network (FPN) (Lin et
al., 2017a) module is used to fuse multi-scale features after the ASPP and before the OAM.
These related works can be viewed more clearly in Table 1.

The main contributions of this article are as follows.
1. A new network based on an encoder–decoder structure for the extraction of feature

elements from UAV remote sensing images is proposed. The proposed network, called
LDCNet, is employed as a lightweight encoder in this article to reduce the model’s
parameters and accelerate the computational speed. An object attention module is

Han et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1467 3/22

https://peerj.com
https://doi.org/10.5281/zenodo.7809659
https://doi.org/10.5281/zenodo.7809659
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.7717/peerjcs.1467/fig-1
http://dx.doi.org/10.7717/peerj-cs.1467


Table 1 Related works in semantic segmentation of remote sensing land cover features.

Method Dataset Classes mIoU (%)

Chain FCN (Liu et al., 2019) Yizheng, Jiangsu, China Buildings 96.14
Multi-Feature Semantic Segmentation
(Boonpook, Tan & Xu, 2021)

Chongqing and Wuhan, China Buildings 88.97

Mixer U-Net (Sultonov et al., 2022) Massachusetts Roads dataset
(Mnih, 2013)

Roads 80.75

BD-LinkNetPlus (Li et al., 2019) Massachusetts Roads dataset
(Mnih, 2013)

Roads 59.45

proposed as an effective decoder to fuse and refine the target objects and boundary
features.

2. A lightweight and high-performance backbone network called LDCNet is developed,
incorporating design ideas from ConvNeXt and DenseNet. LDCNet serves as an
efficient lightweight network for feature extraction from UAV remote sensing images,
achieving this with fewer parameters.

3. Extensive experiments are carried out to verify the effectiveness and feasibility of the
proposedmethod on our private database and two public datasets, namely LoveDA and
CITY-OSM. Several popular backbone networks and semantic segmentation algorithms
are used for comparison with the proposed method in the semantic segmentation of
UAV remote sensing images. The experimental results show that the proposed method
can effectively extract roads and buildings with higher accuracy compared to the other
networks used for comparison.

RELATED WORKS
Semantic segmentation in remote sensing
Fully convolutional networks (FCN), as the first semantic segmentation network based on
deep learning, can accept the input size of any size. To segment the remote sensing images
with more complex, there are some improved FCN-based networks proposed to enhance
the segmentation performance.Maggiori et al. (2016) designed a dual-scale neuronmodule
based on FCN for semantic segmentation of remote sensing images, which balances the
accuracy of recognition and localization. Liu et al. (2017) proposed an improved FCN to
high-resolution remote sensing image segmentation. However, FCN has limited ability
to extract objects of very small size or very large size (Long, Shelhamer & Darrell, 2015).
Fu et al. (2017) adopted dilated Atrous convolution to optimize the FCN model and used
conditional random field (CRF) to post-process preliminary segmentation results, which
result in a significant improvement over previous networks. Atrous convolution can
increase the receptive field of the convolution while maintaining the spatial resolution of
the feature map.

U-Net (Ronneberger, Fischer & Brox, 2015) is another popular semantic segmentation
network, which was first used in medical image segmentation. Li et al. (2018) proposed a
network to segment the land and sea of high-resolution remote sensing images based on
U-Net. Cheng et al. (2020) developed a network called HDCUNet combining U-Net with
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Hybrid Dilated Convolution (HDC) for fast and accurate extraction of coastal farming
areas. It avoids meshing and increases the receptive field. Wang et al. (2022d) designed a
U-Net with two decoders and introduced spatial attention and channel attention.

In addition, some researches (Badrinarayanan, Kendall & Cipolla, 2017; Song et
al., 2020) improved SegNet (Badrinarayanan, Kendall & Cipolla, 2017) for semantic
segmentation of remote sensing images. Weng et al. (2020) proposed an SR-SegNet
using a separable residual algorithm for water extraction from remote sensing images.
Kniaz (2019) developed a network called GeoGAN based on the Generative Adversarial
Network(GAN) (Goodfellow et al., 2020) to extract waters in different seasons. Recently,
some transformer-based or the combination of transformer and CNN models (Wang
et al., 2022c; Li et al., 2021a; Zhang et al., 2022) promoted the semantic segmentation
performance with the transformer’ advantage of global receptive field. However, the large
parameters of transformer affects the calculation speed of these proposed models.

Lightweight network
In order to deploy the network models on devices with limited resources, it is necessary to
design lightweight and efficient networks. The MobileNet series (Howard et al., 2017;
Sandler et al., 2018; Howard et al., 2019) is a classic lightweight network that applies
depthwise separable convolutions (Howard et al., 2017), inverted residuals (Sandler et
al., 2018), linear bottlenecks (Sandler et al., 2018), and lightweight channel attention
modules (Howard et al., 2019). It can achieve higher accuracy with fewer parameters
and lower calculation costs. SqueezeNet (Iandola et al., 2016), another lightweight
network, used the Fire module for parameter compression. EffectionNet (Tan & Le,
2019) balanced the three dimensions of depth, width, and resolution well, and scales these
three dimensions uniformly through a set of fixed scaling factors. GhostNet (Han et al.,
2020) obtains redundant information by designing cost-efficient, which ensures the model
can fully understand the input data. MicroNet li2021Textmu met used Micro-Factorized
convolution and Dynamic Shift-Max to reduce the amount of calculation and improve
network performance.

Context feature extraction
By fully considering the context information can significantly boost the semantic
segmentation performance and solve the problem of receptive field scale. To aggregate
multi-scale contextual features, PSPNet (Zhao et al., 2017) used a pyramid poolingmodule,
which connects four global pooling layers of different sizes in parallel, pools the original
feature maps to generate feature maps of different levels, and restores them to the original
size after convolution and upsampling. DeepLabV3 (Chen et al., 2017b) introduced the
atrous spatial pyramid pooling(ASPP) module, which utilized different hole rates to
construct convolution kernels of different receptive fields to obtain multi-scale context
information. GCNet (Cao et al., 2019) employed a self-attention mechanism to obtain
global context information. GCN (Peng et al., 2017) enlarged the receptive field by
increasing the size of the convolution kernel. The convolution kernel up to 15 ×15 in
size in GCN proved that the large convolution kernel has a stronger ability to extract
context features.
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PROPOSED METHOD
Overall structure of LOANet
The proposed lightweight and efficient semantic segmentation network, referred to as
LOANet, is shown in Fig. 2. The proposed LOANet is an encoder–decoder structure. In
the encoder part, LOANet takes our proposed LDCNet as a backbone, which can reduce
model parameters and accelerate the computational speed. First, an image of size 512
×512 is input into the backbone network LDCNet. And after feature extraction operation
by LDCNet, four different levels of feature maps are output. The first three feature maps
are respectively input into the Atrous spatial pyramid pooling module (ASPP) (Chen et
al., 2017b) to extract multi-scale context information. The three outputs are fed into the
corresponding 1 ×1 convolution operation in the feature pyramid network (FPN) (Lin et
al., 2017a) and upsampled to the same size. Four feature maps of the same size are then
concatenated as the input of OAM proposed by us. After the feature map is processed by
OAM, it will produce a rough segmentation result and a feature map with object context
information. This rough segmentation result is taken as one of the outputs of the network,
and the feature maps are fed into the next step for further processing. Then, the feature
map is processed by a refinement classification head to refine the segmentation edges. It
consists of a 3 ×3 depthwise separable convolution and a 1 ×1 convolution. Finally, the
feature map is upsampled to the size of the input image.

LDCNet
Inspired by ConvNeXt and DenseNet, this article develops a backbone network, called
LDCNet. The structure and densely connected blocks are shown in Fig. 3. ConvNeXt
improved the classical ResNet by introducing some of the latest ideas and technologies of
Transformer network to enhance the performance of CNN. Macro design, reference of
ResNeXt’s design ideas (Xie et al., 2017), inverted bottleneck layer, large convolution kernel
and micro design of various layers are the five main optimization design of ConvNeXt.
In the macro design of ConvNeXt, the stacking ratio of multi-stage blocks is 1:1:3:1. The
number of blocks stacked in the third stage is larger. This improves the model accuracy
of ConvNeXt. Following the design, we set the stacking ratio of blocks in each stage of
LDCNet to 1:1:3:1. The specific layers of each stage are 2, 2, 6 and 2 respectively.

ConvNeXt designs the effective inverted bottlenecks block with a 3 ×3 depthwise
separable convolution, shown in Figs. 4A and 4B. This structure can partially reduce the
parameter scale of the model while slightly improving the accuracy rate. Considering the
multi-scale feature extraction ability of Inception block in GoogLeNet (Szegedy et al., 2015),
a new bottleneck layer with two branches is proposed in this article. One of the branches
is a depthwise separable convolution with a 7 ×7 convolution kernel, and the other is a
depthwise separable convolution with a 3 ×3 convolution kernel. After adding the output
feature maps of two branches, and then concatenating with the input feature map, the
output feature map of the proposed bottleneck layer is produced, as shown in Fig. 4C. In
recent years, some new studies (Peng et al., 2017; Ding et al., 2022; Guo et al., 2022) have
stated the large convolution kernels are more efficient for enlarging the receptive field. In
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Figure 2 The overall architecture of LOANet, and the details of ASPP. Image source credit: Xiaoxiang
Han. (2023). A dataset of aerial images taken by UAV that we collected [Data set]. Zenodo. https://doi.org/
10.5281/zenodo.7809659. CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/legalcode.

Full-size DOI: 10.7717/peerjcs.1467/fig-2

order to obtain a higher computational efficiency, a 7×7 convolution kernel is used at the
beginning of one branch in the proposed bottleneck layer.

As we all know, batch normalization (BN) (Ioffe, 2017) is most popular optimization
process in computer vision tasks by computing the mean and variance of each minibatch
and pulls it back to a standard normal distribution with mean 0 and variance 1 to make
neural network training faster and stabler However, BN also has may some drawbacks
detrimental to the model performance (Wu & Johnson, 2021). Transformers use a simpler
layer normalization (LN) (Ba, Kiros & Hinton, 2016), which is more common in natural
language processing tasks. ConvNeXt replaces all BNs with LNs to improve the model
performance. Since the features of our remote sensing images depend on the statistical
parameters between different samples. it is inappropriate to replaces all BNs with LNs in
the task of extracting buildings and roads from UAV remote sensing images. Therefore,
we use an LN after a 3 ×3 depthwise separable convolution in the bottleneck layer, and
replaced the BN in the transition layer with LN.
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Figure 3 The overall structure and densely connected blocks of LDCNet. Image source credit: Xiaoxi-
ang Han. (2023). A dataset of aerial images taken by UAV that we collected [Data set]. Zenodo. https://doi.
org/10.5281/zenodo.7809659. CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/legalcode.
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Figure 4 A is the inverted bottleneck layer designed by the authors of ConvNeXt. B is the actual bottle-
neck layer of ConvNeXt. C is our bottleneck layer for LDCNet.
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Object attention module
We proposed an object attentionmodule (OAM). OAM considers the relationship between
a pixel and its context pixels, and aggregates similar context pixel representations with
higher weights. Unlike regular attention mechanisms, OAM constructs attention into
object regions and exploits the relationship between pixels and object regions.

OAM is different from global context feature extraction methods or global attention
mechanisms, as it computes the similarity between each pixel and each object region using
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dot-product attention mechanism, and fuses object region features to refine pixel features.
This produces multiple weights for each pixel, indicating how much it belongs to each
object region. Then, OAM uses these weights to compute a weighted sum of object region
features, and concatenates it with the original pixel features.

The OAM consists of three steps: soft object region extraction, object region
computation, and object attention computation for each position. It is mainly based
on the scaled dot-product self-attention from the Transformer structure. The input to
attention consists of: a set of Aq queries Q∈Rd×Aq , a set of Akv keys K ∈Rd×Akv , and a set
ofAkv valuesV ∈Rd×Akv . The attentionweight aj is computed as the Softmax normalization
of the dot product between query qi and key kj :

Bi=
Akv∑
j=1

e
1
√
d
q>i kj (1)

mij =
e

1
√
d
q>i kj

Zi
(2)

The attention output for each query qi is the aggregation of values weighted by attention
weights:

Attention(qi,K ,V )=
Akv∑
j=1

mijVj (3)

For object attention, the calculation formula of the relationship between each pixel and
each object area is as follows:

yik =
eF(xi,fk )∑K
j=1e

F(xi,fj )
. (4)

Among them, F(x,f )= u(x)>v(f ) is the denormalized relationship function, u(·) and
v(·) are two transformation functions implemented by 1 ×1Conv→ BN→ ReLU.

Atrous Space Pyramid Pooling (ASPP)
In order to obtain a large receptive field without losing spatial resolution and increasing
computation, ASPP uses multiple parallel dilated convolutional layers with different
sampling rates. The features which are extracted for each sampling rate are further processed
in separate branches and fused to generate the final result.

Atrous convolution can expand the receptive field of the convolution kernel without
loss of resolution. Using ASPP can achieve multi-scale feature extraction through different
receptive fields and upsampling. In a two-dimensional convolution, for each position i on
the feature y of the convolution output and the corresponding convolution kernel w, for
the input x, the calculation of the dilated convolution is as follows:

y[i] =
∑
k

x[i+ r ·k]w[k] (5)
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where r is the hole rate, which represents the sampling step size of the convolution kernel
on the input x of the convolution operation. k represents the position of the convolution
kernel parameter. If the convolution kernel size is 3, then k= 0,1,2. The receptiv

EXPERIMENT
Dataset
A private dataset of UAV-borne remote sensing images with a resolution between 10000
×10000 and 20000 ×20000 is constructed. Each remote sensing image which corresponds
to the red (R), green (G), and blue (B) bands is cropped to the same size of 512 ×512. All
the images are divided into a training set of 2431 images, a validation set of 945 images,
and a test set of 676 images. The category labels of two important ground objects, i.e., road
and building, are manually annotated. The training and validation sets are from a city in
Guangdong, China, and the test set is from a place along the Yangtze River, China.

Furthermore, in order to verify the competitive performance and model generalization
ability of our proposed model in the task of semantic segmentation of aerial remote sensing
images, we test it on two public datasets, i.e., LoveDA (Wang et al., 2021) and CITY-OSM
(Kaiser et al., 2017). LoveDA dataset includes the cities of Nanjing, Changzhou andWuhan
in China, with a total of 5,987 high spatial resolution (0.3 m) remote sensing images,
with a training set of 2,522 images, a validation set of 1669 images, and a test set of 1796
images. The pixels in each image are divided into six categories, namely road, building,
water, barren, forest, agricultural, and background. For the sake of fairness, we only take
two types of ground objects, building and road. CITY-OSM dataset includes Berlin and
Potsdam in Germany, Chicago in the United States, Paris in France, Zurich in Switzerland
and Tokyo in Japan, with a total of 1,641 aerial images. Its labels are two types of ground
objects, i.e., building and road, which are consistent with the label categories of our private
dataset. We remove the images that are obviously mislabeled in this dataset, for example
the entire image is labelled as a building or a road. All the images are cropped and scaled
to the size of 512 ×512, which are divided into a training set of 10621 images, a validation
set and a test set of 3401 images.

Training details
Our model was developed utilizing Python3.8 and the PyTorch1.12.1 machine learning
framework. PyTorch-Lightning1.6.5, which builds upon PyTorch, was utilized to
further expedite the process. For comparison and ablation experiments, we employed
Torchvision0.13.1′s backbone network.

To train the model, a GPU server boasting an Intel Core i9-10900X CPU, two Nvidia
RTX3080 GPUs (10GB), 32GB RAM was utilized.

The batch size of data was altered based on the network to guarantee maximummemory
utilization. Additionally, the data reading program was equipped with 16 threads. The
initial learning rate was set at 1e−3, dynamic learning rate adjustment was facilitated via
ReduceLROnPlateau, and optimization fell under the responsibility of AdamW (Loshchilov
& Hutter, 2018). Automatic mixed precision was employed during training, with a loss
function of FocalLoss (Lin et al., 2017b). This function aimed to reduce the weight of
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easily-classified samples while prioritizing harder-to-classify samples. Training was carried
out over a period of 100 epochs. Its formula is as follows:

FL(pt )=−αt (1−pt )γ log(pt ) (6)

p ∈[0,1] is the model’s estimated probability of the labeled class, γ is an adjustable
focusing parameter, and α is a balancing parameter. We set γ to 2 and α to 0.25.

Evaluation metrics
In order to evaluate the performance and efficiency of the proposed LOANet model, our
evaluation indicators are divided into two categories. The first category is to evaluate the
accuracy of the network, including overall accuracy (OA), average F1-score (F1) and mean
intersection over union (mIoU). The results of these evaluation indicators are calculated
based on the confusion matrix, where TP indicates the number of true positive categories,
TN indicates the number of true negative categories, FP indicates the number of false
positive categories, and FN indicates the number of false negative categories.

Overall accuracy (OA) is used to measure the overall accuracy of the model prediction
results:

OA=
TP+TN

TP+TN +FP+FN
(7)

The F1-score (F1) indicates the comprehensive consideration of precision and recall:

Precision=
TP

TP+FP
(8)

Recall =
TP

TP+FN
(9)

F1= 2
Precision×Recall
Precision+Recall

=
2TP

2TP+FP+FN
(10)

Intersection over union (IoU) is used to measure the ratio of the intersection and union
of the predicted results of a certain category and the true value of the model:

IoU =
TP

TP+FN +FP
. (11)

The second category is to evaluate the scale of the network, including floating point
operations (FLOPs) for evaluating complexity, frames per second (FPS) for evaluating
speed, memory usage (MB) and the number of model parameters (M) to evaluate memory
requirements.

Experimental results on the private dataset
In this section, LOANet is compared with some other semantic segmentation models on
the constructed private dataset. These models include GCNet (Cao et al., 2019), PSPNet
Zhao et al., 2017), SegFormer Xie et al., 2021), and A2FPN Li et al., 2022), DC-Swin Wang
et al., 2022b), BuildFormer (Wang et al., 2022a) proposed for remote sensing semantic
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Table 2 Quantitative results on the private dataset.

Method Backbone Background
(%)

building
(%)

road
(%)

OA
(%)

mean F1
(%)

mIoU
(%)

DC-Swin – 76.47 55.74 23.17 87.08 65.44 52.14
SegFormer – 78.55 56.94 36.23 88.37 71.24 57.24
GCNet ResNet18 79.55 61.53 37.72 89.09 73.19 59.62
A2FPN ResNet18 81.46 66.01 41.73 90.33 76.06 63.26
PSPNet ResNet18 82.56 67.52 43.87 90.89 76.92 64.22
BuildFormer – 83.26 68.56 47.76 91.34 78.95 66.53
LOANet (ours) ResNet18 83.01 67.59 43.63 91.13 77.38 64.83
LOANet (ours) LDCNet (ours) 85.73 75.01 52.70 92.83 82.35 71.12
LOANet-Large (ours) LDCNet-Large (ours) 85.72 74.96 52.71 92.79 82.29 71.11

Notes.
Bold values represent the best performance indicators. Underlined values represent the second best performance indicators.

segmentation. The backbone network of the other compared models is ResNet18, and
LOANet uses the proposed backbone network LDCNet. LOANet is divided into two
versions, the basic version and the large version. The only difference is that the depth of
LDCNet is different. The number of dense block stacks in the basic version is 2, 2, 6, 2, while
the number of stacks in the large version is 6, 6, 18, 6. From Table 2, it is clear seen that the
proposed model outperforms other models in term of the numerical results. The mIoU of
the proposed model is 4.59% higher than that of the powerful BuildFormer. The IoU of
the background, buildings and roads increased by 2.47%, 6.45% and 4.04% respectively
compared with BuildFormer. Furthermore, the overall accuracy and mean F1-score of the
proposed model are 0.94% and 3.40% higher than the powerful BuildFormer. However,
the large-scale version of LOANet does not perform as well as the base version on our
smaller-scale dataset, and it overfits. Moreover, LOANet using the proposed LDCNet as
the backbone outperforms LOANet with ReseNet18 as the backbone. A comparison of the
visual effects via different methods is depicted in Fig. 5. It can be seen from the figure that
the proposed model handles edges better than other methods. And the extracted buildings
did not generate a large number of voids. It can extract relatively small roads.

Experimental results on the public dataset LoveDA
In this section, the compared experiments are conducted on LoveDAdataset. The compared
models are the same as subsection. The comparison results are shown in Table 3 and Fig. 6.
The proposed model outperforms the other compared models in both quantitative and
qualitative results on the LoveDA dataset. The mIoU of LOANet is 1.22% higher than
the powerful BuildFormer. The IoU of the background and buildinghouses increased by
0.71% and 4.04% respectively compared with BuildFormer. The IoU of the road is slightly
lower than that of BuildFormer. Furthermore, the overall accuracy and mean F1-score
of the proposed model are 0.45% and 0.97% higher than the powerful BuildFormer. The
performance of the large version of LOANet is slightly lower than that of the basic version.
The performance of LDCNet as a backbone network surpasses ResNet18. It can be seen
from the Fig. 6. That the proposed model extracts the whole building house area much
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Image Ground Truth ours Build-Former PSPNet A2FPN GCNet Seg-Former DC-Swin

Figure 5 Qualitative results on the private dataset. Image source credit: Xiaoxiang Han. (2023). A
dataset of aerial images taken by UAV that we collected [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
7809659. CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/legalcode.

Full-size DOI: 10.7717/peerjcs.1467/fig-5

Table 3 Quantitative results on the public dataset LoveDA.

Method Backbone Background
(%)

Building
(%)

Road
(%)

OA
(%)

Mean F1
(%)

mIoU
(%)

DC-Swin – 88.41 32.94 24.34 92.47 60.85 48.57
SegFormer – 90.85 36.00 33.89 93.60 66.10 53.31
GCNet ResNet18 89.83 37.02 35.04 93.56 66.85 53.90
A2FPN ResNet18 90.18 38.82 43.59 93.82 70.49 57.59
PSPNet ResNet18 91.07 48.55 44.05 94.81 74.05 61.43
BuildFormer – 91.94 49.97 50.26 94.97 76.44 64.05
LOANet (ours) ResNet18 91.47 44.98 47.49 94.66 74.00 61.35
LOANet (ours) LDCNet (ours) 92.65 54.01 49.13 95.42 77.41 65.27
LOANet-Large (ours) LDCNet-Large (ours) 92.59 53.96 50.02 95.39 77.00 65.21

Notes.
Bold values represent the best performance indicators. Underlined values represent the second best performance indicators.

better than other methods. And it extracts small roads better than most other methods.
The proposed model has good detail extraction ability.

Experimental results on the public dataset CITY-OSM
In this section, a large-scale data set named CITY-OSM is used to demonstrate the
performance of the proposed LOANet. From Table 4, On such our basic model performs
slightly worse than the two models of PSPNet and BuildFormer. This demonstrates the
good generalization ability of our basic model on smaller datasets. However, the large
version of LOANet outperforms other methods. The mIoU is 0.28% higher than that of
the powerful BuildFormer, and the IoU of buildinghouses and roads are 0.21% and 0.51%
higher, respectively. It is obvious from Fig. 7. that the proposed model has strong road
extraction ability.
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Image Ground Truth ours Build-Former PSPNet A2FPN GCNet Seg-Former DC-Swin

Figure 6 Qualitative results on the public dataset LoveDA. Image source credit: Junjue, Wang, Zhuo,
Zheng, Ailong, Ma, Xiaoyan, Lu, & Yanfei, Zhong. (2021). LoveDA: A Remote Sensing Land-Cover
Dataset for Domain Adaptive Semantic Segmentation [Data set]. Thirty-fifth Conference on Neural
Information Processing Systems (NeurIPS 2021). Zenodo. https://doi.org/10.5281/zenodo.5706578. CC-BY
4.0. https://creativecommons.org/licenses/by/4.0/legalcode.

Full-size DOI: 10.7717/peerjcs.1467/fig-6

Table 4 Quantitative results on the public dataset CITY-OSM.

Method Backbone Background
(%)

Building
(%)

Road
(%)

OA
(%)

Mean F1
(%)

mIoU
(%)

DC-Swin – 63.71 68.79 55.06 85.42 76.79 62.52
SegFormer – 67.35 72.69 61.73 87.48 80.34 67.26
GCNet ResNet18 66.67 71.76 63.44 87.32 80.39 67.28
A2FPN ResNet18 71.12 75.72 77.65 89.26 83.34 71.50
PSPNet ResNet18 75.40 79.01 73.10 91.06 86.24 76.04
BuildFormer – 75.36 79.30 72.79 91.08 86.22 75.82
LOANet (ours) ResNet18 73.17 76.54 70.76 90.04 84.70 73.49
LOANet (ours) LDCNet (ours) 73.95 78.25 70.95 90.49 85.28 74.39
LOANet-Large (ours) LDCNet-large (ours) 75.51 79.51 73.30 91.17 86.41 76.10

Notes.
Bold values represent the best performance indicators.

Evaluation of model efficiency
It can be seen from the Table 5 that the proposedmodel, whether it is the basic version or the
enlarged version, has smaller parameters and model sizes than other models. In addition,
the FLOPs of the proposed basic version of the model is also the smallest. Therefore, the
proposed model can be applied in a variety of hardware performance-limited scenarios.
However, the proposed largemodel has shortcomings; specifically, its FPS is not the highest,
which is an aspect we aim to improve in the next step.

Ablation study
To evaluate the contribution of each component of the proposed LOANet the ablation
experiments are conducted using LoveDA dataset and CITY_OSM dataset, as shown in
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Image Ground Truth ours Build-Former PSPNet A2FPN GCNet Seg-Former DC-Swin

Figure 7 Qualitative results on the public dataset CITY_OSM. Image source credit: Kaiser Pascal, Weg-
ner Jan Dirk, Lucchi Aurelien, Jaggi Martin, Hofmann Thomas, & Schindler Konrad. (2017). Learning
Aerial Image Segmentation From Online Maps [Data set]. In IEEE Transactions on Geoscience and Re-
mote Sensing (Vol. 55, Number 11, pp. 6054–6068). https://doi.org/10.1109/TGRS.2017.2719738. CC-BY
4.0. https://creativecommons.org/licenses/by/4.0/legalcode.

Full-size DOI: 10.7717/peerjcs.1467/fig-7

Table 5 Evaluation of model efficiency.

Method Params (M) Size (MB) FLOPs (G) FPS

DC-Swin 118 237.858 126.15 34.7
SegFormer 7.7 15.436 13.11 115.2
GCNet 61.5 122.933 9.84 182.6
A2FPN 12.2 24.318 13.21 212.4
PSPNet 24.3 48.648 96.53 98.5
BuildFormer 40.5 81.038 116.22 52.4
LOANet (ours) 1.4 2.628 5.48 212.6
LOANet-large (ours) 6.1 12.271 13.69 108.4

Notes.
Bold values represent the best performance indicators. Underlined values represent the second best performance indicators.

Table 6. After adding the ASPP module to the baseline model, mIoU on the two public
datasets increased by 0.55% and 0.42%, respectively. After adding the OAM to the baseline
model, mIoU on the two public datasets increased by 1.55% and 0.88%, respectively. After
the proposed model aggregates these two modules, mIoU on two public datasets improves
by 2.03% and 0.69% compared to the baseline model, respectively.

In addition, we also studied the impact of using different backbone networks on
the performance of the model. As shown in Table 7, the proposed LOANet surpasses
mainstream backbone networks. Compared to ResNet18, the proposed method showed an
improvement of 3.29% and 0.9% in mIoU on two common datasets, respectively.
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Table 6 Ablation study.

Dataset Method Overall accuracy Mean F1-Score mIoU

Baseline 94.79 75.77 63.24
Baseline + ASPP 95.21 76.14 63.79
Baseline + OAM 95.29 77.02 64.79

LoveDA

Baseline + ASPP + OAM 95.42 77.41 65.27
Baseline 90.19 84.82 73.70
Baseline + ASPP 90.36 85.11 74.12
Baseline + OAM 90.32 85.03 74.00

CITY_OSM

Baseline + ASPP + OAM 90.49 85.28 74.39

Notes.
Bold values represent the best performance indicators.

Table 7 Comparison of different backbones.

Dataset Backbone Overall accuracy Mean F1-Score mIoU

ResNet18 94.66 74.02 61.35
DenseNet121 95.16 76.25 63.81
Swin Transformer 95.08 75.98 63.55
MobileNetV3 94.78 74.22 61.62

LoveDA

LDCNet 95.42 77.41 65.27
ResNet18 90.04 84.70 73.49
DenseNet121 90.38 85.14 74.32
Swin Transformer 90.29 85.03 74.19
MobileNetV3 89.91 84.37 73.01

CITY_OSM

LDCNet 90.49 85.28 74.39

Notes.
Bold values represent the best performance indicators.

DISCUSSION
LOANet has achieved excellent performance with a smaller number of parameters and
lower computational cost. Compared to larger models in the past, it is suitable for
running on a wider range of hardware conditions. There are three main reasons for
the outstanding performance of the proposed model. Firstly, this article customizes a
lightweight and efficient backbone network LDCNet for LOANet, which extensively uses
depthwise separable convolutions and some design techniques. This makes LDCNet both
computationally efficient and powerful in feature extraction. Secondly, we proposed the
OAM, which has more advantages in extracting details and edges. The ASPP module can
obtain features of different scales of buildings or roads in remote sensing images by using
different sizes of receptive fields, while the OAM can focus more on the relationships
between pixels within a single category of buildings or roads. Therefore, these two modules
complement each other. In addition, FPN combines semantic features of different levels,
enhancing the network’s ability to extract small-scale targets.

The method proposed in this article has some limitations. Although the proposed
quantitative and qualitative indicators have significant advantages over other methods,
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there are still many shortcomings in terms of visual effects. For example, some complex
edge segmentation is not perfect, and the segmentation of some complex background areas
is not accurate enough. These are common problems in remote sensing image segmentation
and are also challenging issues. To address these issues, we will conduct further research
on methods to solve them in the future. In particular, for the segmentation of complex
background areas, the model needs to have a more powerful integration capability of
contextual information, while not overly increasing the complexity of the model to avoid
limiting its wide application. In addition, we hope that the proposed method can be
extended to multiple semantic segmentation domains.

CONCLUSION
In this article, a lightweight and efficient semantic segmentation network based on encoder–
decoder structure was developed for buildings and roads extraction from UAV remote
sensing images. The encoder used a new lightweight and high-performance backbone
network proposed in this article to accelerate model calculation and reduce model
parameters. The decoder employs our proposed OAM to efficiently capture more object
information. We evaluated our model on two public datasets, LoveDA and CITY-OSM,
and on the private dataset. With only 1.4M parameters and 5.48G FLOPs, our basic model
achieved mIoU scores of 65.27%, 74.39%, and 71.12% on these datasets, respectively,
demonstrating its excellent performance.
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