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ABSTRACT
With the continuous development of new technologies, the scale of training data is
also expanding. Machine learning algorithms are gradually beginning to be studied and
applied in places where the scale of data is relatively large. Because the current structure
of learning algorithms only focus on the identification of dependencies and ignores the
direction of dependencies, it causes multiple labeled samples not to identify categories.
Multiple labels need to be classified using techniques such as machine learning and
then applied to solve the problem. In the environment of more training data, it is very
meaningful to explore the structure extension to identify the dependencies between
attributes and take into account the direction of dependencies. In this article, Bayesian
network structure learning, analysis of the shortcomings of traditional algorithms, and
binary evolutionary algorithm are applied to the randomized algorithm to generate
the initial population. In the optimization process of the algorithm, it uses a Bayesian
network to do a local search and uses a depth-first algorithm to break the loop. Finally,
it finds a higher score for the network structure. In the simulation experiment, the
classic data sets, ALARM and INSURANCE, are introduced to verify the effectiveness
of the algorithm. Compared with NOTEARS and the Expectation-Maximization (EM)
algorithm, the weight evaluation index of this article was 4.5% and 7.3% better than
other schemes. The clustering effect was improved by 13.5% and 15.2%. The smallest
error and the highest accuracy are also better than other schemes. The discussion
of Bayesian reasoning in this article has very important theoretical and practical
significance. This article further improves the Bayesian network structure and optimizes
the performance of the classifier, which plays a very important role in promoting the
expansion of the network structure and provides innovative thinking.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Networks and
Communications
Keywords Network structure, Machine learning, Bayesian model, Binary evolutionary algorithm,
Classifier

INTRODUCTION
Although the development of network technology has brought about information sharing,
it has also brought the world into the stage of information explosion. Most of the data
collected are incomplete and there are missing values. The Bayesian network structure
learning with incomplete data is more complex than Bayesian network structure learning
with complete data, which costs more computing resources. It is more challenging and has
more practical significance (He et al., 2020). The Bayesian network can be applied in data
mining, and it has been applied in many fields. The reliable Bayesian network structure is
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the main consideration of its application. In the face of a large number of data, it is too
laborious to rely solely on artificial experience to construct the Bayesian network structure.
Thus, the Bayesian network structure learning algorithm is widely used to construct
the network structure. At present, the meta-heuristic algorithm with high popularity is
adopted, and the scoring search method is adopted too. By adding an additional stage in
the exploration and development stage of the algorithm, the premature local optimization
of the algorithm is avoided. The local search ability is increased (Bellmann & Schwenker,
2020).

Classification is a key problem in artificial intelligence and machine learning, and
it is very important to build a good classifier. Since the naive Bayesian network (NB)
has achieved great success in classification tasks, its good classification performance and
few computing resources have made more and more researchers begin to pay attention to
Bayesian network classifier (BNC) (Li et al., 2017). However, the independence assumption
of NB is too idealistic and rarely holds in practical applications. Therefore, improving the
independence assumption ofNB is the key issue to improving the classification performance
of NB. Among the various methods to improve NB, the average first-order dependency
estimator (AODE) has achieved excellent classification performance by virtue of structural
expansion and ensemble learning strategies, although the independence assumption of each
of its sub-classifiers (super-parent attribute first-order dependency estimator, SPODE) is
rarely true in practical applications (Singer, Anuar & Ben-Gal, 2020). As the scale of data
continues to expand, robust classifiers with high expressive power and low bias are urgently
needed.

Typical constraint-based algorithms include the causal induction algorithm and
the three-stage independence analysis algorithm. These algorithms all adopt statistical
tests (Vargas, Gutiérrez & Hervás-Martínez, 2020). For each pair of variables, there may be
a separator variable that makes the pair conditionally independent. The Peter-Clerk (PC)
algorithm limits the scope of the separator variable to the set of variables adjacent to the
pair. The main idea of the recursive algorithm in Fulford et al. (2020) is to first decompose a
legally undirected independent graph into a series of subgraphs that may be independently
learned. After the structure of the subgraph is learned, the small subgraphs are combined
step by step to restore the large graph. Finally, the criterion proposed in Yu & Smith (2021)
is adopted to determine the direction of as many edges as possible. Castelletti & Mascaro
(2021) proposes to create and expand a training set based on a selected instance. The
training instances can be cloned according to the similarity of the test instances to achieve
the purpose of expanding the training set and learning a Bayesian network classifier (BNC).
Starting from the test cases themselves, Ignavier, Ghassami & Zhang (2020) proposes to use
local mutual information (local MI) and local conditional mutual information (local CMI)
to dynamically identify the mutual dependencies and conditional dependencies between
attribute values.Halbersberg, Wienreb & Lerner (2020) proposes an enhanced classifier with
external features of label data, which uses a specific method to select the external features
of model design with the help of multi-tree basic structure according to the external
feature space of low-dimensional label related data in the learning stage. Liu et al. (2019)
proposes a multi-label extrinsic feature selectionmethod based on information association,
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which extends the associated information to multiple pieces of relevant information and
combines the basic criteria ofmulti-block information for evaluation. The extrinsic features
do not consider the relevance of labels or use the basic criteria of minimizing multi-block
information for evaluation. In the above research results, only the correlation between
external characteristics and labels is emphasized. They seldom consider the correlation
between tags and cannot effectively reduce the sensitivity to predictable tags. To express
the correlation between tags and the reliability of external features of data, further research
is needed.

In this article, we improve the traditional algorithm based on the Bayesian network to
calculate the causal effect between variables in the case of single intervention and joint
intervention. The algorithm introduces the network model to obtain the external feature
attributes, and combines the sinusoidal function linear distance to update the Bayesian
connection in real time, which achieves good results. In the continuous search space,
multivariate individuals update their positions by adding the value of the position vector
to the value of the step vector. The likelihood function is applied to add new edges to
SPODE, which improves the expressive power of the model on the one hand. On the other
hand, it improves the accuracy of estimating causal effects between variables by inheriting
the ensemble learning strategy of the Averaged One-Dependent Estimator (AODE) model.
Experiments indicate that it is of great significance to learn the precise network topology
or the dependencies between attributes for building a good Bayesian network classifier.

The main contents of the article are as follows:
Section 1: According to the Bayesian network based on the binary evolutionary algorithm

used in this article, the research results of the network related to machine learning are
described.

Section 2: It mainly introduces the basic knowledge of the Bayesian network model and
explains the related theory of the two-tuple classifier.

Section 3: The machine learning algorithm is applied to introduce binary clustering and
penalty function optimization decision rules in detail.

Section 4: The structure of the Bayesian network is constructed according to the
optimization learning algorithm, and the operation process and mathematical principle of
the model are introduced.

Section 5: Take the ATODE model as an example. It shows the whole process of
the ESPODEI model, which is extended from the corresponding SPODEI through the
identification of the dependency relationship and dependency direction between attributes.

Section 6: The experimental analysis compares the NOTEARS algorithm with the EM
algorithm and compares the differences between the machine learning methods in the
classification accuracy, which is to evaluate the algorithm proposed in this article.

Section 7: Summarize the machine learning algorithms proposed in this article and the
experimental results, and elaborate on the main contributions of this article. In view of this
article in the research process insufficiency and the difficulty, it proposes further research
direction and the possibility.

The main innovations of this article are:
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(1) An improved binary optimization algorithm is applied to the Bayesian network
structure learning to solve the problem of a directed acyclic graph with poorly fitting data.

(2) It improves the transition parameters of the control stage, strengthens the exploration
stage, and makes the algorithm nonlinear and smooth transition to the development stage.

(3) It accepts that non-optimal solution with a certain probability to avoid advancing
to the current global optimal direction too early in the exploration stage so as to explore
more areas.

RELATED WORK
The Bayesian network model
It is not feasible to apply the joint distribution directly for multivariate probabilistic
inference, and the computational complexity is super-exponential with the variables. The
Bayesian network decomposes the joint probability by using conditional independence
between variables, which reduces the number of parameters and is a powerful tool for
probabilistic reasoning. The Bayesian network inference includes the posterior probability
problem, the maximum posterior probability problem (Maximum a Posterior estimate,
MAP), and the maximum probable explanation problem (most probable explanation,
MPE) (Chiribella et al., 2010). Generally speaking, probabilistic reasoning refers to the
problem of the posterior probability. At present, two heuristic algorithms, the maximum
potential search, and the minimum missing edge search, are commonly used. Shafer &
Shenoy (1990) proposed the clique tree propagation algorithm, which uses step sharing
to save at least half of the time to complete the posterior inference. In essence, the clique
tree propagation algorithm and the variable elimination method are the same, and both
are used for exact inference (Henckel, Perkovi & Maathuis, 2022). When the network nodes
are numerous and dense, the computational complexity is high. Thus, the approximate
reasoning algorithm is usually used. The typical approximate reasoning methods include
the random sampling method, including repetitive sampling and Markov Chain Monte
Carlo (MCMC) sampling; variable distribution method, including naive average length
method and loop propagation method; the model simplification method, including
removing variables with less influence and reducing the state space of variables; including
search-based algorithm, top-N algorithm, deterministic algorithm, MPE approximation
algorithm based on an ant colony, etc. (Sood, 2019).

It uses an adjacency matrix or adjacency list to represent a directed acyclic graph. In
the process of finding the final solution, every Bayesian network is a candidate, and the
Bayesian network is expressed as:

λ= (α,β) (1)

where λ is the number of nodes in the network. The topological structure of a Bayesian
network can be expressed as the following matrix form when it means that there is a
directed edge between node α and node β. When the direction is α, it means that there
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Figure 1 Topology of the traditional Bayesian network.
Full-size DOI: 10.7717/peerjcs.1466/fig-1

is no edge between node α and node β (Saengkyongam & Silva, 2020). The topology is
displayed in Fig. 1.

Bayesian networks adopt an adjacency matrix to represent the topological structure of
Bayesian networks, which can transform the changes in the abstract topological structure
into the changes in the elements of the matrix. The optimization algorithm is to optimize
the topology of the Bayesian network, in fact, it is to optimize its adjacency matrix (Khalifa
Othman et al., 2022).

Two-tuple classifier
A two-tuple, α represents a network topology with a set of attributes γ = (γ1,γ2,...,γn)
and class variables β (Xiangyuan et al., 2021). α is a DAG (Directed acyclic graph) as shown
in Fig. 2.

In a directed acyclic graph, the vertices in the graph represent any attribute, and the
edges in the graph represent the probabilistic dependencies between attributes.

The β in the two-tuple refers to a set of parameters used to quantify the entire Bayesian
network (Liu et al., 2021). Bayesian network classifier is a special type of Bayesian network
in classification problems. Given an unlabeled instance γ = (γ1,γ2,...,γn), the Bayesian
network classifier λ assigns a class label ϕ to γ with the maximum posterior probability by
Eq. (2) (Duan et al., 2020).

1ϕλ= argminρϕ′
n∑

i=1

ρ |αiβi| (2)

where, ρ represents the set of variables other than class variable for attribute in.

Binary improved algorithm
The constraint-based structure learning algorithm is to find out the conditional
independence relationship between nodes. If the nodes are conditionally independent,
there is no edge, otherwise, there is an edge between nodes, such as the PC (Peter-Clerk)
algorithm (Srivastava, Chockalingam & Aluru, 2020). The structure learning algorithm
based on the scoring search is to list all possible Bayesian network structures including
all nodes. Then, score each network structure with a specified scoring method. Finally,
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construct the Bayesian network structure according to a certain search strategy and scoring
criteria, such as the GES (Optimal Structure IdentificationWith Greedy Search) algorithm.
Mixture-based structure learning algorithm refers to the use of a conditional independence
test to reduce the complexity of the search space. Then, score search to find the optimal
Bayesian network, such as MMHC algorithm (Wang et al., 2019).

In this article, a binary adaptive Lasso algorithm called NS-DIST is proposed, in which
the first stage performs neighborhood selection. Then, the second stage estimates the DAG
by a discrete improved tabu search (DIST) algorithm based on steepest descent, loop
elimination, and tabu list in the selected neighborhood.

Binary clustering
Inspired by static group behavior and dynamic group behavior, the binary will be divided
into many subgroups and operated on different regions, which corresponds to the spatial
exploration stage. Binaries will also cluster together to form a large group of operations
along a direction, which corresponds to the stage of local mining. Binary behavior follows
the principles of grouping, separating, pairing, staying away from attacks, and being
attracted to the source of the target. Each binary in the population represents a solution
to the exploration space (Zhang, Petitjean & Buntine, 2020). Binary group movements
are determined by a number of basic operations: separation, alignment, cohesion, being
attracted to the target and staying away from the attack (Yosuf et al., 2022). Wherein the
target node is the individual position of the optimal fitness value explored by the population
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in history. The attacking node is the individual position of the worst fitness value explored
by the population in history. Separation refers to the static collision that occurs in order
to avoid separation from the individual next to it. Formation means that the speed of
an individual matches the speed of other individuals around him. Clustering refers to
the tendency of individuals to go to the center of the neighborhood (Nouri-Moghaddam,
Ghazanfari & Fathian, 2021).

In the process of binary clustering, as the domain radius of other individuals around an
individual becomes larger, they often cluster into small groups, cluster within the domain
radius, or expand the range of activities to stay away from attacks (Jumelet et al., 2021).

The behavior of the binary is influenced by the combination of these five modes. To
update the position and simulated movement of a binary in the search space, a step vector
and a position vector are introduced (Atoui et al., 2019).

The step vector represents the direction of binary movement, which is defined as:

1ft =
[
qWi+yRi+pUi+gKi+vHi

]
$1φt (3)

where 1ft is the mathematical modeling of the segregation behavior of the i th individual
in the subpopulation.

y is the mathematical modeling of the formation behavior of the i th individual in the
subgroup.

P is the target weight, which is the mathematical modeling of the behavior of the i th
individual attracted by the target.

One of the functions of v, which is the exchange function of the behavior of the i th
individual in the subgroup away from the attack, is to balance exploration and exploitation.

If the transformation function is unchanged during the iteration process, the probability
will be calculated in the same way throughout the optimization process. Changing the
transformation function may better balance exploration and development (Min et al.,
2020).

Penalty function
Penalized likelihood under the assumption of equal variance of latent variables, the final
form of the score function is:

λ(x)=

n∑
i=1

∣∣∣φkn−φjm∣∣∣ ·( 1
µit

)2

. (4)

In the score function, φkn is a data matrix of α×β.φjm is a data vector of the jth variable.
(n,m) is a coefficient vector, and

(
i,j
)
is a column vector of the jth row of the matrix φ.

Where, µij is estimated by canonical lasso regression and the initial penalty parameter is
given by Eq. (5):

µit =max
n∑

i=1

(
1∣∣θij∣∣
)2(

1
|F |−1

)2

(5)

where θij is the coefficient vector, and F represents the vector group of the undirected
neighborhood matrix.
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Pseudo-code for Bayesian network structure learning proposed in this paper is as follows: 
Input: data set data, node size ns, the maximum number of iterations T. 
Output: Bayesian network structure and its score values 
1: Randomly generate a plurality of network structures as search operators; 
2：Traversal search operator; 
3：Update parameters; 
4：for i=1:N do 
5：Symmetrized adjacency matrix; 
6：Binary value calculation; 
7：Judge whether the operation forms a loop or not; 
8：end{for} 
9：for i=1：N do 
10：The if facilitates the exploration phase then. 
11：Randomly generate a new network, if the new network is better than the current individual then 

replace individual 
12: Replace the individual 
13：end{for} 

5 Case Study 

Figure 3 Network model operation flow.
Full-size DOI: 10.7717/peerjcs.1466/fig-3

BAYESIAN NETWORK OPTIMIZATION MODEL
The Bayesian network structure learning algorithm proposed in this article mainly
calculates the optimal score, the optimal network structure, and the number of nodes
in the initialization stage. In the initial population stage, a plurality of random Bayesian
network structures is adopted as initial populations. Next, the optimal network structure
in the initial population is found, and its structure and score are given to the initialized
optimal network structure and score variables (Luo, Moffa & Kuipers, 2021). The improved
sine-cosine algorithm is adopted to search each individual in the population to obtain a
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new structure. The original individual is replaced when the score is higher than the original
individual. The operation process is displayed in Fig. 3.
Pseudo-code for Bayesian network structure learning proposed in this article is as follows:

Input: data set data, node size ns, the maximum number of iterations T.
Output: Bayesian network structure and its score values
1: Randomly generate a plurality of network structures as search operators;
2: Traversal search operator;
3: Update parameters;
4: for i =1:N do
5: Symmetrized adjacency matrix;
6: Binary value calculation;
7: Judge whether the operation forms a loop or not;
8: end{for}
9: for i =1:N do
10: The if facilitates the exploration phase then.
11: Randomly generate a new network, if the new network is better than the current

individual then replace individual
12: Replace the individual
13: end{for}

CASE STUDY
A case of the ATODEmodel when α1 acts as a super-parent variable is taken as an example.
It shows the whole process of the ESPODEI model which is obtained by extending
the corresponding SPODEI after the identification of the dependency relationship and
dependency direction between attributes.

(1) λ= (α,β) and the set of candidate parent variables are δ=φt .
Take the data set mfeat-mor for example, which has six attributes. ATODE needs to find

the root node under the condition β1. Therefore, it needs to calculate the corresponding
λ(αi |βi ),0≤ i≤ 6. The calculation results are displayed in Table 1.

Since the rule for the selection of the root node is to find the attribute with the maximum
value of λ(αi |βi ), the attribute α2 serves as the root node attribute, and α2 is added to
δ. At this point, when the root node α2 is found, it needs to be based on the conditional
log-likelihood function to identify conditional dependencies between the remaining
attributes [α2,α3,α4,α5].

(2) The conditional likelihood function values between the remaining attributes need
to be calculated, and the calculation results are displayed in Table 2.

In Table 2, INF-1 is the value that does not need to be calculated because an attribute
itself cannot serve as its parent node.

When the root node α2 enters the network structure, it can be seen from Table 2 that
the attribute λ(αi |βi ) has the largest value. Therefore, the attribute λ(αi |βi ) adds βi to its
parent attribute set and adds α2 to δ.

Under the condition of the candidate parent variable set δ, the value of the remaining
attribute [α3,α4,α5] is the largest, and the ESPODEI is established. The results of data
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Table 1 Data set calculation results (1).

Index Calculation results

α1 0.5718−1

α2 0.6369−1

α3 0.8451−1

α4 0.9045−1

α5 1.2827−1

Table 2 Data set calculation results (2).

Index β2 β3 β4 β5

α2 INF−1 0.4439−1 0.5384−1 0.6409−1

α3 0.3655−1 INF−1 0.5819−1 0.7281−1

α4 0.8367−1 0.9391−1 INF−1 1.5871−1

α5 1.4325−1 1.7365−1 1.9325−1 INF−1

calculation indicate that the conditional log-likelihood function in the likelihood function
is asymmetric. Thus, it is suitable to be used to identify the directionality of dependence.

SIMULATION EXPERIMENT ANALYSIS
Simulation platform construction
In this article, a federated transfer learning of a Bayesian network based on an improved
binary algorithm is proposed. By removing the restriction, each client must use k2 to learn
the Bayesian network algorithm. It eliminates the need for expert knowledge such as node
order. Based on the improved NOTEARS dual ascent method, the problem is that the non-
k2 algorithm will produce a ring after the binary is solved. Therefore, in the experimental
part of this article, the effect of network loop removal is firstly verified, compared with
the original NOTEARS algorithm applied to the loop removal process; secondly, the
performance of the improved binary algorithm is analyzed, and the NOTEARS algorithm
and the improved NOTEARS are compared by taking the particle swarm optimization
algorithm used by all participants as an example.

The configuration of the experimental platform is displayed in Table 3.
In this article, the NOTEARS algorithm proposed in (Lee & Kim, 2019) and the EM

algorithm proposed in (Wang, Ren & Guo, 2022) are adopted for horizontal comparison.
These two comparison methods are the mainstream algorithms at present.
(1) The NOTEARS algorithm is improved, and the loop removal operation is transformed

into a constrained optimization problem. Let W be the adjacency matrix of a graph
structure with k cycles. There will be non-zero elements on the k-power locus of its
adjacency matrix.

(2) EM algorithm, as an iterative algorithm, is a classical method for data completion in
the case of missing data (Saarela, Rohrbeck & Arjas, 2022). As a single-step iterative
algorithm, the main idea is to sample the current node with the knowledge of other
nodes, that is:
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Table 3 Experimental platform configuration.

Types Configuration

CPU Xeon P8378C 3.6Ghz 38 core/72 threads
RAM 128G DDR4
System Novell 5.0
Language interpreter python 3.11
Programming language Matlab 2022
Toolbox Full BNT 1.0.7

T n
=W

√
U
(
αi

∣∣∣→α j

)
(6)

where:T n is the nth iteration of the dataT,W is the number of data samples, andU
(
αi

∣∣∣→α j

)
represents the sampling values of other data except j.

Analysis of experimental results
Analysis of ring removal effect
The number of participants in federated transfer learning is 100, and the characteristics of
each participant are missing with a probability of 0.2. The Bayesian network generated by
particle swarm optimization is adopted to analyze the results.

The weight matrix represents the selection of each side by the participants. The larger
the weight is, the more votes are obtained. More such sides are expected to remain. The
evaluation index is as follows:

δ=
max

(
φi+φj

)
ηt

(7)

The binary algorithm proposed in this article is compared with theNOTEARS algorithm.
The calculation results are displayed in Fig. 4.

Figure 4 presents the results of the algorithm in this article and the NOTEARS algorithm
on the binarymatrixwithALARMand INSURANCEdata sets. It can be seen fromFig. 4 that
the number of edges retained by the NOTEARS algorithm in the ring removal process will
gradually decrease to zero with the increase of its parameters. Its value requires a heuristic
strategy. However, the edges retained by the algorithm in this article will gradually converge
to a fixed value with the increase of K. Table 4 indicates the final convergence of the edges
of the algorithm in this article in an average of 10 experiments on ALARM, INSURANCE,
CHILD and ASIA networks.

The proposed algorithm outperforms NOTEARS algorithm on almost all data sets and
outperforms the centralized learning method by a large margin on all given data sets. In
this article, we propose a Bayesian network federated transfer structure learning based
on the improved binary algorithm, which eliminates the limitation of the fixed learning
algorithm in the application of the binary algorithm in Bayesian network federated transfer
learning and makes the binary algorithmmore universal. The performance of the proposed
algorithm is verified by experiments.
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The binary algorithm proposed in this paper is compared with the NOTEARS algorithm. The 
calculation results are displayed in Fig. 4. 
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Fig. 4 presents the results of the algorithm in this paper and the NOTEARS algorithm on the binary 

matrix with ALARM and INSURANCE data sets. It can be seen from Figure 4 that the number of edges 
retained by the NOTEARS algorithm in the ring removal process will gradually decrease to zero with the 
increase of its parameters. Its value requires a heuristic strategy. However, the edges retained by the 
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the final convergence of the edges of the algorithm in this paper in an average of 10 experiments on 
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Index ASIA CHILD INSURANC
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Number of edge 

convergence 8 20 34 47 

Figure 4 Variation of different algorithms with the sum.
Full-size DOI: 10.7717/peerjcs.1466/fig-4

Table 4 Convergence data set of each network.

Index ASIA CHILD INSURANCE ALARM

Number of binary participants 200 200 200 200
Original sides 7 17 25 42
Number of edge convergence 8 20 34 47

Influence of the number of AP clusters on the ensemble
Among the 200 Bayesian regression sub-networks sorted by the validation set, the number
of clusters is set to 2-16 by changing the preference P of the AP clustering algorithm.
The prediction uncertainty weighting method is adopted to generate conclusions. The
traditional NOTEARS algorithm is introduced, and the error of the EM (Expectation-
Maximum) algorithm and the proposed algorithm is analyzed in the case of different
cluster numbers. Figure 5 presents the clustering error scatter.

In Fig. 5, X-Y is the prediction error accuracy range, where the Y -axis ‘‘-’’ value is the
unattracted node. The algorithm will eliminate this part, so only the ‘‘+’’ value is taken; O
is the best accuracy. O1 is the origin. B is the value radius, and A is the threshold range.

The comparative analysis data is shown in Table 5.
The error dispersion of the prediction model of this algorithm is better than other

methods in the comparison of clustering accuracy. The prediction model of the traditional
NOTEARS algorithm has better dispersion within the error threshold, but the dispersion
convergence outside the threshold is poor. The prediction model of the EM algorithm has
the lowest clustering accuracy.
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 Figure 5: Comparative analysis of the clustering error dispersion 
In Fig. 5, X-Y is the prediction error accuracy range, where the Y-axis "-" value is the unattracted 

node. The algorithm will eliminate this part, so only the "+" value is taken; O is the best accuracy. O1 is 
the origin. B is the value radius, and A is the threshold range.  

The comparative analysis data is shown in Table 5. 
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The error dispersion of the prediction model of this algorithm is better than other methods in the 
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The prediction model of the EM algorithm has the lowest clustering accuracy. 
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Table 5 Prediction error precision.

Index NOTEARS EM Algorithm

Average error value 1.2028 1.5637 1.9475
Error threshold spread 0.8501 0.8725 0.9378
Dispersion convergence 0.014 0.019 0.028

Table 6 Comparative analysis of errors of different models.

Index NOTEARS EM Algorithm

Prediction error 13.5254 15.7479 11.5058
Weighted mean 8.2476 9.9631 6.2776

Multi-model heterogeneous ensemble learning algorithm result
The strategy of predicting the uncertainty weighting method achieves the minimum
prediction error. The error comparison between different models is given in Table 6.

In Table 6, the model in this article achieves the smallest error and the highest accuracy.
The accuracy of the results is slightly higher than that of the traditional NOTEARS
algorithm and EM algorithm. This fully indicates that even if the prediction accuracy and
generalization ability of a single base model is limited, the heterogeneous ensemble learning
combined with multiple models can play a complementary role and effectively improve
the prediction accuracy and generalization ability of the final ensemble learning model.

Classifier robustness testing
The Spearman correlation coefficient is defined as the coefficient between the parameters
of the rank function. The rank of the function parameter value is selected to calculate
the probability distribution and the covariance of the probability distribution. Compared
with Pearson’s correlation coefficient, it is less affected by outliers, and the neural network
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Table 7 Robustness test analysis.

Index NOTEARS EM Algorithm

Spearman 0.0125 0.0256 0.0579
Pearson 0.0187 0.0319 0.0611

model that captures the nonlinear relationship is stronger. The calculation method is as
follows:

ψi(ts)=
σ∑
i=1

√(
ji−ki

)(
j ′i−k

′

i
) −1. (8)

In Eq. (8), the Spearman correlation coefficient between the parameters t and s of the
function ψ , where σ represents the number of samples, and j,k,j ′,k ′ represents the rank
of the ith observation of the jth function parameter. The test results are shown in Table 7.

Considering that the covariance vector space, namely Pearson correlation coefficient
vector space, measures the degree of strict functional connection between two sets of
database data series. However, when expressing some data links with obvious random
process and correlation relationship, the Spearman correlation coefficient has better
performance than Pearson correlation coefficient. Tests indicate that the Spearman
correlation coefficient is more robust than Pearson correlation coefficient in capturing
positive correlation.

DISCUSSION
Through the simulation experiment and the performance analysis of the basic structure
of the model, the accuracy of the algorithm in this article, the NOTEARS algorithm and
the EM algorithm were compared. Then, the causal value was calculated. The accuracy of
causal effect data was further improved by simulating various real-time situations with
different deep learning models and sample sizes. Finally, a conclusion was drawn to prove
that the proposed algorithm was obviously superior to other comparative algorithms
in the heterogeneous ensemble learning algorithm of multiple models. In the classifier
robust performance test, it was also significantly better than the traditional classification
algorithm.

CONCLUSION
In this article, a heuristic search strategy was adopted to relax the independence assumption
of SPODE by exploring the high-order dependencies between attributes.
(1) In the process of structure extension, it not only realizes the recognition of the

dependency relationship between attributes, but also takes into account the direction
recognition of the dependency relationship, and identifies the parent–child relationship
between dependencies.

(2) In the case of large-scale data, the advantages of classification accuracy and bias are
more significant.
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(3) According to the experimental analysis, the binary classification model is applied to
the network data set. The performance of the model is evaluated by comparing the
differences in classification accuracy of each model. The results verify that the Bayesian
network model based on the binary classification optimization algorithm is superior
to the comparison method in all test results, and can be used in a variety of classifier
models, with a certain degree of universality. At the same time, thismethod can improve
the classification accuracy of many traditional classifiers, so it can play an important
role in practical applications.
The logarithmic likelihood function can take into account both the dependence and

the directional dependence, so it is a very effective measure. It is also valuable to use the
log-likelihood function in other improvements of Bayesian network classifiers, such as
attribute weighting and model weighting. Therefore, the research on the selection and
weighting of Bayesian network classifiers using the log-likelihood function will be the next
research direction and focus.
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