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ABSTRACT

Multi-agent systems are promising for applications in various fields. However, they
require optimization algorithms that can handle large number of agents and
heterogeneously connected networks in clustered environments. Planning
algorithms performed in the decentralized communication model and clustered
environment require precise knowledge about cluster information by compensating
noise from other clusters. This article proposes a decentralized data aggregation
algorithm using consensus method to perform COUNT and SUM aggregation in a
clustered environment. The proposed algorithm introduces a trust value to perform
accurate aggregation on cluster level. The correction parameter is used to adjust the
accuracy of the solution and the computation time. The proposed algorithm is
evaluated in simulations with large and sparse networks and small bandwidth. The
results show that the proposed algorithm can achieve convergence on the aggregated
data with reasonable accuracy and convergence time. In the future, the proposed
tools will be useful for developing a robust decentralized task assignment algorithm
in a heterogeneous multi-agent multi-task environment.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Distributed
and Parallel Computing, Optimization Theory and Computation, Robotics

Keywords Situational awareness, Clustering, Aggregation, Multi-agent systems, Optimization,
Consensus, Distributed

INTRODUCTION

The field of multi-agent systems has gained increasing interest in recent years, particularly
in the area of decentralized control (Xie ¢ Liu, 2017). Although traditional centralized
control systems are simple and robust (Oh, Park ¢ Ahn, 2015), they have faced challenges
in managing large numbers of agents and ensuring efficient performance (Ishaq et al.,
2022). Thus, researchers have shifted their focus towards decentralized control methods
which aim to distribute the computational and decision-making responsibilities among the
agents in a local environment (Ponda et al., 2010). Applications of decentralized systems
using multi-agent systems include air delivery systems (Oh et al., 2018; Damanik ¢ Choi,
2021), search and rescue (Tomic et al., 2012), urban air mobility (Kim, Jeong ¢~ Choi, 2021),
energy load management (Rasheed et al., 2019), surveillance (Samad, Bay & Godbole,
2007), and emergency relief systems (Bupe, Haddad ¢» Rios-Gutierrez, 2015).
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Y : Objects recognized by a;

Figure 1 A problem of identifying objects in a decentralized network of multi-agent systems. Data
aggregation enables agent 1 to recognize objects beyond its sensor range.
Full-size K&] DOT: 10.7717/peerj-cs.1445/fig-1

In addition to several advantages, decentralized control systems have one main
challenge: communication between agents to perform coordination (Kwon ¢ Hwang,
2020). Consensus (Choi, Brunet ¢ How, 2009) may be one of the solutions to this. The sub-
gradient method using consensus as proposed in Nedic ¢~ Ozdaglar (2009) is used to solve
an optimization problem in a decentralized network of multi-agent systems. This
algorithm implements the information evolution model proposed in Tsitsiklis (1984),
which combines information from local neighbors using a weight rule. With this
algorithm, the information from one agent is made available to every agent connected
through communication links, either directly or indirectly, as illustrated in Fig. 1.

Based on the sub-gradient method, a decentralized clustering algorithm was proposed
in Khawatmi, Zoubir & Sayed (2015), Khawatmi, Sayed & Zoubir (2017). This algorithm
assumes that agents have no knowledge of the number of clusters and their respective
information. Using a pairwise function, an agent determines the cluster in which it belongs
and propagates its knowledge towards the consensus value of the cluster. This algorithm
successfully performs clustering even in partially connected networks with few data
exchanges and is comparable with centralized algorithms, including KMeans (MacQueen,
1967).

Decentralized local optimization, including decentralized multi-agent mission planning
(Bertsekas, 1988; Choi, Brunet & How, 2009; Luo, Chakraborty & Sycara, 2014; Johnson,
Choi ¢ How, 2016) may require local knowledge to perform mission assignments in a
decentralized network. However, highly complex tasks necessitating constraints, including
coupled constraints as proposed in Whitten et al. (2011) and complex optimization
objectives, including min-max tours as proposed in Prasad, Choi & Sundaram (2020) and
Damanik ¢ Choi (2021), require certain knowledge about the neighborhood which is
difficult to acquire with conventional consensus in a partially connected network. To
address this, data aggregation methods can be used.
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The aim of data aggregation methods is to understand the data sensed by nodes and
extract important information from it. Additionally, the system must be able to tackle
various network restrictions. For example, in a partially connected network some data may
be missing. The system must be capable of reconstructing the missing data using consensus
between the agents. In a low energy network with limited bandwidth, data exchange must
be executed efficiently to allow convergence to occur in a minimum number of inter-agent
communications, without sacrificing the accuracy of the situational awareness. All of this
must be possible without a substantial dependence on the central controller.

There are three types of data aggregation available: MIN/MAX aggregations,
AVERAGE aggregations, and COUNT/SUM aggregations. MIN/MAX and AVERAGE
aggregations are straightforward and various robust algorithms are available to execute
these types of aggregation (Jesus, Baquero ¢» Almeida, 2015; Fraser et al., 2012).
Comparatively, COUNT/SUM aggregation is more challenging due to its sensitivity to
duplicates, noise, and security attacks.

Several COUNT/SUM aggregation algorithms have been developed in order to solve the
challenges posed, but each algorithm has its strengths and limitations. Token circulation,
proposed in Dolev, Schiller ¢ Welch (2006) and improved in Saha, Marshall ¢ Reina
(2019), is one approach for COUNT/SUM aggregation which implicates passing a token
among the nodes and incrementing a counter every time the token is received. Probability
density-based methods, such as probabilistic polling proposed in Friedman ¢» Towsley
(1999), Kalman-filter based polling in Alouf, Altman ¢ Nain (2002), and maximum
likelihood estimation in Baquero et al. (2012), require larger amounts of communication
bandwidth to transmit probability density estimates between the nodes, limiting
scalability.

Random walk-based algorithms, like Random-tour in Massoulié et al. (2006), Sample &
Collide in Ganesh et al. (2007), and Capture-Recapture in Mane et al. (2005), have also
been proposed for COUNT/SUM aggregation. These approaches involve nodes moving
randomly through the network and incrementing a counter as they pass other nodes.
However, these approaches are known to have low accuracy, particularly for larger
numbers of nodes.

Recently, several gossip-based and consensus-based algorithms have been presented in
order to overcome the limitations of previous methods. These approaches involve each
node communicating with its neighbors, exchanging information and aggregating it over
multiple rounds. Gossip-based algorithms such as Hop-sampling and interval density,
proposed in Kostoulas et al. (2005) and Kostoulas et al. (2007) respectively, are examples of
such algorithms. Consensus-based algorithms like Shames et al. (2012) and Lee et al. (2018)
are other options. These algorithms do not require considerable bandwidth, produce
accurate results, and converge in few iterations. However, no existing algorithm has been
proposed for COUNT/SUM aggregation in a clustered network, which is common with
large scale systems.

In order to tackle this limitation, this article presents a COUNT/SUM data aggregation
in a clustered network of multi-agent systems. This algorithm takes into account the
clustered network topology by using a notion of trust value, which reflects the

Damanik et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1445 3/18


http://dx.doi.org/10.7717/peerj-cs.1445
https://peerj.com/computer-science/

PeerJ Computer Science

trustworthiness of each node’s count value. The proposed algorithm requires relatively
little communication and can achieve accurate results with few iterations, as proven
through simulations and sensitivity analysis.

The rest of the article is organized as follows. ‘Proposed Algorithm’ proposes an
algorithm that solves both clustering and data aggregation in a decentralized network.
‘Simulation’ details the simulation that was built and shows the simulation results. Finally,
‘Conclusion’ presents the concluding remarks.

PROPOSED ALGORITHM

In this section, we will explore the consensus-based data aggregation technique for multi-
agent systems working in a clustered network environment. The goal of the algorithm is to
perform COUNT or SUM calculations of a global information with only the available local
information. By leveraging consensus on the aggregation variable and two supporting
variables with neighboring agents, we can perform counting or summing of a variable from
all connected members in a cluster. Additionally, the algorithm can perform an accurate
data aggregation even in heterogeneous networks, wherein agents can be connected with
members belonging to different clusters. Despite the noise, the algorithm can selectively
filter the data and achieve convergence to the cluster aggregate value quickly.
The algorithm relies on the consensus of three important variables:

1) The (approximate cluster) centroid vector (w;). The centroid vector is the prediction on
the centroid of an agent’s cluster. During the consensus, an agent compares the
predicted centroid of both itself and its neighbor to find out if they are in the same
cluster.

2) The aggregation contribution vector (¢;). The aggregation contribution variable is a
measure of each agent’s contribution to the aggregation dynamics of the cluster, and it
plays a critical role in determining the overall behavior of the system by ensuring that
each agent’s contribution is properly accounted for.

3) The aggregate value (¥/;). On the other hand, the aggregate variable is the COUNT or
SUM of the data being aggregated. This variable symbolizes the final result of the
aggregation process, providing a comprehensive summary of the data collected and
processed by the agents.

The multi-agent system is modeled as a graph G = (V, E), where V is the set of vertices
or nodes representing agents, and E is the set of edges that signify the interactions between
the agents. Each edge e € E is a tuple (u, v), where u and v are nodes in V, indicating that
agents represented by u and v are interacting. The graph can be weighted or unweighted,
relying on whether or not the edges have a specific value or weight associated with them,
which can represent the strength or significance of the interaction between the agents.

Each node i € V in the environment belongs to a cluster ¢; from the cluster set
C ={1,...,m} in one-to-one relationships. Each cluster ¢ is identified with its centroid
w, € R, with k being the number of centroid’s dimensions. In this article, we assume that
the network is heterogeneous, wherein there are edges between agents in different clusters.
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Figure 2 Heterogeneous network model allows for the communication between agents in different
clusters. Full-size K&l DOT: 10.7717/peerj-cs.1445/fig-2

Let N; denote the set of i’s adjacent nodes, wherein node j € N; can belong to any cluster, it
does not have to be in the same cluster with i (Fig. 2).

It is also assumed that there must be a set of edges that can connect every pair of agents
in the cluster. This implies that communication between two agents in the same cluster is
always possible, either directly or through several hops between agents in the cluster as
illustrated in Fig. 3.

In cooperative multi-agent systems, it is assumed that the system minimizes the total
cost of the entire system, which is the sum of each agent’s cost. Specifically, this
optimization problem can be expressed as min;cyf;(x) where f;(x) is the individual cost
function of each agent.

In a decentralized network, the global knowledge of the environment’s state x is not
always available, thus agents must generate an estimate of the environment status, denoted
as x;. Assuming that the agent updates its estimate in a discrete time domain, every time
step an agent updates its estimate using the relation

xi(t+1) =Y agx(t) — aVfi(xi(t)) (1)
jev

where a; = [a;, . .., a;i,] is a weight vector used to calculate the average estimates from

agent i’s neighbors. The weight vector must comply with the weight rules as follows

Z a; = 1 2)

jev
0y = { n;, if j =iorjisagent i’s neighbor 3)

0, otherwise

where 7; is any scalar between 0 and 1 (0 <1, <1,Vj € V).

Consensus on centroid vector

In decentralized systems, agents do not know the exact values of cluster centroids and
members of the clusters. Instead, they conduct consensus on an estimated centroid value
and compare it with their neighbors to establish whether they belong to the same cluster.
Let x; € R¥ be agent i’s state used for the basis of clustering, and w; € R be the predicted
centroid vector of its cluster ¢;. Then, we can define a variable called trust value, denoted as
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Figure 3 For a feasible network, all nodes in the cluster must be connected with at least one member
of the same cluster, making the group of agents on the right unfeasible.
Full-size k] DOT: 10.7717/peerj-cs.1445/fig-3

vij, that compares the predicted values of clusters of agents i and j. The trust value must

satisfy the following equation.

vi(t) = 1= [|oi(t) — a;(t)[| = 0 (4)

The trust function can be employed to identify whether an agent j is in the same cluster
as agent i or not. We can define a scalar € as a boundary. Agents i and j are said to be within
the same cluster if v;; > £. We can utilize any convex function to define the trust function as
long as it satisfies Eq. (4).

Vij(t) :g(wi(t)ij(t)vt) (5)

At the initial stage, each agent sets the centroid vector to its state ®;(0) = x;. For each
time iteration t = 1,2, .. ., every agent performs consensus on the centroid vector w; with
their neighbors N; and updates the vector iteratively using the following equation.

1

ZjeN,-Ui VijjeNiui

Consensus on aggregation contribution vector
The data aggregation model proposed in this article is based on the network counting
system proposed in Lee et al. (2018), using blended dynamics (Eq. (7)):

s=—241 )
n

Using the steady-state theorem, it is easy to prove that lim;_,, s(t) = n. Developing the
consensus model based on this dynamics leads to convergence to the number of members
in a cluster. In this article, we extended this model in three ways:

1) In the original article, the counting mechanism requires a leader to generate dynamic
feedback in order to reach convergence. In this article, we allow every member of the
cluster to contribute a fraction of the dynamic feedback, thus removing the need for a
cluster leader.
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2) We extended the model to allow summing by introducing a state constant y € R on the
right-hand side of the dynamics in Eq. (7).

3) The original model assumes a homogeneous network, where no cluster notation is
defined. In this article, we extended the blended model to work with heterogeneous
networks with multiple clusters by implementing trust values into the consensus
models.

First, to determine the fraction of contribution of each node on the blended dynamics,

we introduce a contribution vector ¢, = [¢;,, . .., ¢,,] that satisfies
Y gy=1, VieV )
jev

The vector ¢, is initially decided by each agent i using Eq. (9) and then updated using
the consensus rule based on the structure of the network. The idea is to generate a trust
value that is proportional to the degree of the node. At the initial stage, each agent decides a
vector such that

qbij:{l’ forj=i ©)

0, otherwise

And then, at every time step, agents perform consensus with their neighbors using Eq.
(10) below.

LS w00, viev (10)

oi(t+1l) ==——1
ZjeN,-ui Vij(t) JENUI

The consensus of the contribution vector might require a slightly higher bandwidth, as
an entire vector ¢; must be exchanged between agents and their neighbors. However, by
ensuring that the centroid vectors are converged, where the prediction distance between
agents in a cluster is very small, the consensus on contribution vectors can reach
convergence very quickly.

Consensus on the aggregation value

The consensus on the aggregation value is a critical aspect in many decentralized systems.
The objective is to collect and sum the state variables of all agents in a cluster and arrive ata
single value. The state variable of each agent to be aggregated is represented by y;, and the
sum of all agents’ states in a cluster ¢ € C is represented by Y., as defined in Eq. (11):

YC:Zyi, Vce C (11)

icc

Given ¢); as the contribution vector known by agent i, the agent decides its ratio of
contribution feedback to the aggregation dynamics (Eq. (7)) as ¢;;. At every time step
t =1,2..., the agents generate an addition to the consensus value.
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To determine the contribution of each agent to the aggregation process, a contribution
vector ¢; is used. This vector represents the ratio of contribution feedback from each agent
to the aggregation dynamics. At every time step, each agent generates an addition to the
consensus value by taking the ratio value of the agent i as ¢;;.

Each agent calculates the prediction value of Y, as i;, which represents the approximate
value of the sum of y; for all agents in the cluster C;. During the iteration process, agents
exchange their prediction data using Eq. (12). This equation ensures that each agent has an
updated and accurate prediction value of Y.

1

Yi(t+1) = Z vi(OY;(t) +e(yi — (1), VieV (12)

ZjeN,-Ui Vij (t) jENUI

Equation (12) represents the aggregation of the prediction value of each agent during
the iteration process. Here, \;(t + 1) is the prediction value of the sum of all agents’ states
y; in the cluster ¢ € C at the (¢t + 1)-th time step. The equation computes the new
prediction value based on the previous prediction values of the neighboring agents and the
local state of the agent.

The term ﬁ >_jenuui vii(t)y;(t) represents a weighted average of the prediction
jeN;ui Y

values of the neighboring agents and the current agent. The weight v;;(t) determines the
influence of the prediction value of each neighboring agent on the new prediction value of
the current agent.

The term €(y; — ¢;;(t);(t)) represents the correction term that the agent applies to its
previous prediction value based on its own local state y;. ¢;;(¢) is the ratio of contribution
feedback to the aggregation dynamics, and € is a small positive constant that determines
the magnitude of the correction term.

Equation (12) is calculated for every agent i € V, where V is the set of all agents in the
network. The iteration process continues until the prediction values of all agents converge
to the same value, which represents the consensus on the sum of all agents’ states y;.

The complete algorithm is shown in Algorithm 1.

SIMULATION

The simulation environment was designed to emulate the proposed algorithm in a
clustered network of multi-agent systems and to test the algorithms under various
conditions. The results obtained from the simulations provide valuable insights into the
efficiency and scalability of the algorithms and help to validate the theoretical findings
presented in the article. This section will provide a detailed description of the simulation
setup, the conditions tested, and the results obtained.

The simulation first generates sample data of 100 agents with locations in 2D domains
using the make_blobs function from the sklearn.datasets module. A network with 100
agents is considered large and the algorithm can solve the data aggregation in a reasonable
number of iterations. The sample data is sorted based on its cluster labels and stored in a
state matrix X of size 100 x 2 and a cluster label vector ¢ of size 100 x 1.
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Algorithm 1 Decentralized data aggregation in clustered network for each agent i

Require: X;, Y;, ¢

I wi(0) — X;

2 ¢’7(0) - {(1): i)ftile:rv»lfise

30 ¥(0) < Y

4 t+—0

5:  while ; is not converged do

6: @i(t) — w;(t)

7: éi(t) — (1)

8: Pil) — wilt) + e(Y; — pu(t)(1))
9: v;—1

10: for j € N; do

Receive w;(t) from j

11: vi(t) = f (oi(t), o5(t), 1)

12: Vi = Y+ vy

13: if ¢; is not converged then
14: Receive ¢;(t) from j
15: @i(t) — d;(t) + vijw; (1)
16: &i(t) - (Zsi(t) + Vi (1)
17: end if

18: Receive y/;(t) from j

19: l/;i(t) - l/;i(t) + vy (1)

20: end for

21: if ¢; is not converged then

22: wi(t+ 1) — d;(t) /¥

23: bi(t+1) — (1) /i

24: else

25: wi(t+1) — an(t)

26: bi(t+1) — (1)

27: end if

280 Yt 4 1) — (1))
29: t—t+1
30: end while

Next, a graph G is created with 100 nodes with X as the location of nodes (Fig. 4A). The
edges in the graph are determined based on the distances between nodes. To generate
strong connections within a cluster, the NearestNeighbors class from the sklearn.neighbors
module is used to find the nearest neighbors for each node and we connect each agent with
their 10 nearest neighbors. The graph is also augmented with random edges with a
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Figure 4 Network graph G consisting of 4 clusters with 25 nodes each. Each node has edges with its
nearest 10 neighbors and 10% probability with any random nodes as shown in (A). The resulting
adjacency matrix is shown in (B). Full-size K&] DOT: 10.7717/peerj-cs.1445/fig-4

probability of 0.1% to increase its inter-cluster connectivity. The adjacency matrix of the
graph is shown in Fig. 4B.

The code then initializes the cluster centroid prediction w, contribution matrix ¢, and
aggregate matrix . These matrices are updated in each iteration of the data aggregation
process using Eqs. (6), (10), and (12). The data to be aggregated is stored in a vector y € R"
with initial value equal to ID of each node, y; = i, Vi. The real aggregate of the data is
calculated and stored in a vector Y; = > 7, y;, Vi for error reference. The trust value v;; is
calculated using three different convex functions (Fig. 5A): Gaussian (Eq. (13)), triangular
(Eq. (14)), and rectangular (Eq. (15)).

1. Gaussian function

202

2. Triangular function

[Jewi—oj| .
—_ — AR ooyl <20 (14)
0, otherwise

3. Rectangular function

(15)

1, if [oi—aj) <20
Y710, otherwise
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Figure 5 (A) The three convex functions used to generate trust value: gaussian (Eq. (13)), triangle
(Eq. (14)), and rectangle (Eq. (14)) functions. The convergence rate of cluster centroid prediction
is shown in (B). Full-size k] DOT: 10.7717/peerj-cs.1445/fig-5
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Figure 6 (A and B) The prediction of cluster centroid by all nodes. In initial, the centroid is defined to
each node’s state (w; = x;). Using consensus rule on Eq. (6), the centroid prediction converged to mean
value of each member’s state of the cluster. Full-size k] DOT: 10.7717/peerj-cs.1445/fig-6

The data aggregation process is repeated for a maximum number of iterations, specified
by MAX_ITER. The code checks if the contribution vectors has converged by comparing
the updated values with the previous values, and if the difference is within a given
tolerance, the process terminates. After the convergence, the simulation skips the
consensus on the contribution vector, and continues the consensus for the aggregate value
until convergence. Figure 6 shows the cluster centroid predictions of all agents, over the
course of the iterations. Figure 5B shows the convergence rate of the centroid cluster
prediction using three different trust functions, and Fig. 7 shows the contribution vector of
all agents at convergence.

The simulation also calculates the mean squared error between the real aggregate value
and the predicted aggregate value, which is a measure of the difference between the two.
Figure 8B shows the mean squared error for each iteration.
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Figure 7 (A and B) Contribution vector value at convergence ¢(co). For every agents in the same
cluster the contribution vector converge to the same value.Full-size kal DOI: 10.7717/peerj-cs.1445/fig-7
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Figure 8 Data to be aggregated (A) for each nodes equals to the ID of each agents (y; = i, Vi) and the
data aggregation (B) converges to the sum of data to be aggregated of all agents in the same cluster,
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We also provide sensitivity analysis of our proposed algorithm. Sensitivity analysis is a
crucial step in evaluating the performance of the proposed algorithms for decentralized
data aggregation in clustered networks of multi-agent systems. In this study, sensitivity
analysis was performed to investigate the effect of various parameters on the accuracy of
data aggregation. The parameters considered in the sensitivity analysis include the value of
epsilon (a threshold value used in the algorithm), the number of connected neighbors, the
probability of random edge generation, and the number of sample nodes.

A sensitivity analysis was conducted to evaluate the performance of the proposed
algorithm. The parameters considered in the analysis were: € (data aggregation step), the
number of connected neighbors (||N;||), the number of sample nodes (1), and the
probability of random edge generation (p;s.4). The results of the sensitivity analysis
showed that the data aggregation error was sensitive to all of these parameters, as shown in
Table 1. In particular, as the value of € increased, the convergence time reduced
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Table 1 Sensitivity analysis is performed to measure the convergence time of contribution vector (¢)
and data aggregation value () with various value of data aggregation step size &, number of
neighbors (||N;||), number of nodes (1), and probability of random edge generation (p,44)-

€ [IN:]| n Prand Convergence time L2-Norm error ||y — Y|z
¢ (iteration) Y (iteration)

0.1 5 100 0.01 159 26,236 5.325308
0.5 5 100 0.01 159 5,769 26.164664
1 5 100 0.01 159 2,994 51.233616
5 5 100 0.01 159 648 222.297639

10 5 100 0.01 159 343 389.116116
1 5 100 0.01 299 299 15.976597
1 6 100 0.01 299 299 3.558554
1 7 100 0.01 299 299 9.557468
1 8 100 0.01 299 299 11.039423
1 9 100 0.01 299 299 13.091504
1 10 100 0.01 299 299 16.758241
1 5 100 0.01 299 299 38.259445

(Continued)
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Table 1 (continued)

€ [IN:]| n Prand Convergence time L2-Norm error ||y — Y|z
¢ (iteration) Y (iteration)

1 5 200 0.01 299 299 729.815696
1 5 300 0.01 999 999 30.42748

1 5 400 0.01 999 999 236.236123
1 5 500 0.01 999 999 282.063527
1 5 100 0.01 159 2,994 51.233616
1 5 100 0.05 57 3,585 28.155643
1 5 100 0.1 31 4,447 19.498971
1 5 100 0.5 11 8,529 9.144341
1 5 100 1 6 9,999 6.898491

significantly while increasing the convergence error (Fig. 9A). The sensitivity analysis also
showed that various numbers of connected neighbors (Fig. 9B), probabilities of random
edge generation (Fig. 9C), and number of sample nodes (Fig. 9D) still led to similar
convergence values, demonstrating the robustness of the algorithm in heterogeneous
networks.

CONCLUDING REMARKS

This article proposed an algorithm to perform data clustering and aggregation in a
decentralized network of multi-agent systems, using consensus methods on three key
variables: approximate cluster centroid vectors, aggregation contribution vectors, and
aggregate values. The trust value used in the consensus rules enables data aggregation in a
heterogeneously connected clustered network. Thus, data aggregation is performed in the
cluster scale while still allowing inter-cluster communication.

The accuracy and convergence rate of the algorithm are dependent on the data
aggregation step size constant €. A bigger value of € results in faster convergence time, but
with higher aggregation errors, and vice versa. The main advantages of the proposed
algorithm include the fact that it does not require many data transfers between its
neighbors and that the data aggregation can reach convergence in a reasonable number of
iterations, even in heterogeneous networks. These advantages allow both clustering and
data aggregation in a decentralized network with limited bandwidth.

Future work includes extending the proposed algorithm to work in switching networks
and improving the accuracy and convergence time by modifying the consensus rules for
data aggregation. Furthermore, there are various applications which will benefit from this
algorithm, such as decentralized task allocation algorithms and coordination algorithms in
multi-agent systems.
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