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ABSTRACT
The integration of image segmentation technology into packaging style design signif-
icantly amplifies both the aesthetic allure and practical utility of product packaging
design. However, the conventional image segmentation algorithm necessitates a
substantial amount of time for image analysis, rendering it susceptible to the loss of vital
image features and yielding unsatisfactory segmentation results. Therefore, this study
introduces a novel segmentation network, G-Lite-DeepLabV3+, which is seamlessly
incorporated into cyber-physical systems (CPS) to enhance the accuracy and efficiency
of product packaging image segmentation. In this research, the feature extraction
network of DeepLabV3 is replaced with Mobilenetv2, integrating group convolution
and attention mechanisms to proficiently process intricate semantic features and
improve the network’s responsiveness to valuable characteristics. These adaptations
are then deployed within CPS, allowing the G-Lite-DeepLabV3+ network to be
seamlessly integrated into the image processing module within CPS. This integration
facilitates remote and real-time segmentation of product packaging images in a
virtual environment.Experimental findings demonstrate that the G-Lite-DeepLabV3+
network excels at segmenting diverse graphical elements within product packaging
images. Compared to the original DeepLabV3+ network, the intersection over union
(IoU)metric shows a remarkable increase of 3.1%,while themeanpixel accuracy (mPA)
exhibits an impressive improvement of 6.2%. Additionally, the frames per second
(FPS) metric experiences a significant boost of 22.1%. When deployed within CPS,
the network successfully accomplishes product packaging image segmentation tasks
with enhanced efficiency, while maintaining high levels of segmentation accuracy.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Data Mining and Machine
Learning
Keywords Image segmentation, Product packaging design, Cyber-physical systems, Deeplabv3,
Attention mechanism

INTRODUCTION
Packaging serves as a highly intuitive means to evoke the desire to purchase among
consumers. By interacting with product packaging, consumers gather essential information
about the product and make purchasing decisions (Frierson, Hurley & Kimmel, 2022).
Consequently, it is crucial that the design style of product packaging aligns with consumers’
consumption psychology and is easily recognizable (He, 2022). Modern product packaging
heavily relies on graphic elements as a primary design approach (He, 2022). This design
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style can forgo textual descriptions and instead rely on interesting and vibrant graphic
elements to convey product information in a more intuitive manner, swiftly attracting
buyers and boosting product sales (Qiao & William, 2021;Xu, 2022). Given the intensifying
competition within the product market and the continuous advancements in computer
image technology, the integration of image segmentation technology into product
packaging design can optimize the visual cognitive impact of packaging, incite customers’
purchase desire, and enhance sales. Thus, it becomes imperative to explore effective and
accurate segmentation techniques for the graphic elements and design styles present in
product packaging images.

Image segmentation involves dividing an image into distinct regions based on similar
properties. With the advancement of deep learning technology, image segmentation has
witnessed rapid progress and widespread application across various industries (Kumar,
Kumar & Lee, 2022). For instance, Kumar, Kumar & Lee (2022) proposed an efficient
conduction neural network for semantic feature segmentation. Li, Chen & Zhang (2019)
introduced a U-Net network structure, which is more suitable for fine image processing
compared to the fully convolutional network (FCN). U-Net employs a combination of up-
sampling and down-sampling to gradually obtain high-level semantic information. It also
utilizes skip connections to concatenate feature maps of the same channel, enabling feature
fusion and significantly enhancing segmentation performance. Duan et al. (2018) designed
a lightweight Seg-Net model, incorporating a novel up-sampling method that optimizes
memory usage and achieves more efficient image segmentation. Building upon U-Net,
the U-Net++ network makes further advancements in image segmentation technology. It
enhances the extraction of feature information at different levels through pruning, while
addressing the issue of self-adaptive sampling depth among different samples. However,
it suffers from a sudden increase in model parameters, resulting in higher computational
costs (Zhou et al., 0000). In line with the progression of network models, Tan et al. (2021)
proposed an ACU-Net-based image segmentation method, which utilizes depth separable
convolution to reduce model parameters. Re, Stanczyk & Mehrkanoon (2021) introduced
an attention mechanism to U-Net, replacing traditional convolution with depth-wise
convolution. Cao & Zhang (2020) presented an improved ResU-Net model for high-
resolution image segmentation, effectively achieving segmentation at a higher resolution.
He, Fang & Plaza (2020) proposed a mixed attention network for accurate building
segmentation. Zhao et al. (2022) devised an image segmentation algorithm based on
Inceptionv3, while Shi et al. (Zhao et al., 2017) developed a pyramid scene analysis network
that integrates context information to perform semantic segmentation of scene objects. He
et al. (2017) introduced Mask R-CNN, which achieves high-quality semantic segmentation
while also performing object detection. DeepLabv1 (Wu et al., 2022) enhances boundary
details through random post-processing of FCN segmentation results. DeepLabv2 (Ji et
al., 2020) replaces up-sampling with dilated convolution and introduces a hole pyramid
module to reduce computational complexity and error rates. DeepLabv3 (Rogelio et al.,
2022) further optimizes the spatial pyramid module to capture multi-scale information
more effectively. DeepLabv3+ (Zhou, 2022) incorporates an encoder–decoder structure
based on DeepLabv3, facilitating superior feature fusion. PSPNet (Gan, 2022) introduces a
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pyramid pooling module to fully leverage context information. However, while these image
segmentation methods yield improved results in various contexts, they exhibit limitations
such as poor adaptability, high memory consumption, and inadequate segmentation of
detailed features, rendering them unsuitable for segmenting product packaging images.
The requisites for image segmentation algorithms extend beyond solely enhancing
segmentation accuracy; they encompass rational resource allocation and optimization
of algorithm efficiency. In light of these requirements, cyber-physical systems (CPS), as
intelligent systems integrating algorithms, networks, and physical entities, have garnered
the attention of researchers in the field (Maru et al., 2022). The algorithm embedded
within CPS facilitates remote, reliable, safe, cooperative, and intelligent algorithm control
through diverse real-time modules. CPS exhibits substantial potential for wide-ranging
applications in electric power, petrochemicals, and medical treatment (Xu et al., 2022).
Consequently, deploying the image segmentation algorithm within CPS offers enhanced
support for algorithm regulation and application,minimizing training and testing duration,
thereby enabling the completion of more intelligent and efficient product packaging image
segmentation tasks.

To address the challenges posed by inaccurate segmentation of graphic elements in
product packaging images and low segmentation efficiency encountered by traditional
image segmentation algorithms, this article proposes a G-Lite-DeepLabV3+ segmentation
network and deploys it within CPS to accomplish precise and efficient product packaging
image segmentation. The key innovations are as follows: (1) Replacing the DeepLabV3+
network’s backbone with MobileNetV2, resulting in a streamlined network structure,
accelerated feature extraction, and overfitting prevention. (2) Introducing group
convolution to supplant traditional convolution in MobileNetV2 and the space pyramid
module while eliminating the batch specification layer to reduce network complexity.
(3) Integrating an attention module following the space pyramid module to enhance the
network’s recognition rate. (4) Deploying the G-Lite-DeepLabV3+ segmentation network
within CPS to further enhance segmentation efficiency.

The article’s structure is as follows: The second section exposes the G-Lite-DeepalV3+-
based product packaging image segmentation network. In the third section, the deployment
of CPS is elucidated. Section 4 showcases the segmentation performance of this method
through experimental demonstrations. The fifth section encompasses a comprehensive
summary and a forward-looking perspective on the content presented in this article.

IMAGE SEGMENTATION NETWORK OF PRODUCT
PACKAGING BASED ON G-LITE-DEEPLABV3+
This article have chosen to augment the Deeplabv3+ network, renowned for its exemplary
semantic segmentation capabilities, streamlined architecture, and expedited segmentation
speed. Considering the original backbone network’s proneness to overfitting and lackluster
performance in the assigned task, the authors propose replacing it with the MobileNetv2
network. The MobileNetv2 network has undergone subtle refinements to alleviate
overfitting concerns and bolster feature utilization. Moreover, an attention module
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Figure 1 G-lite-Deeplabv3+ structure.
Full-size DOI: 10.7717/peerjcs.1451/fig-1

is introduced subsequent to the hollow pyramid structure to heighten the decoder’s
receptiveness to the target region. Consequently, the decoder amalgamates the feature map
and conducts pixel classification. The schematic representation of the network architecture
can be observed in Fig. 1.

Group convolution
This article replaces the ordinary convolution inMobileNetv2 and spatial pyramid structure
with the block convolution. The grouping operation is to group the feature maps first and
then perform the convolution operation when convolving the feature maps, and its
principle is shown in Fig. 2. If the characteristic graph size of an ungrouped network is
C×W ×H , the number of convolution kernel groups is N , convolution kernel size is
C×K ×K . To output N groups of characteristic maps, C×K ×K ×N parameters need
to be learnt, if the characteristic group is divided into G groups, only (C/G)×K ×K ×N
parameters need to be learnt, The total number of parameters is reduced to 1

G . In addition,
the group convolution can also be regarded as a dropout of the original feature graph to
avoid over-fitting.

Lightweight backbone
The backbone of the new network adopts MobileNetv2 as the main network structure, and
the specific structure is shown in Table 1, where H 2 represents the number of pixels of the
input image; C represents the number of channels; t represents the multiplication factor;
n represents the number of repetitions; s represents the convolution step size when each
Lite-bottleneck module is repeated for the first time.

Wang (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1451 4/14

https://peerj.com
https://doi.org/10.7717/peerjcs.1451/fig-1
http://dx.doi.org/10.7717/peerj-cs.1451


Ordinary convolution Group convolution

Figure 2 Schematic diagram of group convolution.
Full-size DOI: 10.7717/peerjcs.1451/fig-2

Table 1 G-lite-Deeplabv3+ network structure.

Input size Operator t c n s

512×512×3 Conv2d / 32 1 2
256×256×32 Lite-bottleneck 6 16 1 1
256×256×16 Lite-bottleneck 6 24 2 2
128×128×24 Lite-bottleneck 6 32 3 2
64×64×32 Lite-bottleneck 6 64 4 2
32×32×64 Lite-bottleneck 6 96 3 1
32×32×96 Lite-bottleneck 6 160 3 2
16×16×160 Lite-bottleneck 6 320 1 1

Within this framework, the Lite-bottleneck represents a lightweight refinement of the
original bottleneck proposed in this manuscript. It adheres to the same fundamental
principle as the original bottleneck and can be subdivided into dimension-increasing,
convolution, and dimension-decreasing layers. Notably, the activation functions employed
in the dimension-increasing and convolution layers are ReLU. However, to preserve the
integrity of the compressed features and prevent the ReLU function from compromising
them, the activation functions within the ‘‘dimension-reducing layer’’ are linear functions,
as visually depicted in Fig. 3. The key distinction lies in Lite-bottleneck’s substitution
of conventional convolution in the ‘‘dimension-increasing layer’’ and the ‘‘dimension-
decreasing layer’’ with group convolution utilizing two groups, thereby reducing the
parameter count.

Concurrently, in order to mitigate concerns regarding overfitting in external networks,
this article have omitted the batch specification layer within the Lite-bottleneck, thereby
reducing computational overhead. Within the phase of feature extraction, specific feature
maps are derived as low-level semantic features, subsequently utilized as input for the
decoder. The ultimate featuremaps are directed towards the spatial pyramid pool structure.
The intricate algorithm of the network is delineated in Table 2.
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Figure 3 Comparison of original bottleneck and Lite-bottleneck structures.
Full-size DOI: 10.7717/peerjcs.1451/fig-3

In comparison to the original Xception backbone network, the proposed structure
significantly diminishes network depth and parameters. Consequently, it is better suited
for the real-time segmentation task of product packaging images addressed in this article.

Lightweight spatial pyramid pooling module
Within the DeepLabv3+ framework, the spatial pyramid structure assumes a pivotal
role in extracting contextual information across multiple scales, thereby bolstering target
detection and achieving more precise segmentation. By subjecting the image to pooling via
the spatial pyramid, a comprehensive feature map is obtained, containing rich information.
In order to expedite the segmentation process and enable real-time functionality, this study
introduces a lightweight hollow space pyramid pool module.

To accomplish this, the cavity convolution is substituted with a cavity grouping
convolution comprising two groups. This replacement effectively reduces the parameter
count and fulfills the function of the batch specification layer. Furthermore, the feature
maps produced by the lightweight hollow space pyramid pool modules are fused together
and subsequently fed into an attention module.
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Table 2 Lightweight MobileNetv2 network algorithm.

Input image X

Xc =Conv(X)
XR=ReLU (Xc)
for n= 1to N :
X1= ExpandedConv(Xn,groups= 2)
X2=DepthwiseConv(X1)
X3=ProjectConv(X2,groups= 2)
if n= 2:
XLowLevel−Feature=Xn
end
OutputXLowLevel−Feature,Xn

The attention module fine-tunes the network’s focus by assigning distinct weights to
pixels, thereby augmenting both segmentation effectiveness and efficiency. In this article,
the attention module consists of a sequence of a channel attention module and a spatial
attentionmodule. The channel attentionmodule facilitates the extraction ofmore profound
features, while the spatial attention module captures global information within images of
product packaging.

Figure 4 shows the structure of channel attention. First, a feature graph of size h′×w ′×c1
is input, and it is changed to h×w× c2 by the convolution transformation in the graph.
Then, the feature map is compressed into 1×1×c vector by global averaging pooling. The
weight of each channel is obtained to get a channel attention module.

Figure 5 shows the structure of spatial attention. After the feature is input, the target
in the image is cut, rotated, scaled and translated by the positioning network. To realize
the above transformation of the target, the coordinate values of the target (x,y) is taken
as a two-row and one-column matrix, and it is multiplied by a two-row and two-column
matrix, and then add it to a matrix of two rows and one column (the parameters in the
matrix from top to bottom are e and f ). After the positioning network completes the above
transformation of the target, the coordinates of the target image are transformed to the
coordinates of the original image through grid generation. After that, the sampler is used to
solve the gradient descent problem when the coordinates have decimals. Location network,
grid generator and sampler constitute a complete spatial attention module.

Loss function
The commonly used cross entropy function cannot deal with the phenomenon of product
packaging image category imbalance and can’t effectively monitor the network, leading to
low segmentation performance. Therefore, the Dice coefficient difference function is used
to train the network, which can punish the prediction with low confidence. A smaller Dice
coefficient difference function will be obtained if the confidence is high. Formula (1) shows
its calculation.

s=
2|X ∩Y |
|X |+|Y |

(1)
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where X is a label image; Y is the forecast output graph; |X ∩Y | is the sum of the point
multiplication between the prediction graph and the partition graph and the addition of
the element results of the results. The quantitative calculation of X and Y can use simple
element addition, and finally obtain the Dice coefficient difference function, as shown in
Formula (2).

LDice = 1−
2|X ∩Y |
|X |+|Y |

. (2)

CPS DEPLOYMENT
CPS, as a complex system encompassing computing, networking, and physical entities,
enables the interaction between algorithms and physical processes through a human-
machine interface. This enables remote, reliable, real-time, safe, cooperative, and intelligent
algorithm manipulation. In order to achieve more efficient product packaging image
segmentation, this article integrates the G-Lite-DeepalBV3+ segmentation network into
CPS, as depicted in Fig. 6.

Image acquisition module: this module captures the product packaging image and
converts it into a computer-readable data stream. It includes components such as a
camera, photo light source, and image acquisition card.
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Image processing module: this module comprises a PC, G-Lite-DeepalV3+ image
segmentation algorithm, and storage and analysis capabilities. Initially, the PC receives the
segmentation image and instructions. Then, the G-Lite-DeepalV3+ algorithm performs
image segmentation on the received image. Finally, the segmentation result is stored,
analyzed, and fed back to the output execution module.

Output execution module: The PLC (programmable logic controller) is chosen as the
executive terminal controller to facilitate remote algorithm control, image segmentation,
and result output under human supervision.

EXPERIMENT AND ANALYSIS
The graphics card used in this experiment was an NVIDIA RTX 2070, the CPU was an
AMDRyzen 5 2600x, with 32 GB of memory, and the deep learning framework was Pytorch
1.3. During the training process, the picture was in JPG format and the label was in PNG
format. The input initial learning rate was set to 0.00001, the weight attenuation value was
0.000001, and the super parameter was 0.9. RMSprop algorithm (Jian, 2022) was used to
optimize each parameter, and the formula follows.

Sdw =βSdw+ (1−β)dw2 (3)

Sdb=βSdb+ (1−β)db2 (4)

w =w−α
dw

√
Sdw+ε

(5)

b= b−α
db

√
Sdb+ε

. (6)
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Table 3 Comparison of MIoU parameters.

Network name Graphic element background amount to

Deeplabv3+ 0.818 0.995 0.906
Ours 0.882 0.997 0.939

Among them, Sdw and Sdb represents the weight w and the gradient momentum of
offset value b in iteration, αrepresents the learning rate, β represents a superparameter, ε
is used to prevent the denominator from being zero.

The product packaging image data set constructed in this article was obtained from
Baidu, Weibo and other websites, with a total of 500 color pictures. Each image contained
different styles of text and graphic elements. The high-resolution image was cut into several
images with the size of 256× 256 pixels, and the images were manually selected with rich
style information to enhance the data. After data enhancement, a total of 2,500 product
packaging pictures were obtained.

Experimental results of segmented images
To assess the segmentation recognition effectiveness of the algorithm, the experiment
utilizes the product packaging images from the dataset as inputs and evaluates the
corresponding image segmentation results. In this experiment, the training model predicts
100 images, and then the model’s performance is evaluated by comparing the dataset and
calculating the mean intersection over union (MIoU) parameter (Ji et al., 2020). TheMIoU
parameters for both G-lite-Deeplabv3+ and the original Deeplabv3+ are presented in Table
3.

The MIoU parameter of an image serves as an effective measure of its segmentation
accuracy, ranging from 0 to 1. A higher value signifies a better network segmentation effect
on the target. By comparing the MIoU parameters of the proposed network with those of
the conventional Deeplabv3+ network, it is observed that the improved network achieves
a 6.4% higher segmentation effect on graphic elements, a 0.2% higher segmentation effect
on the background, and an overall 3.3% higher segmentation effect. The analysis of MIoU
parameters quantitatively demonstrates that the improved network exhibits superior
segmentation capabilities.

Performance comparison of different segmented networks
To further validate the efficacy of the proposed network in segmenting product packaging
images, a comparative analysis is conducted with several existing models, namely
UNet (Kumar, Kumar & Lee, 2022), ResUNet (Zhou et al., 0000), PSPNet (Tan et al., 2021),
ACUNet (Cao & Zhang, 2020), and DeepLabv3+ withMobileNetv2 as the backbone (Zhou,
2022). The evaluation criteria for comparison encompass the intersection ratio (IoU), mean
pixel accuracy (mPA), and frames per second (FPS). All experiments are performed on
a self-developed dataset of product packaging images, employing identical software and
hardware environments, as well as parameter settings. The comparison results are presented
in Table 4.
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Table 4 Performance comparison of network models.

Network name IoU mPA FPS

UNet 0.916 0.880 35.3
ResUNet 0.937 0.909 12.4
PSPNet 0.917 0.896 52.6
ACUNet 0.921 0.901 42.9
Deeplabv3+ 0.936 0.911 32.26
Ours 0.965 0.967 39.4

As evident from the findings in Table 4, the proposed network demonstrates superior
performance across all three evaluation metrics. By incorporating the attention mechanism
and implementing further optimization, this network outperforms the DeepLabv3+
network, which solely utilizes MobileNetv2 for optimization. Specifically, compared to
DeepLabv3+, this network achieves a 3.1% increase in IoU, a 6.2% increase in mPA,
and a remarkable 22.1% increase in FPS, reaching a rate of 39.4/s. These advancements
successfully meet the real-time demands for product packaging image segmentation.

Comparison of different deployment methods
To validate the effectiveness of the CPS deployment mode in enhancing the segmentation
efficiency of the G-lite-Deeplabv3+ network, real-time segmentation efficiency is compared
with cloud computing deployment and edge computing deployment. The results are
presented in Table 5.

The data processing time of the CPS deployment method, as implemented in this article,
is found to be lower than that of cloud computing. For the same product packaging image
segmentation task, the efficiency of the CPS deployment method is approximately 1.2 times
higher than that of the edge computing method and about 2.8 times higher than that of the
cloud computing method. This comparison highlights that the CPS deployment method
employed in this article enables efficient product packaging image segmentation.

Visualization of results
Figure 7 illustrates the network’s convergence loss rate per epoch on the product packaging
image dataset, comparing it with the network discussed in Section 4.1. Under the same
number of training iterations, the G-Lite-DeepalV3+ network proposed in this article
demonstrates superior convergence performance. It requires less time to reach the desired
convergence level compared to other networks. Therefore, it can be inferred that the
network in this article achieves the best segmentation model within the shortest training
duration.

CONCLUSION
In order to address the limitations of traditional segmentation methods in achieving real-
time and accurate product packaging image segmentation in practical applications, this
article introduces a lightweight method called G-Lite-DeepLabv3+. This approach replaces
Xcept with MobileNetv2 as the feature extraction network and utilizes block convolution
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Table 5 Comparison of split time of different deployment methods.

Index Cloud computing Edge calculation Cps

Split start time 14:42:00 14:42:00 14:42:00
Split end time 14:44:24 14:45:58 14:45:58
Transmission time/s 0 0.5 0.55
Calculation time/s 0 184 118
Statistical time/s 191 0 0
Working hours 1005 422.5 356.55
Efficiency comparison Cloud computing: edge computing: cps =1:2.38:2.82

Ours
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ResUnet

PSPNnet

ACUNnet

Deeplabv3+

Epoch number

L
o
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e

Figure 7 Comparison of loss curve from training to convergence.
Full-size DOI: 10.7717/peerjcs.1451/fig-7

instead of ordinary convolution within MobileNetv2 and the hollow space pyramid
pool module. Additionally, two series-connected attention modules are incorporated
to handle the high-level image features generated by the space pyramid pool module.
G-Lite-DeepLabv3+ is integrated into the image processing module in the Cyber-Physical
Systems (CPS) to enhance segmentation efficiency.

Experimental results demonstrate that the G-Lite-DeepLabv3+ network proposed in this
article outperforms the control network in terms of both accuracy and efficiency, achieving
MioU and IoU values of 0.939 and 0.965, respectively. This provides a solid foundation
for the application of segmentation networks in product packaging image segmentation.
However, the practical effectiveness of the presented method remains unknown. Therefore,
future work will focus on further enhancing the network structure to achieve even more
efficient and stable product packaging image segmentation in practical applications.
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