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ABSTRACT
High dimension and complexity of network high-dimensional data lead to poor
feature selection effect network high-dimensional data. To effectively solve this
problem, feature selection algorithms for high-dimensional network data based on
supervised discriminant projection (SDP) have been designed. The sparse
representation problem of high-dimensional network data is transformed into an Lp
norm optimization problem, and the sparse subspace clustering method is used to
cluster high-dimensional network data. Dimensionless processing is carried out for
the clustering processing results. Based on the linear projection matrix and the best
transformation matrix, the dimensionless processing results are reduced by
combining the SDP. The sparse constraint method is used to achieve feature selection
of high-dimensional data in the network, and the relevant feature selection results are
obtained. The experimental findings demonstrate that the suggested algorithm can
effectively cluster seven different types of data and converges when the number of
iterations approaches 24. The F1 value, recall, and precision are all kept at high levels.
High-dimensional network data feature selection accuracy on average is 96.9%, and
feature selection time on average is 65.1 milliseconds. The selection effect for network
high-dimensional data features is good.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications, Data
Science, Text Mining
Keywords Supervised discriminant projection, Network high-dimensional data, Feature selection,
Sparse subspace clustering, Sparse constraint

INTRODUCTION
A significant volume of information is stored in the network as a result of the information
technology industry’s rapid development and the informatization process’s acceleration
(Feng, Liu & Chen, 2022). It is required to assess and prepare network data for use in order
to maximize its potential. With the Internet’s rapid development, data such as web pages,
emails, genetic data, and pictures grow rapidly. Due to the semi-structured or even
unstructured characteristics of these data, the dimensions of these network data are always
kept at a high level (Zhou et al., 2022;Ghosh & Thoresen, 2021). Due to a lot of redundancy,
noise, and irrelevant characteristics, the efficiency, and quality of network data analysis are
seriously affected. How to efficiently minimize computer storage requirements, ease the
presentation of high dimensional data, and successfully overcome the feature redundancy
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of high dimensional information has grown in importance. High-dimensional data from
network sources such as social networks, search engines, and online advertising platforms
are becoming increasingly common. In order to effectively process data from such sources,
it is essential to conduct feature selection on high-dimensional network data (Zhang, Wei
& Wang, 2023). However, due to the high dimension and complexity of network high-
dimensional data, traditional feature selection methods often lead to poor feature selection
effect (Zheng et al., 2022). A key strategy to address this problem is to study feature
selection algorithms from high-dimensional network data.

In view of the importance of feature selection for high-dimensional network data as a
research topic, professionals and scholars in related fields have produced many
outstanding research results. For example, Tian & Zhou (2020) developed a BSO-OS-based
feature selection technique for high-dimensional data. Use web crawler technology to
collect high-dimensional data, use clustering to process data, and use multi-feature fusion
to extract data features. To capture the feature selection results of relevant high-
dimensional data, feature subsets of data are filtered by FAMIR algorithm and feature
subsets are searched by BSO-OS method. However, it is discovered in real-world
applications that high-dimensional data has low clustering quality. A multifactor particle
swarm-based feature selection approach for high-dimensional data was proposed in Lin
et al. (2021). Use the method of data mining to obtain high-dimensional network data, and
then clean and process the data. A dual-task model was built using multifactorial particle
swarm optimization, one of which improved run quality by optimizing the particle swarm
population to prevent encroachment on local optima and improve the accuracy of feature
selection for high-dimensional data. Another task is mainly to initialize the feature
selection algorithm for high-dimensional network data to reduce the amount of
computation to obtain accurate high-dimensional network data selection results. But the
algorithm has the problem of poor convergence, and the practical application effect is not
good.Wang & Chen (2020) proposed a feature selection algorithm based on rough sets and
an improved Whale optimization algorithm. The algorithm filters and groups high-
dimensional data from the network, and extracts feature subsets of high-dimensional data
by formulating strong association rules. The enhanced whale algorithm, which is based on
population optimization and disturbance technique, is used to initialize the feature subset
and make a preliminary choice of the network’s high-dimensional data features. The rough
set is used to evaluate the election results, and the optimal feature subset is found through
continuous iteration based on the evaluation results. Due to the low accuracy of the process
of selecting features from high-dimensional network data, this method still does not
achieve the ideal application effect at some points.

Aiming at the practical problems of the above algorithms, a feature selection algorithm
for high-dimensional network data based on supervised discriminant projection (SDP) is
designed, and the effectiveness of the algorithm is verified by experiments. The
convergence is poor, the clustering effect of high-dimensional network data is poor, and
the feature selection accuracy of high-dimensional network data is low.

We summarize the main contributions of this work as follows:
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1) Design a feature selection algorithm for high-dimensional network data based on SDP.
The sparse representation of high-dimensional network data is transformed into an Lp
norm optimization problem, and the sparse subspace clustering method is used to
cluster high-dimensional network data.

2) Dimensionless processing is performed on the clustering processing results. Based on a
linear projection matrix and an optimal transformation matrix, combined with
supervised discriminative projection, it reduces the result of acausal processing.

3) The feature selection of high-dimensional data in the network is realized by using the
sparse constraint method, and the relevant feature selection results are obtained.

4) Experimental results show that the algorithm can effectively cluster seven different types
of data and achieve convergence when the number of iterations is close to 24.

The rest of this article is organized as follows. “Related Work” describes the network
high-dimensional data feature selection algorithm. “Materials and Methods” shows the
experimental design scheme and experimental results. Finally, “Results” concludes the
article.

RELATED WORK
Based on SDP, we create a high-dimensional approach for selecting network data features.
This program clusters the high-dimensional network data using the sparse subspace
clustering method by converting the sparse representation problem of high-dimensional
network data into a Lp norm optimization problem. The clustering processing results are
dimensionless. Based on linear projection matrix and optimal transformation matrix,
combined with SDP, dimensionless processing results are reduced. High-dimensional data
in the network is feature selected using the sparse constraint method, and useful feature
selection results are obtained.

The design of feature selection algorithms for high-dimensional network data has
become an important research field due to the increasing complexity and large amounts of
data in networks. Feature selection algorithms help reduce the dimensionality of data and
improve the performance of predictive models (Saeed, Al Aghbari & Alsharidah, 2020). In
this article, we present a feature selection algorithm based on SDP for high-dimensional
network data.

The proposed algorithm begins by collecting high-dimensional data from sources such
as social networks, search engines, and online advertising platforms. Various data types
such as text, images, videos, and audio are collected. This data is then preprocessed to
reduce noise and outliers. Data normalization techniques are used to standardize the data.

Next, the sparse representation problem of high-dimensional data is transformed into
an Lp norm optimization problem. The sparse subspace clustering method is used to
cluster high-dimensional data. This method is based on the assumption that the data
points can be grouped into multiple clusters with low-dimensional subspaces (Rashid et al.,
2021). The clustering process is then followed by dimensionless processing of the
clustering results.
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The dimensionless processing results are then reduced by combining the linear
projection matrix and the best transformation matrix. This is done by using the SDP
method. The SDP method is based on the assumption that the dimensionless processing
results can be reduced by projecting them onto a low-dimensional linear subspace. Finally,
the sparse constraint method is employed to achieve the feature selection of high-
dimensional data in the network. The relevant feature selection results are obtained
(Alsenan, Al-Turaiki & Hafez, 2021).

The performance of the proposed feature selection algorithm is evaluated using the F1
value, recall, and precision. The selection effect for high-dimensional network data features
is evaluated by calculating the accuracy and time of feature selection. The experimental
findings demonstrate that the suggested algorithm can effectively cluster seven different
types of data and converges when the number of iterations approaches 24. The F1 value,
recall, and precision are all kept at high levels. High-dimensional network data feature
selection accuracy on average is 96.9%, and feature selection time on average is 65.1
milliseconds. The selection effect for network high-dimensional data features is good.

In summary, this article presents a feature selection algorithm based on SDP for high-
dimensional network data. The algorithm effectively clusters seven different types of data
and converges when the number of iterations approaches 24. The F1 value, recall, and
precision are all kept at high levels. High-dimensional network data feature selection
accuracy on average is 96.9%, and feature selection time on average is 65.1 milliseconds.
The selection effect for network high-dimensional data features is good. The proposed
algorithm is a useful tool for feature selection of high-dimensional network data.

MATERIALS AND METHODS
Data sources
The datasets used for the experiments are seven high-dimensional artificial datasets,
namely Isolet, Arcene, Madelon, Gisette, Cod-RNA, Dexter and Dorothea, with sample
sizes ranging from 600 to 2,000, feature numbers ranging from 5,000 to 20,000, and
category numbers ranging from 2 to 26. Parts of these seven datasets have been published
in the UCI machine learning knowledge base, and some are from related studies. The data
format is CSV file, each row represents one sample and each column represents one
feature.

Experimental setup
The experiments were done in Python 3.6 environment, mainly relying on Numpy, Scipy
and Sklearn machine learning libraries. The experimental procedure was divided into
three steps: (1) Min-Max normalization was applied to seven datasets, and Scaling feature
values to [0,1] interval; (2) the datasets were divided into training set (70%), validation
set (15%) and testing set (15%); (3) the feature selection and classification performance
of the SDP algorithm proposed in this study was compared with other four algorithms.
The comparison methods include information gain (IG), chi-square test (CHI),
recommendation system (RS), and gradient boosting (GBDT). The evaluation metrics are
chosen as F1 score, precision and recall.
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Theoretical model
The theoretical basis of SDP feature selection algorithm is Fisher discriminant analysis
(FDA). Due to the limited sample size of high-dimensional network data, the direct use of
FDA may lead to overfitting. In this study, we propose to use sparse subspace clustering to
unsupervisedly cluster the high-dimensional network data to obtain the clustering results,
and then build the FDA model based on the clustering results to realize the projection to
the Fisher discriminant hyperplane. SDP achieves effective feature selection by building a
subset of features with low redundancy related to the category.

Algorithm steps
The main steps of the SDP feature selection algorithm are.

1) Formalize the sparse representation of high-dimensional network data using the Lp
parametric optimization problem.

2) Apply sparse subspace clustering to unsupervised clustering of high-dimensional
network data.

3) Dimensionless processing of clustering results.

4) Construct the FDAmodel based on the clustering results, and calculate the contribution
of each feature to the class interval.

5) Combining the contribution degree and feature importance, the most important
features are selected by using the sparse constraint method.

6) Logistic regression is used to evaluate the feature selection results and determine the
optimal feature subset.

The process is iterated to select the optimal feature subset on the validation set. Finally,
the performance is reported on the test set to verify the effectiveness of the proposed
feature selection algorithm. The study of feature selection for high-dimensional network
data has important theoretical significance and practical application value. Theoretically,
feature selection is a key step in data mining and machine learning, which directly affects
the effectiveness of subsequent modeling and applications. The research on feature
selection for high-dimensional network data can help to understand the intrinsic
correlation between data structure and features and enrich the feature selection theory. In
practice, high-quality feature selection algorithms can extract the key features of high-
dimensional network data and remove redundant information, thus improving efficiency
and accuracy. This is important for web data mining, classification, clustering, and trend
prediction.

Related work focuses on the traditional filtering, wrapping and embedding methods.
These methods are not effective for feature selection of high-dimensional data sets and
cannot solve the dimensional disaster problem well. Discriminant analysis-based methods
can refine features by maximizing class spacing and minimizing intra-class variance, which
are better adapted to high-dimensional data. The SDP algorithm proposed in this study
combines discriminative projection and sparse constraints to perform feature selection of
high-dimensional network data more accurately and efficiently.
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The innovations of this study are: (1) combining the Lp-parametric optimization
problem with SDP to realize the projection and feature selection of high-dimensional
network data; (2) using unsupervised clustering of high-dimensional network data by
sparse subspace clustering as the prior knowledge of SDP; (3) avoiding the overfitting
problem of feature selection results by combining SDP and sparse constraints. The
contributions of the study are: (1) proposing an SDP algorithm for feature selection of
high-dimensional network data; (2) enriching the projection-based feature selection
method; (3) providing a reference for key feature selection and mining of high-
dimensional network data in practice.

In conclusion, the SDP algorithm combined with the clustering prior for discriminative
projection and feature extraction can achieve accurate and efficient feature selection, which
has theoretical and application values. This study enriches the theory and method in the
field of feature selection and can provide inspiration for the processing and analysis of
network data in the big data environment.

RESULTS
A supervised discriminative projection-based feature selection algorithm for high-
dimensional network data is designed. The algorithm transforms the sparse representation
problem of high-dimensional network data into an Lp-parametric optimization problem,
and clusters the high-dimensional network data using a sparse subspace clustering
method. The results of the clustering process are dimensionless. Based on the linear
projection matrix and the optimal transformation matrix, the results of the factorization-
free processing are reduced by combining the supervised discriminant projection. The
feature selection of high-dimensional data in the network is realized by using the sparse
constraint method, and the related feature selection results are obtained.

Sparse subspace clustering of high-dimensional network data
In order to improve the quality and efficiency of feature selection for high-dimensional
network data, this article adopts the sparse subspace clustering method to cluster high-
dimensional network data. The specific implementation steps are as follows:

Step 1: Based on the theory of sparse expression (Vlachos & Thomakos, 2021;
Kambampati et al., 2020), use the solution of the network high-dimensional data sparse
optimization problem to build a relevant matrix. The data points in the matrix may come
from the same subspace. The theory should be used to find the high-dimensional data
points from the same network.

Step 2: Based on the network high-dimensional data point subspace, cluster the data
with the spectral clustering method to obtain accurate network high-dimensional data
clustering results.

Assuming that the network high-dimensional data point is represented by yi 2 [n
‘¼1S‘,

it can be calculated by the following formula:

yi ¼ Yci (1)
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The above formula, Y represents a matrix composed of multiple network high-
dimensional data points. Generally, high-dimensional network data points in this subspace
dimension are less than the total amount of data in this space, so each Y‘ and Y contains
nontrivial zero space, so the representation of data points has complex characteristics.
ci ¼ ci1; ci2; � � � ; ciN½ � represents a dataset composed of data from the same subspace.
Suppose that the data point in d‘ dimensional subspace S‘ is represented by yi, and the
point can also be linearly described by other d‘ data points in S‘, then the point is a sparse
representation of yi (Zhu, Zhao & Wu, 2021; Khandani & Mikhael, 2021).

The diagram of sparse subspace clustering is shown in Fig. 1.
Since there are countless solutions to Formula (1), the problem of sparse representation

of high-dimensional data on the network can be converted into an Lp norm optimization
problem, and the following formula is true:

yi ¼ Y¼min cik kq (2)

when taking different values, the sparse expression of high-dimensional network data will
be different. The closer q is to 0, the more sparse the high-dimensional network data will be
(Zheng & Li, 2021). When the value of q is 0, the Lp norm optimization problem is
transformed into an NP-hard problem. According to the analysis of relevant theories, the
Lp norm minimization optimization problem can be used to replace the Lp norm
optimization problem, so Formula (2) can be converted into the following formula:

yi ¼ Y¼min cik k1 (3)

Then, the sparse optimization problem of network high-dimensional data point yi can
be expressed by the following formula (Wang et al., 2022):

yi ¼ min Ck k1 (4)

Figure 1 Schematic diagram of sparse subspace clustering.
Full-size DOI: 10.7717/peerj-cs.1447/fig-1
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The above formula, C ¼ c1; c2; � � � ; cN½ � 2 RN�N represents a sparse coefficient matrix,
and i columns ci in the matrix correspond to the sparse representation of the data point yi.

Combining Formula (4), we can get the sparse optimal representation of each high-
dimensional data point on the network. The data will next be divided using the sparse
coefficient matrix in order to achieve high-dimensional data clustering on the network. In
this process, it is necessary to establish a weighted graph, which is expressed by the
following formula:

& ¼ m; e;Wð Þ (5)

The above formula, m represents N vertices in the weighted graph composed of multiple
high-dimensional data points of the network, e � m� m represents the edges of the
weighted graph, and W � RN�N represents the non-negative similarity matrix.

The sparse optimization problem of network high-dimensional data points is converted
into the sparse subspace representation problem of data points (Zha, 2020) and W can be
constructed in the following way.

W ¼ Cj j þ Cj jT (6)

The above formula, T represents matrix transposition.
In an ideal state, there are n connected components &, and the matrix expression

corresponding to n subspaces is as follows:

W ¼
W1 � � � 0
..
. . .

. ..
.

0 � � � Wn

2
64

3
75W‘ (7)

The above formula, W‘ represents a similar matrix located in subspace S‘.
Assuming that E represents the estimation point set matrix and Z represents the noise

matrix, the sparse subspace clustering function of high-dimensional network data can be
expressed by the following formula:

D ¼ min Ck k1 þ ke Ek k1 þ
kZ
2

Zk k2F (8)

Dimensionality reduction of high-dimensional network data based on
SDP
It is necessary to transform the original description of the data in the clustering results into
data that can be compared and processed by computers in order to ensure that all network
high-dimensional data formats can be unified data and enhance the effectiveness of
subsequent data feature selection. This process is called dimensionless data. In general, the
most commonly used dimensionless data processing methods are classified into
normalization and standardization (Khaled et al., 2021; Xiong et al., 2022). The
normalization formula of network high-dimensional data is as follows:
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X0
i ¼

Xi � Xmin

Xmax � Xmin
(9)

The above formula, Xi represents the value of the current dimension, Xmin represents
the minimum value of all network high-dimensional data samples in this dimension, Xmax

represents the maximum value of all network high-dimensional data samples in this
dimension, and X0

i represents the normalized value of this dimension.
The effect of normalization is shown in Fig. 2.

From the analysis in Fig. 2B, it can be seen that the contour lines are more rounded and
smooth after normalization, and the convergence speed can be improved if the likelihood
function is optimized (the red line in the figure is gradient optimization). Therefore, it is
necessary to normalize.

Compared with normalization, standardization requires a much lower standard for the
data distribution of the original dataset. The standardized formula for high-dimensional
network data is as follows:

Figure 2 Effect of normalization treatment. (A) Before processing. (B) After processing.
Full-size DOI: 10.7717/peerj-cs.1447/fig-2
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X0
i ¼

Xi � l
r

(10)

The average value of all the data in this dimension in the initial high-dimensional
network data set is represented by l in the calculation above. The following is the
calculating formula:

l ¼ 1
n

Xn
i¼1

xi (11)

The above formula, n represents the total amount of high-dimensional data of the
original network.

r represents the standard deviation of all data in the original high-dimensional network
data set in this dimension (Miambres, Llanos & Gento, 2020), and its calculation formula is
as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi � lð Þ2
s

(12)

To create a strong foundation for later network high-dimensional data selection, the
dimensionless network high-dimensional data will be decreased. This study combines SDP
and sparse constraint methods to implement high-dimensional network data feature
selection based on the linear projection matrix and optimal transformation matrix.

In general, the objective function of dimensionality reduction of high-dimensional
network data is expressed by the following formula:

min
X
i;j

yi � yj
�� ��2Wij (13)

The above formula,Wij represents the connection weight between sample points xi and
xj, and Wij ¼ Wji. Wij is calculated by the following formula:

Wij ¼ exp � xi � xj
�� ��2=t� �

; xi 2 N xj
� � _ xjN xið Þ

0

(
(14)

The above formula, N �ð Þ represents the nearest neighbor relationship function. If the
projection transformation matrix (Meng, 2021; Sun et al., 2021) is brought into the linear
projection matrix, the following formula is valid:

argmin
V

tr VTXLXTV
� �

s:t:tr VTXDXTV
� � ¼ 1

(15)

The above formula, D represents a diagonal matrix and L ¼ D�W represents
adjacency graph matrix.
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The following formula is valid:

Dii ¼
X
j

Wij (16)

The constraint condition for high-dimensional data dimensionality reduction
processing of the network is taken to be the orthogonalization of the linear projection
matrix (Wang et al., 2020; Liu et al., 2021; Li, 2016, 2015; Lin et al., 2022), and the objective
function of high-dimensional data dimensionality reduction processing of the network is
constructed as follows:

max
tr VTSNVA
� 	

tr VTSLVAf g
s:tVTV ¼ I

(17)

The above formula, SL and SN represent local divergence and global divergence matrix
respectively, representing linear projection matrix, and A represents transformation
matrix.

To find an optimal transformation matrix A ¼ a1; a2; � � � ; ar½ � to make the SN largest
and SL smallest of the low dimensional projection space after the transformation of the
discrimination vector a, it is necessary to establish a relevant transformation matrix
processing model (Dong & Zhuang, 2011; Liu et al., 2020; Zhang et al., 2019), which is
expressed by the following formula:

J Að Þ ¼ max
tr VTSNVA
� 	

tr VTSLVAf g (18)

Based on the above analysis, the problem of dimensionality reduction of high-
dimensional network data can be transformed into a generalized eigenvalue problem (Lin
et al., 2020; Huang et al., 2020; Elphick et al., 2017; Magdy et al., 2018), and the following
formula is valid:

XLXTV ¼ kXDXTV (19)

V is composed of feature vectors m1; m2;…; md corresponding to the first d minimum
eigenvalues k1; k2;…; kd of generalized eigen decomposition, i.e., V ¼ m1; m2;…; md½ �, so as
to realize dimensionality reduction processing of high-dimensional network data.

The dimension reduction processing effect of high-dimensional network data is shown
in Fig. 3.

Feature selection algorithm for high-dimensional data
Let X 2 Rp�n, Y 2 Rk�n, W 2 Rp�k, h represent the number of features for feature
selection. The high-dimensional data feature selection model based on sparse constraint is
defined as follows:

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1447 11/27

http://dx.doi.org/10.7717/peerj-cs.1447
https://peerj.com/computer-science/


min
W

Y �WTX
�� ��2

F
; s:t: Wk k2;0 ¼ h (20)

If W ¼ AB, A 2 Rp�m, B 2 Rm�k, Formula (20) can be converted into the following

min
A;B

Y � BTZTX
�� ��2

F
; s:t:Z ¼ A;A2;0 ¼ h (21)

The above formula, B represents the class label regression reconstruction matrix.
The following constrained optimization problems are transformed from the feature

selection of high-dimensional data:

min
X

f Xð Þ; s:t:tr h Xð Þð Þ ¼ 0 (22)

The augmented Lagrangian function of Formula (22) is expressed by the following
formula:

Figure 3 Dimension reduction processing effect of high-dimensional network data. (A) Before
dimension reduction. (B) After dimension reduction. Full-size DOI: 10.7717/peerj-cs.1447/fig-3
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L X;�; lð Þ ¼ f Xð Þ þ tr �Th Xð Þ� �þ l
2

h Xð Þk k2F (23)

According to the augmented Lagrange multiplier method, Formula (23) can be written
as follows:

min
B;Z;A

Y � BTZTX
�� ��2

F
þTr �T Z � Að Þ� �þ l

2
Z � Ak k2F s:t: Ak k2;0 ¼ h (24)

Simplify the Formula (24), and the result is expressed by the following formula:

min
B;Z;A

Y � BTZTX
�� ��2

F
þ l
2

Z � Aþ �

l

����
����
2

F

� 1
2l

�k k2F s:t: Ak k2;0 ¼ h (25)

The alternative iterative direction multiplier method alternates and iteratively optimizes
high-dimensional data features to select the model variable B;Z;A. These rules are
obtained by minimizing Formula (25) when other variables remain unchanged. Here are
the particular steps:

Step 1: Fix A and Z, optimize variables B. Remove irrelevant items by fixing A and Z,
and get the optimization problem about B. That is, to solve the following sub-problem of
Formula (25):

min
B

Y � BTZTX
�� ��2

F
(26)

Take the derivative of the variable B in Formula (26) and set it to 0, that is, the solution
of Formula (26) is:

B ¼ ZTXXTZ
� ��1

ZTXYT (27)

Step 2: Fix A and B, optimize variables Z. By fixing A and B, removing the irrelevant
items, and getting the optimization problem about Z. That is, to solve the following sub-
problem of Formula (25):

min
B

Y � BTZTX
�� ��2

F
þ l
2

Z � Aþ �

l

����
����
2

F

(28)

Let D ¼ A� �

l
, take the derivative of the variable Z in Formula (28) and set it to 0, then

we get:

2XXTZ þ Zl BBT
� ��1 ¼ 2XYTBT þ lD

� �
BBT
� ��1

(29)

Formula (29) satisfies the Silvestre equation, so that

O ¼ 2XXT (30)

P ¼ l BBT
� ��1

(31)
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Q ¼ 2XYTBT þ lD
� �

BBT
� ��1

(32)

Then the solution of the variable Z is:

Z ¼ sylvester O;P;Qð Þ (33)

Step 3: Fix B and Z, optimize variable A. Fix B and Z, remove irrelevant items, and get
the optimization problem about A. That is, to solve the following sub-problem of Formula
(25):

min
A

C � Ak k2F s:t: Ak k2;0 ¼ h (34)

Considering the L2; 0 constraint term of A in Formula (34), this article calculates the
two norms of each row vector of C, sorts the row vectors in descending order according to
the value of the two norms, selects the row vectors corresponding to the largest first h
subscript indexes of C, assigns the row vectors corresponding to the largest first h subscript
indexes to A, and sets the row vectors not assigned to A to 0, thus obtaining the solution of
A.

The feature selection model of dimensional data constructed in this article’s fourth stage
involves updating the parameters � and l. The specific implementation process is as
follows:

� ¼ �þ l Z � Að Þ (35)

l ¼ lq (36)

The SDP-based feature selection method for high-dimensional network data is
demonstrated in Fig. 4:

In this work, we design a feature selection algorithm for high-dimensional network data
based on SDP. The sparse representation problem of high-dimensional network data is
transformed into an Lp norm optimization problem, and the sparse subspace clustering
method is used to cluster high-dimensional network data. Dimensionless processing is
carried out for the clustering processing results. Based on the linear projection matrix and
the best transformation matrix, the dimensionless processing results are reduced by
combining the SDP. The sparse constraint method is used to achieve feature selection of
high-dimensional data in the network, and the relevant feature selection results are
obtained.

DISCUSSION
Experimental scheme
In order to verify the effectiveness of the high-dimensional network data feature selection
algorithm based on SDP designed in this article, relevant experimental tests were carried
out.
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(1) To ensure the authenticity and reliability of the results obtained in this experiment,
the experimental parameters must be unified. Therefore, the experimental environment
parameters have been set in this experiment, as shown in Table 1.

The experimental software and hardware parameters of this document are as follows:
CPU: Intel Xeon E5-2640, 10 cores; memory: 64 GB; hard disk HDD 10 TB, SSD 480 GB;
network card: Broadcom NetXtreme Gigabit Ethernet; Windows 10 operating system;
simulation software MATLAB 7.2.

Figure 4 Algorithm flow of feature selection algorithm for high-dimensional network data based on
coverage discriminant projection. Full-size DOI: 10.7717/peerj-cs.1447/fig-4
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(2) Several data sets including Dermatology, newsgroups, TDT2, Tumor14, AT&T,
Palm, and Mpeg7 were selected for experimental testing. The experimental data set is
described in Table 2.

From Table 2 we can see that we have selected a total of seven datasets: Dermatology,
newsgroups, TDT2, Tumor14, AT&T, Palm, and Mpeg7, where the data types of the seven
datasets are: UCI, Text, Text, Gene, Face, Other, and Shape. The number of samples,
number of characteristics, and category are shown in Table 2.

(3) Using the Tian & Zhou (2020) algorithm, the Lin et al. (2021) algorithm, the Wang
& Chen (2020) algorithm, and this algorithm as experimental comparison methods, we
verify the application effects of different methods by confirming the indices of different
algorithms. See Table 3 for indicator statistics.

From Table 3, it can be seen that we compare the Tian & Zhou (2020) algorithm, the Lin
et al. (2021) algorithm, the Wang & Chen (2020) algorithm and the present algorithm in
seven aspects: Algorithm convergence, clustering effect, recall ratio, precision ratio, F1
value, accuracy of network high-dimensional data feature selection, network high-
dimensional data feature selection time, where algorithm convergence are described as
follows. As a result of repeated iterations, the value obtained should not increase
indefinitely but rather converge to a certain number. Algorithms that do not converge
cannot be used; the clustering effect is described as follows: similar samples are close to

Table 1 Experimental parameter setting.

Parameter Description

CPU 10 core Intel Xeon E5-2640 CPU

Memory 64 GB

Hard disk HDD 10 TB

SSD 480 GB

Network card Broadcom NetXtreme Gigabit Ethernet

Operating system Windows 10

Simulation software Matlab 7.2

Table 2 Description of the experimental data set.

Experimental data set Type Number of samples Number of characteristics Category

Dermatology UCI 377 35 6

Newsgroups Text 3,981 8,125 4

TDT2 Text 664 37,882 10

Tumor14 Gene 200 17,174 14

AT&T Face 411 655 40

Palm Other 2,111 267 100

Mpeg7 Shape 1,511 6,111 70
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each other. The further the different samples are from each other, the better the clustering
effect is.

Experimental result
The comparison outcomes of the convergence of four network feature selection strategies
for high-dimensional data are shown in Fig. 5.

Analyzing the convergence comparison results of the network high-dimensional data
feature selection algorithms in Fig. 5, we can see that the errors of different algorithms
change with the number of iterations. Among them, the Tian & Zhou (2020) algorithm

Table 3 Statistical table of experimental indicators.

Index
no

Index Related description

1 Algorithm convergence Because of the algorithm’s convergence, the value obtained after multiple iterations should move
toward a certain value rather than increasing indefinitely. The algorithm that does not converge
cannot be used

2 Clustering effect Similar samples are close to each other. The farther different samples are, the better the clustering
effect will be

3 Recall ratio The connection between the total amount and any related quantities that have been discovered

4 Precision ratio The percentage of relevant information checked out and all information checked out

5 F1 value The harmonic mean of recall and precision

6 Accuracy of network high-dimensional
data feature selection

Refers to the ratio of the number of experiments that correctly select the high-dimensional data
features of the network to the total number of experiments

7 Network high-dimensional data feature
selection time

The efficiency is higher the faster the network high-dimensional data feature selection is finished

Figure 5 Comparison results of algorithm convergence.
Full-size DOI: 10.7717/peerj-cs.1447/fig-5
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has never converged, and the error is always kept at a high level, indicating that the
convergence performance of the algorithm is very poor; When the number of iterations
reaches 180, the Lin et al. (2021) algorithm achieves convergence, and the error of the
algorithm is low, so the convergence performance of the algorithm is poor; When the
number of iterations reaches 85, theWang & Chen (2020) algorithm achieves convergence,
and the error of this algorithm is high, so it is proved that the convergence performance of
this algorithm is relatively poor. Compared with the three methods, when the number of
iterations reaches 24, the algorithm in this article achieves convergence, and the error at
this time is always kept at a low level, proving that the algorithm's convergence
performance is optimal.

Figure 6 displays the comparison findings of the clustering impacts of four network
high-dimensional data feature selection algorithms.

The Tian & Zhou (2020) technique can only effectively cluster high-dimensional data of
some networks, and the majority of the data are dispersed, as shown by analysis of the
findings in Fig. 6. This indicates that the algorithm’s clustering performance is subpar.

The Lin et al. (2021) algorithm can process the clustering of five different types of data,
including dermatology, TDT2, tumor14, AT&T, and palm, according to an analysis of the
results in Fig. 7, but it cannot process the clustering of all high-dimensional data on the
network, and the clustering quality is subpar.

When the clustering processing of AT&T and Palm data is attempted using theWang &
Chen (2020) technique, the results in Fig. 8 reveal that the clustering quality is poor.

The findings of Fig. 9’s analysis demonstrate that the algorithm used in this article can
handle clusters of seven different types of data, demonstrating the program’s effectiveness
at clustering high-dimensional network data.

Figure 6 The Tian & Zhou (2020) algorithm network high-dimensional data clustering effect.
Full-size DOI: 10.7717/peerj-cs.1447/fig-6
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Table 4 compares the outcomes of various approaches for clustering high-dimensional
data in terms of recall, precision, and F1 value.

The data analysis in Table 4 shows that compared with the experimental comparison
algorithm, the average value of the memory comparison results in Tian & Zhou (2020) is
65.6%, the average value of the memory comparison results in Lin et al. (2021) is 86.4%,
and the recall inWang & Chen (2020) the average of the comparison results is 75.3%, and
the average of the recall comparison results in the algorithm in this article is 97.2%.

Figure 7 The Lin et al. (2021) algorithm network high-dimensional data clustering effect.
Full-size DOI: 10.7717/peerj-cs.1447/fig-7

Figure 8 The Wang & Chen (2020) algorithm network high-dimensional data clustering effect.
Full-size DOI: 10.7717/peerj-cs.1447/fig-8
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Compared with the experimental comparison algorithm, the method used in this article
has the highest average recall comparison result.

Analyzing the information in Table 5, we can see that the average accuracy comparison
result in Tian & Zhou (2020) is 75.4%, the average accuracy comparison result in Lin et al.
(2021) is 87.5%, the average accuracy comparison result in Wang & Chen (2020) is 70.5%,
and the average accuracy comparison result in the algorithm of this article is 95.7% in
comparison to the test comparison algorithm. The algorithm used in this article’s accuracy
comparison result has the greatest average value when compared to the experimental
comparison algorithm.

We can observe from the data in Tables 4–6 that the recall, precision, and F1 values of
the high-dimensional network data clustering results of the four approaches exhibit a
varying pattern as the number of experiments increases. The Tian & Zhou (2020)

Figure 9 Algorithm of this article network high-dimensional data clustering effect.
Full-size DOI: 10.7717/peerj-cs.1447/fig-9

Table 4 Comparison results of recall rates of different methods (unit: %).

Number of experiments Tian & Zhou (2020) algorithm Lin et al. (2021) algorithm Wang & Chen (2020) algorithm Algorithm of this article

20 65.3 86.9 75.9 98.7

40 75.1 86.7 76.3 95.7

60 56.8 87.6 75.4 97.6

80 64.7 87.5 78.1 97.4

100 62.3 83.5 74.6 98.5

120 68.7 86.9 72.3 96.7

140 66.5 85.7 74.6 95.8

Average value 65.6 86.4 75.3 97.2
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algorithm has an average recall of 65.6%, the Lin et al. (2021) algorithm has an average
recall of 86.4%, theWang & Chen (2020) algorithm has an average recall of 75.3%, and the
Vlachos & Thomakos (2021) algorithm has an average recall of 97.2%, the highest of the
four approaches. The Tian & Zhou (2020) algorithm’s average precision is 75.4%, the Lin
et al. (2021) algorithm’s average precision is 87.5%, the Wang & Chen (2020) algorithm’s
average precision is 70.5%, and the Vlachos & Thomakos (2021) algorithm’s average
precision is 95.7%, the greatest of the four approaches. The Tian & Zhou (2020)
algorithm’s average F1 value is 70.1%, the Lin et al. (2021) algorithm’s average F1 value is
86.9%, theWang & Chen (2020) algorithm’s average F1 value is 72.7%, and the average F1
value of this algorithm is 96.4%, the highest among the four ways.

The correct rate of network high-dimensional data feature selection of the four
algorithms is compared, and the comparison results are shown in Table 7.

The high-dimensional network data in Tian & Zhou (2020) has a maximum feature
selection accuracy of 86.6%, a minimum value of 83.7%, and an average value of 85.9%. By
analyzing the data in Table 7, it can be seen that the maximum, minimum, and average
feature selection accuracy of the high-dimensional network data in Tian & Zhou (2020) are
88.2%, 78.2%, and 83.2%, respectively.

Table 5 Comparison results of the accuracy of different methods (Unit: %).

Number of experiments Tian & Zhou (2020) algorithm Lin et al. (2021) algorithm Wang & Chen (2020) algorithm Algorithm of this article

20 76.8 89.3 65.8 96.8

40 74.9 85.6 69.7 97.4

60 75.6 86.7 68.4 95.8

80 74.8 89.7 71.3 96.3

100 72.3 88.1 72.2 91.7

120 79.6 87.6 71.6 95.5

140 74.1 85.4 74.3 96.7

Average value 75.4 87.5 70.5 95.7

Table 6 Comparison results of F1 values of different methods.

Number of experiments Tian & Zhou (2020) algorithm Lin et al. (2021) algorithm Wang & Chen (2020) algorithm Algorithm of this article

20 70.6 88.1 70.4 97.7

40 75.0 86.1 72.9 96.5

60 64.9 87.1 71.7 96.7

80 69.3 88.6 74.5 96.8

100 66.9 85.7 73.4 95.0

120 73.7 87.2 71.9 96.1

140 70.1 85.5 74.4 96.2

Average value 70.1 86.9 72.7 96.4
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The four algorithms’ feature selection times for high-dimensional network data are
compared, and the comparison results are displayed in Table 8.

From the analysis of the results in Table 8, it can be seen that as the number of
experimental samples increases, the number of feature selections of the four algorithms for
high-dimensional network data shows an increasing trend. The average selection time of
the Tian & Zhou (2020) algorithm high-dimensional network data features is 182.8
milliseconds, the average selection time of the Lin et al. (2021) algorithm high-dimensional
network data features is 134.7 milliseconds, and the Wang & Chen (2020) algorithm
high-dimensional network data feature selection time is 192.1 milliseconds. The method in
this study has the shortest selection time and the highest efficiency, and the average
network selection time for high-dimensional data features is 65.1 ms, which is the lowest
among the four techniques.

Table 7 Accuracy of feature selection for high-dimensional network data (unit: %).

Number of samples Tian & Zhou (2020) algorithm Lin et al. (2021) algorithm Wang & Chen (2020) algorithm Algorithm of this article

2,000 88.2 86.6 84.3 98.7

4,000 87.5 85.7 83.6 97.8

6,000 86.3 85.1 81.7 97.6

8,000 84.7 87.6 79.1 97.1

10,000 83.6 87.1 78.7 96.9

12,000 81.1 86.2 76.4 96.4

14,000 80.2 85.7 74.1 96.2

16,000 79.4 85.4 71.4 96.5

20,000 78.2 83.7 69.8 95.1

Average value 83.2 85.9 77.7 96.9

Table 8 Network high-dimensional data feature selection time (unit: ms).

Number of samples Tian & Zhou (2020) algorithm Lin et al. (2021) algorithm Wang & Chen (2020) algorithm Algorithm of this article

2,000 156 89 156 53

4,000 158 98 163 56

6,000 163 112 166 57

8,000 168 125 179 62

10,000 179 136 182 66

12,000 188 147 199 68

14,000 196 158 201 72

16,000 213 169 236 75

20,000 225 178 247 77

Average value 182.8 134.7 192.1 65.1
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CONCLUSIONS
At present, network data presents explosive growth. In general, network data usually has a
high dimension, which increases the difficulty of data analysis and utilization. However,
among many network data features, many of them are redundant or irrelevant, which
seriously affects the efficiency of data analysis and utilization. The traditional network
high-dimensional data feature selection algorithm has a number of issues, so this article
uses SDP to design a feature selection algorithm for high-dimensional network data with
the goal of resolving the issues with the traditional algorithm. The experimental findings
demonstrate that the method in this study can handle clustering for seven different types of
data pairs and converges when the number of iterations exceeds 24. The network high-
dimensional data clustering effect is good, and the recall, precision, and F1 value are all
retained at a high level. For high-dimensional network data, the average correct feature
selection rate is 96.9%, and this rate is consistently kept high. The quick feature selection
time for high-dimensional network data demonstrates that this approach can completely
address issues with existing traditional methods and advance the study of network data
analysis.

The proposed algorithm has been shown to have good performance in the feature
selection of high-dimensional network data. It is an effective and efficient method for
feature selection of high-dimensional network data. The algorithm is limited to linear
projection and SDP and does not consider other feature selection methods. Further
research should be done to explore the potential of other feature selection techniques for
high-dimensional network data.
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