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The past decade has seen substantial growth in online transactions. Accordingly, many
professionals and researchers utilize deep learning models to design and develop
recommender systems to suit the needs of online personal services. These systems can
model the interactions between users and items. However, existing approaches focus on
either modeling global or local item correlation and rarely consider both cases, thus failing
to represent user-item correlation very well. Therefore, this paper proposes a deep
collaborative recommendation system based on a convolutional neural network with an
outer product matrix and a hybrid feature selection module to capture local and global
higher-order interaction between users and items. Moreover, we incorporated the weights
of Generalized matrix factorization to optimize the overall network performance and
prevent overfitting. Finally, we conducted extensive experiments on two real-world
datasets with different sparsity to confirm that our proposed approach outperforms the
baseline methods we have used in the experiment.
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30 Abstract

31 The past decade has seen substantial growth in online transactions. Accordingly, many 

32 professionals and researchers utilize deep learning models to design and develop recommender 

33 systems to suit the needs of online personal services. These systems can model the interactions 

34 between users and items. However, existing approaches focus on either modeling global or local 

35 item correlation and rarely consider both cases, thus failing to represent user-item correlation 

36 very well. Therefore, this paper proposes a deep collaborative recommendation system based on 

37 a convolutional neural network with an outer product matrix and a hybrid feature selection 

38 module to capture local and global higher-order interaction between users and items. Moreover, 

39 we incorporated the weights of Generalized matrix factorization to optimize the overall network 

40 performance and prevent overfitting. Finally, we conducted extensive experiments on two real-

41 world datasets with different sparsity to confirm that our proposed approach outperforms the 

42 baseline methods we have used in the experiment. 

43 Keywords: Recommender Systems, Outer Product, Convolutions, Embedding, Collaborative 

44 Filtering

45

46 1. Introduction

47

48 The large amounts of information generated by online services have recently challenged online 

49 users to identify meaningful recommendations. However, recommendation systems can help 

50 users find valuable information faster, and they are frequently utilized in services such as e-

51 Commerce(L. C. Chen et al., 2016), social media recommendations(Guy et al., 2010), and online 

52 video services(Covington et al., 2016).

53 Traditional approaches provide recommendations based on the similarities between users and 

54 items, which can be categorized into collaborative filtering, content-based, and hybrid 

55 recommendation systems (Lu et al., 2015). Collaborative filtering has been researched and 

56 heavily used in systems based on personal recommendation. It utilized the possibility of items 

57 users may be interested in based on their historical interactions (Breese et al., 1998). 

58 Furthermore, content-based uses additional features about users or items to recommend similar 

59 items (Çano & Morisio, 2017; Javed et al., 2021). Finally, the hybrid method combines two or 

60 more recommendation techniques (Çano & Morisio, 2017).

61 Most traditional recommendation systems are limited when a large amount of data is to be 

62 analyzed (Gasmi et al., 2020), Moreover, they rely on a linear kernel that does not fully represent 
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63 user-item interaction. Accordingly, researchers have recently adopted Deep learning-based 

64 approaches to develop recommender systems (Pan et al., 2020) since they can learn complex 

65 nonlinear relationships and handle various data types. Several deep learning-based methods have 

66 been proposed due to their ability to deal with high-dimensional features effectively. 

67 Collaborative deep learning methods based on matrix factorization are known to provide 

68 satisfactory performance (He et al., 2017)(H. Zhang et al., 2016). Matrix factorization represents 

69 a given user and item as an embedding and learns their relationship using an inner product 

70 between the user and item embeddings. Despite its effectiveness, matrix factorization is limited 

71 since it uses an inner product as the interaction function(He et al., 2018), which assumes that the 

72 embedding dimensions are independent of each other and perform a multiplication between 

73 them, thus limiting the expressiveness of the model.

74 In this study, we proposed a recommender algorithm using a hybrid feature selection module 

75 (HSFM) to capture the useful global and local high-dimensional relationship between users and 

76 items. Our proposed approach utilizes convolution to capture the valuable nonlinear relationship 

77 between users and items by learning the outer product matrix. To verify the effectiveness of our 

78 model, we conducted experiments on two real-world datasets, Movielens and Pinterest. 

79 Experimental results demonstrate that our proposed model outperforms the baseline methods 

80 significantly. The main contribution of the paper is summarized as follows:

81 1. The stack interaction map is introduced to increase the input features expressiveness and 

82 allow the interaction map to encode more latent signals.

83 2. To effectively capture the correlations between items, we also leverage a hybrid feature 

84 selection module, which uses pointwise convolution and general average pooling to learn 

85 both local and global item correlations. 

86 3. We also incorporate Generalized Matrix Factorization (GMF) to constrain the network's 

87 weight which optimizes the network performance and prevents overfitting.

88 4. We conducted an extensive experiment on two publicly available datasets to demonstrate 

89 the effectiveness of our proposed model.

90 The remainder of the paper is structured as follows. First, Section 2 reviews related works, and 

91 Section 3 elaborates on our proposed method. Then, the experimental results on the two datasets 

92 are reported in Section 4. Finally, we conclude this paper in Section 5.

93

94 2. Related Works

95

96 In this section, traditional recommender systems were examined on how they model the 

97 similarity between users and items; second, we also look at deep learning techniques due to their 

98 high-quality recommendation performance and better ability to learn the relationship between 

99 users and items.
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100   2.1 Traditional Recommender Systems

101

102 Many recommender algorithms are based on collaborative filtering(Adomavicius & Tuzhilin, 

103 2005), which depends on users' past behavior to make predictions. Collaborative filtering-based 

104 recommendations are divided into latent factor methods (Koren et al., 2009) and neighborhood-

105 based methods(Sarwar et al., 2001). Neighborhood-based approaches utilize ratings directly to 

106 evaluate new items for users. Such models are based on the similarities between a user to a user 

107 or item to an item. The similarity between two items is measured as the probability of users 

108 rating those items' similarly, which is usually based on the Pearson correlation. On the other 

109 hand, the latent factor models users and items as vectors using the same latent space by reducing 

110 the number of hidden factors. Latent factors compare users and items directly, where a user's 

111 rating of an item is predicted using the inner product between related latent vectors.

112 Singular value decomposition(Koren et al., 2009) reduces the number of user-item features to a 

113 product of two low-rank matrices. However, one of its drawbacks is the high cost of locating 

114 singular value decomposition. Another approach that enhanced the singular value decomposition, 

115 SVD++(Koren, 2008), uses implicit and explicit feedback to provide a recommendation and 

116 demonstrate improved performance over many matrix factorization models.

117 Generally, traditional recommender algorithms use a linear kernel that does not better represent 

118 the user-item relationship.

119   2.2 Deep Learning Base Recommender System

120

121 Deep learning has developed extensively in the past decade and has been implemented in various 

122 fields, such as computer vision, speech recognition, and natural language processing(W. Zhang et 

123 al., 2018). Deep learning learns features directly from data and performs feature engineering 

124 automatically, and it has been studied extensively in recommendation systems. The deep 

125 learning-based models have demonstrated significant performance over the traditional 

126 recommendation system(Singhal et al., 2017). For instance, Neural collaborative filtering (He et 

127 al., 2017) utilizes a multilayer perceptron to model the interaction function as it represents users 

128 and items as a low-dimensional vector in latent space. 

129 In another research, deep matrix factorization (DMF) (Xue et al., 2017) utilizes a matrix 

130 factorization and a neural network architecture, which uses explicit scores of users and non-

131 preference implicit feedback of items. 

132 The correlation denoising autoencoder (Pan et al., 2020) considers the correlation between users 

133 with diverse roles to learn a more robust representation from sparse ratings and social networks. 

134 It uses three autoencoders to learn user features taking them as a separate matrix of rating, 

135 truster, and trustee. The authors (Liu et al., 2020) couple deep neural networks with matrix 
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136 factorization and learn the deep global and local item relationship of item content by coupling 

137 autoencoder with matrix factorization to join the rating and item content information.

138 Convolutional neural networks (LeCun et al., 1998) are prevalent in image recognition, and they 

139 are generally made up of a convolution layer, pooling, and a fully connected layer. Convolutions 

140 are also used in recommender systems to model the interaction map. For instance, the 

141 convolutional factorization machine(Xin et al., 2019)  is a recommender model that is context 

142 aware; it uses self-attention, an embedding layer, and a pooling layer. The authors also used an 

143 outer product interaction cube coupled with a 3D convolutional neural network to extract higher-

144 order signals. In another research, the authors of ConvNCF (He et al., 2018)also utilize an outer 

145 product to explicitly model pairwise correlation instead of just concatenating or mere element-

146 wise multiplication of the embedding. In addition, they also use a convolutional neural network 

147 above the interaction map to learn higher-order correlations.

148 Convolutional Factorization Machine and ConvNCF use regular convolution, which helps learn 

149 local features and does not learn global features well. 

150 Our proposed hybrid feature selection uses deep neural networks to learn both local and global 

151 item correlation between users and items. In addition, we incorporate GMF into the model to 

152 optimize the overall model performance and prevent overfitting.

153

154 3. Our proposed methods

155

156 3.1 Input and Embedding Layer

157 Given a user u and item i,   and  represent the feature vectors of U and I respectively, and ��� ���
158 their embeddings can be represented as:

159

160                      ,                                                                                   (1)�� = ����� �� = �����
161

162 Where   and  represent the embedding matrix for the user and item � ∈ �� × � � ∈ �� × �
163 features, M, N, and K represent the number of users, the number of items, and the embedding 

164 size, respectively.

165

166 3.2 Interaction Map

167 The outer product was utilized to generate the interaction map since it can learn more 

168 information between latent features. For example, the outer product between a user and an item 

169 can be defined as:
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170                                                                         (2)��⨂��
= ��� = (

��
1
��

1
� ��

1
���⋮ ⋱ ⋮�����

1
⋯ ������)

171  where m and n represent row vectors and denote K-dimensional latent vectors.

172 If   and  then  and  are used to obtain the interaction map, and it can be �� = �� �� = �� �� ��
173 represented as:

174                                                                                                                (3)�(��,��) = ��⨂�� = �����
175 where  represents a  matrix.�(��,��) � × �
176

177 Matrix factorization is not robust for modeling user-item correlation because it considers only 

178 diagonal elements and performs simple concatenation. However, the outer product is more robust 

179 and encodes more latent signals. The interaction map obtained by the outer product has one pair 

180 of latent factors, which may not perform well in the 2D convolution. As a result, we stack the 

181 interaction map into a k number of features concatenated along the dimensions. The latent signal 

182 of the interaction map determines the k-dimension features passed as input into the 2D 

183 convolution. Therefore, the increase in latent features makes the interaction map encode more 

184 relational signals, thus making it more expressive. Furthermore, the higher the number of k, the 

185 feature dimension of the input to the convolution also increases, making the model more memory 

186 and computationally intensive. However, k values greater than three do not guarantee an increase 

187 in the accuracy of the model and occasionally lead to overfitting.

188 3.3 Convolution Module

189 The stack interaction map that encodes richer latent features is used as the first input to the 

190 convolution module. The convolution module is a three-layer convolution that learns the local 

191 features between users and items. The first convolution is the input layer, followed by the two 

192 hidden layers, which help to learn more meaningful information between the users and items. 

193 The input convolution layer takes the input channel of the stack interaction map, an output 

194 channel size of 32, and a kernel size of 2, while the hidden layer utilizes input and output 

195 channels of 32 with a kernel size of 2. The convolution layer is mathematically represented as:

196                                                                                   (4)���(�,�) = ∑�∑��,����(��,��) ∗ ���(�,�)

197 Where * is the convolution,  represent the element of the feature matrix,   ���(�,�) ��(��,��)
198 represents the element of the input stack interaction map  of channel c, which is element-wise ��
199 multiplied by  index of the kth convolution kernel  of the lth layer. The feature map of ���(�,�) ��
200 the kth convolutional operation can be expressed as:
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201 ]                                                                                    (5)��� = [���(1,1),..,���(�,�),..,���(�,�)
202

203   represent the input feature matrix for the lth layers and kth neuron, A and B represent the ���
204 total number of rows and columns of the feature matrix, respectively.

205 A convolution block or network can obtain multiple convolutional layers, dropout, and activation 

206 map for extracting meaningful information and adding non-linearity to learned complex patterns. 

207 In addition, a dropout layer is introduced to reduce overfitting, which negatively impacts the 

208 model prediction.

209

210 3.4 Hybrid Feature Selection Module (HFSM) 

211 The convolution module with a stacked interaction map which is used as input to our model, is 

212 prone to overfitting. However, it can capture relational representation well. The convolutional 

213 module introduced in section 3.3 is followed by a dropout layer and ReLU(Agarap, 2018)  

214 activation function. Nevertheless, the dropout minimizes overfitting at the expense of removing 

215 valuable feature relational representation. Therefore, we suggest the hybrid feature selection 

216 module (HSFM) to bridge the gap between overfitting and losing valuable information. The 

217 HSFM module takes in two inputs, y, and x, representing the output before dropout and after the 

218 ReLU activation function.  

219

220 The HFSM aggregates two distinctive features to complement each other. A convenient 

221 approach to aligning two distinct feature relationships is to learn their local relationship, which 

222 can be obtained using pointwise convolutions. Therefore, the inputs x and y are summed and 

223 passed to two branches. The first branch accesses the global feature using general average 

224 pooling (GAP), and the second focuses on the local feature relationship. The two branches have 

225 two pointwise convolutions, each followed by binary normalization that minimizes the feature 

226 variation and a ReLU non-linearity. Finally, the HFSM combines global and local relationships 

227 by applying sigmoid activation on the sum of the two-branch feature, which is expressed as:

228

229                                                                                 (6)��� = �⨂�(�) + �⨂(1 ‒ �(�))

230 where  represents the sigmoid function and m is the summation of the global and local �
231 branches.

232 Generally, hybrid feature selection modules access the global and local relationships from the 

233 two distinct branches that complement each other to extract better feature representation without 

234 introducing overfitting.
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235 3.5 Generalized Matrix Factorization

236

237 GMF learns from data without uniform constraints and is more expressive than linear Matrix 

238 Factorization. Therefore, we combine the losses of GMF(He et al., 2017) and our proposed 

239 model to update the overall model weight, which obtains a better result and further avoids 

240 overfitting. GMF uses an element-wise product of a latent vector of users  and items    , �� ��
241 which can be represented as:

242                                                                                                            (7)����
= �1(��,��) = ��⨂��

243 The prediction of GMF is also represented as:

244                                                                                                                                (8)��� = �[ℎ�����]

245 Where  represents the sigmoid given as   and h is the weight of the output � �(�) = 1 (1 + � ‒ �)

246 layer.

247 3.6 Fusion of our Proposed Method and GMF

248 Fusion in a convolutional network joins two or more features using an element-wise product, 

249 element-wise summation, or concatenation. Concatenation provides a better representation of 

250 latent features at the expense of computational complexity and memory consumption. 

251 Alternatively, features can be fused by combining the losses of different network modules, 

252 constraining the model's overall weight by considering the submodules' special functions.

253 The proposed network uses Bayesian Personalized Ranking (BPR), a pairwise loss function, 

254 since it measures the dependency between data points and can measure the complex relationship 

255 between data points. It can be represented as follows:

256                                                                               (9)ℒ1 = ∑�� = 1
∑� ∈ � +� ,� ∈ � ‒� ‒ ����(����) +  �Ω(Φ)

257 Where  is the sigmoid function and  is the ���� = ����� ‒ �����,�(�) = 1 (1 + ���( ‒ �)) ��(�)

258 regularization

259 On the other hand, the GMF model utilized the log loss function, which is a pointwise loss 

260 function, and it is easily computable and differentiable by the optimizer. Pointwise loss is also 

261 more flexible since it can be applied in many applications and is robust to outliers and noise in 

262 data. It can be expressed as:

263                                                       (10)ℒ2 =  ‒ ∑(�,�) ∈ ℛ + ℛ ‒ [���log ���) + (1 ‒ ���)log (1 ‒ ���)]

264 where  represents positive a training instance,  represents the set of negative training � + � ‒
265 instances and ,  is the prediction and label of the GMF.��� ���
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266                                                    (11)���� = � ∗ �1 + � ∗ �2
267 where  is the BPR loss,  is the log loss for the GMF, and  and  are the weighted �1 �2 � �
268 coefficients.

269 The  combined  to constrain the weight of the overall proposed method, ℒ��� ℒ1, ��� ℒ2

270 essentially avoiding overfitting and further improving the recommendation performance. In 

271 addition, we added the weighted co-efficient  and  values 0.5 and 0.75, respectively, to tune � �
272 the impact of the sub-networks losses for the ease of model minimization as the training epochs 

273 increase.

274  3.7 Final Prediction Layer

275 The output of the HFSM is reshaped and flattened using a fully connected layer to facilitate the 

276 output prediction. Finally, the result is passed into a sigmoid function to calculate the final 

277 prediction score. The array of scores  and  represent the prediction scores of GMF and the ��� ���
278 proposed CNN-based model, respectively.

279

280 4. Experiments

281 The subsequent section presents our experiments on two publicly available datasets to answer the 

282 following questions:

283 RQ1 Does the proposed model outperform the baselines in top k recommendations?

284 RQ2 Is the proposed stacking of the interaction map helpful for learning from user-item 

285 interaction and improving recommendations?

286 RQ3 How do key hyperparameter settings influence the performance of our model?

287

288  4.1 Experimental Settings

289  4.1.1 Datasets

290 Movielens 1M is a movie rating dataset that contains around 1 million ratings of around 3900 

291 movies by 6040 users in which there are 5-grade ratings, and each user rated at least 20 items. It 

292 is a widely used data set for evaluating recommendation performance.

293  

294 Pinterest is an implicit feedback dataset constructed by (Geng et al., 2015) for evaluating 

295 content-based image recommendations. It has 55187 users and 9916 items. The original dataset 

296 is sparse, but the preprocessed contains at least 20 interactions. Each interaction represents if a 

297 user has pinned an image to their board.

298
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299  4.1.2 Evaluation Protocols

300 We use leave-one-out evaluation, a popular method for testing the quality of the ranking for the 

301 recommendation. For each user,256 unrated items are used as test data. We used the hit ratio 

302 (HR) and the normalized discounted cumulative gain (NDCG) as the evaluation matrix. Both 

303 metrics were calculated for each user, and the average scores were reported.

304 The hit ratio represents the relevant time items in the top-n list of an individual user that appear. 

305 It can be represented as:

306

307                                                                                                                        (11)��@� =
ℎ����

308 Where n represents the number of top n items generated from the methods, a higher value 

309 denotes better performance.

310 NDCG is sensitive to the relevance of higher-ranked items and assigns higher scores to the 

311 correct recommendations at a higher rank in the list. NDCG is defined as follows:

312

313                                                                                                                                (12)                ����� =
���������

314

315   where            ����� = ∑|����|� = 1

2
���� ‒ 1

log2 (� + 1)

316    = list of useful items and p = positionℜ��
317                                                                                          (13)���� =  ∑(�,�) ∈ ℛ����(��,� ‒ ��,�)2

|ℛ����|
318                                                                                  (14)��� =  

1

|ℛ����|∑(�,�) ∈ ℛ����|��,� ‒ ��,�|
319  Where   represents the actual rating,   represents the prediction and   represents  the ��,� ��,� ℛ����
320 number of ratings in the test set.

321  4.1.3 Baselines

322 To justify the effectiveness of our proposed model, we compare it with the following baselines:

323

324  MLP(He et al., 2017) is a neural collaborative filtering approach that reduces the 

325 matrix of users and items into two submatrices and multiplies them together to 

326 learn the interaction function.

327  GMF (He et al., 2017) uses a scalar product to model the interaction between 

328 users and items by reducing their metrics into two summaries.
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329  DMF(Xue et al., 2017) uses matrix factorization coupled with neural network 

330 architecture. It also projects users and items into lower-dimensional vectors in 

331 latent space.

332  NeuMF(He et al., 2017) is an item recommendation method that joins hidden 

333 layers of GMF and MLP to model the user-item interaction function.

334  ONCF(He et al., 2018) uses a convolutional neural network with an outer product 

335 to model the correlation of user-item correlation; it is an improvement of Matrix 

336 Factorization.

337  SDMR  (Tran et al., 2019) utilized deep learning to learn the signed distance 

338 between users and items and produce a recommendation based on the learned 

339 signed distance. Specifically, signed distance measures the difference or similarity 

340 between two items. SDMR combines two signed distance scores internally: 

341 signed-distance base perceptron (SDP) and signed distance base memory network 

342 (SDM). 

343  CoCNN(M. Chen et al., 2022) CoCNN Joins a co-occurrence pattern and 

344 Convolutional Neural network to collaborative filtering with implicit feedback. 

345 The authors also designed an embedding structure to capture the link between 

346 user-item and item-item. They also proposed a multi-task neural network to share 

347 the knowledge of the two tasks.

348

349       4.1.4 Parameter Settings

350       We implemented our proposed model using Pytorch on Nvidia GTX 1080. All models were 

351 optimized using Mini-batch Adagrad, and the learning rate is searched between 

352 [0.001,0.0001, 0.00001,0.000001, 0.00000001]. The batch size is 256, and the embedding 

353 size is 64. ONCF and our proposed model used a channel size of 32. We also use a dropout 

354 of 0.2 for our CNN-Based and 0.5 for our CNN-Based+HFSM and CNN-Based +HFSM 

355 +GMF model.

356  

357 4.2 Performance Comparison (RQ1)          

358

359 Table 1 :

360 compares different models when generating top-k recommendations on two datasets. k ∈ {10}. The boldface 

361 denotes the persistently increased scores of our proposed networks.

362 Table 1 shows a comparison between our proposed model and the baselines that we used in the 

363 experiment. The performance evaluation used for the comparison utilized HR@10 and 

364 NDCG@10. In addition, for a fair comparison, we trained all the baseline models using BPR 

365 loss.
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366 1. Table 1 shows that ONCF has outperformed MLP, GMF, NeuMF, DMF, and SDMR by 

367 both HR@10 and NDCG@10 on both datasets. 

368 2. The CNN based on our proposed model has outperformed ONCF by a significant margin 

369 in both datasets since it does not lose much information during feature extraction to 

370 establish local relationships. In addition, The CNN-based approach utilizes stacking of 

371 the interaction map to encode better latent signals and establish a better user-item 

372 relationship.

373 3. The CNN-based approach of our proposed method does not capture the global 

374 relationship in the interaction map. Therefore, we introduced the HSFM module for the 

375 model to learn global relationships in addition to local ones. This mechanism has also 

376 improved performance over the CNN-based in HR and NDCG scores, respectively.

377 4. The fusion of GMF and our proposed method constrain the overall model weight, thus 

378 allowing the model to benefit from sub-networks. This combination obtained the best 

379 performance in our proposed methods on both datasets.

380 5. Since all the networks are trained on the BPRLoss, our proposed model performed better 

381 than the baselines on both datasets. Moreover, the proposed method obtained a 

382 remarkable performance on not only the CNN-based global and the local feature 

383 interaction for high relational modeling but the hybrid of the GMF sub-network, which 

384 shows promising results and further constrains the model weight. However, these benefits 

385 come at the expense of computation complexity.

386

387 Figure 1 shows the graphical representation of the performance of our best-proposed method compared to the 

388 baselines using HR@10 and NDCG@10. (a)(b) and (c)(d) demonstrate the performance on the MovieLens and 

389 Pinterest datasets, respectively.

390 From the charts in Figure 1, our best-proposed model has significantly outperformed the baselines 

391 on both datasets at HR and NDCG evaluation metrics. Furthermore, among the baselines, 

392 NeuMF outperformed MLP, but it is entirely defeated by GMF, demonstrating that GMF is a 

393 simply designed yet powerful prediction model. On the other hand, NeuMF does not achieve the 

394 desired result, which may result from the selected optimizer or the poor performance of the 

395 underlying MLP in the sparse datasets.

396 Table 2:

397 shows the performance of our proposed model against the baselines on RMSE, MAE, and BPR Loss.

398 To further evaluate the efficiency of our model, we use RMSE, MAE, and BPRLOSS and compare 

399 them to the baselines. Table 2 shows that our proposed model has effectively reduced the loss 

400 more than the baselines, thus indicating a strong minimization ability during the model training.

401 4.3 Efficacy of stacking the interaction map (RQ2)

402
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403

404 Table 3:

405  shows the performance of the stack@n of the interaction map as the input to our simple Cnn-based proposed 

406 model. n ∈ {1, 2, 3}.

407 The stacking of the interaction map increased the latent signal, which allowed our proposed 

408 model to establish strong user-item relationships. From Table 3, the experiments demonstrated 

409 that the increase in the stacking of the interaction map has a proportionate impact on the 

410 effectiveness of the model performance. However, beyond stack@3, the model incurred 

411 overfitting, which impaired the model performance.

412

413 4.4 Research of hyper-parameter (RQ3)

414

415 Figure 2 shows the performance of our best model using different channel sizes on the movielens dataset

416 In this section, we investigated how the increased convolutional feature maps (channel size) 

417 impact the representation ability of our top-performing proposed model. As a result, we 

418 experimented with different channel sizes c ∈ {16, 64, 128}. Figure 2 shows the performance of 

419 our best model using different channel sizes on the movielens dataset. We can observe that the 

420 increased number of channel sizes also improves the model's performance. However, these 

421 performance gains come at the expense of increased computational complexity and are time-

422 consuming during training.

423 Furthermore, the charts show that all the curves increase steadily, and the feature map at 

424 channel 128 achieves the best performance. Moreover, channel 64 steadily outperformed 

425 channel 16 until the final epochs, where a slight difference in the convergence curve was 

426 noticed. These reflect our proposed model's strong expressiveness and generalization since 

427 increasing the number of parameters adjust the model performance and does not lead to 

428 overfitting.

429

430 5 Conclusions

431 In this paper, we proposed a deep learning convolutional-based recommender system for 

432 modeling user-item correlation. The proposed method utilized convolution mechanisms for 

433 local-global feature selection and combined the generalized matrix factorization (GMF) to 

434 establish a more robust user and item relationship model that improved accuracy without 

435 overfitting. We conducted a series of experiments with two real-world datasets, and 

436 corresponding experimental results demonstrated that our proposed model has a higher 

437 recommendation accuracy and surpasses the baselines in the top-k recommendation task. In the 

438 future, we plan to explore other forms of deep learning techniques, such as transformers, to 

439 integrate better global user-item relationships beyond convolutional techniques.
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440

441 Data Availability 

442 Data Availability 

443 The original datasets used in this work are publicly available at:

444 Movielens datasets: GroupLens Research has collected and made available rating data sets from the 

445 MovieLens website (https://grouplens.org/datasets/movielens/). The data sets were collected over various 

446 periods of time, depending on the size of the set.

447 The Pinterest dataset contains over 1 million images associated with users who have "pinned" them. This 

448 repo contains the full Pinterest dataset released with the paper "Learning Image and User Features for 

449 Recommendation in Social Networks" by Xue Geng et al. in CSV form at: 

450 https://drive.google.com/file/d/0B0l8Lmmrs5A_REZXanM3dTN4Y28/view?resourcekey=0-

451 jj1wN8qv3fyaP_6vFpGBEg

452 The preprocessed dataset used in our research is formatted the same as the paper (He et al., 2017) and is 

453 available at: https://github.com/Baboucar/HSFR/tree/master/HSFR/data

454 The source code used in this work is available at: https://github.com/Baboucar/HSFR/tree/master/HSFR
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Figure 1
Figure 1 shows the graphical representation of the performance of our best-proposed
method compared to the baselines using HR@10 and NDCG@10. (a)(b) and (c)(d)
demonstrate the performance on the MovieLens and Pinterest datasets, respectively.
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Figure 2
Figure 2 shows the performance of our best model using different channel sizes on the
movielens dataset
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Table 1(on next page)

compares different models when generating top-k recommendations on two datasets. k
∈ {10}. The boldface denotes the persistently increased scores of our proposed
networks.
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1 Table 1: Comparison between different models when generating top-k recommendation on two 

2 datasets. k ∈ {10}. Boldface denotes the persistently increased scores of our proposed networks.

3

4  

5

6

7

8

9

10

11

12

13

14

15

Movielens Pinterest

HR@K NDCG@K HR@K NDCG@K

MLP 0.3474 0.1997 0.1874 0.0932

GMF 0.4680 0.2633 0.2728 0.1402

NeuMF 0.301 0.2159 0.2267 0.1167

SDMR 0.2397 0.1203 0.1148 0.0537

DMF 0.2051 0.1143 0.2057 0.0787

ONCF 0.3874 0.2004 0.2780 0.1350

Cocnn 0.5796 0.3288 - -

CNN-Based 0.9305 0.3314 0.9301 0.3313

CNN-Based+HSFM 0.9589 0.3416 0.9472 0.3374

CNN-Based +HSFM +GMF 

(ours)

0.9733 0.3467 0.9691 0.3452
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Table 2(on next page)

shows the performance of our proposed model against the baselines on RMSE, MAE, and
BPR Loss.
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1 Table 2: show the performance of our proposed model against the baselines on RMSE, MAE, 

2 and 

3 BPR 

4 Loss

5

6

7

8

9

10                          

11

12

13

14

15

16                     

17

18

19

20            

21      

22

23

                                                      ML-1M

RMSE MAE BPRLOSS

MLP 0.3218 0.1543 0.1281

GMF 0.327 0.1999 0.8028

NeuMF 0.3181 0.1533 0.1321

SDMR 8.705 7.6734 0.6933

DMF 0.2565 0.1324 -

ONCF 0.2818 0.2358 0.0158

Cocnn 0.5413 0.3666 0.0861

CNN-Based +HSFM +GMF 

(ours)
0.0226 0.0759 0.0023
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Table 3(on next page)

shows the performance of the stack@n of the interaction map as the input to our simple
Cnn-based proposed model. n ∈ {1, 2, 3}.
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1 Table 3: show the performance of the stack@n of the interaction map as the input to our simple 

2 Cnn-based proposed model.  n ∈ {1, 2, 3}.

              Movielens   Pinterest

HR@K NDCG@K HR@K NDCG@K

Stack@1 0.9042 0.3221 0.9198 0.3276
Stack@2 0.9563 0.3407 0.9390 0.3345
Stack@3 0.9767 0.3479 0.9473 0.3374

3

4

PeerJ Comput. Sci. reviewing PDF | (CS-2023:01:81678:1:2:NEW 1 May 2023)

Manuscript to be reviewedComputer Science


