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ABSTRACT
A high reliability system has the characteristics of complexity, modularization, high
cost and small sample size. Throughout the entire lifecycle of system development,
storage and use, the high reliability requirements and the risk analysis form a direct
contradiction with the testing expenses. In order to ensure the system, module or
componentmaintains good reliability status and effectively reduces the cost of sampling
tests, it is necessary to make full use of multi-source prior information to evaluate its
reliability. Therefore, in order to evaluate the reliability of highly reliable equipment
under the condition of a small sample size correctly, the equipment reliability evaluation
model should be built based on multi-source prior information and form scientific
computing methods to meet the needs of condition evaluation and fund assurance
of high reliability system. In engineering practice, high reliability system or module
gradually develops from normal state to failure state, generally going through three
working states of ‘‘safety-potential failure-functional failure’’. Firstly, the historical test
data under the three states can be used for the data source for the reliability evaluation
of the system at the current stage, which supplements the deficiency of the field data;
secondly, due to the lack of accurate judgment on the working state of a high reliability
system or modules and analysis of the health status, the unnecessary maintenance
may aggravate the evolution speed from potential failure to functional failure; thirdly,
when high reliability system or module operates under overload or harsh conditions,
the potential failure will be worsened to a certain extent. Aiming at the difficulty of
multi-state system reliability evaluation, a reliability evaluation method based on non-
information prior distribution is proposed by fusing multi-source prior information,
which provides ideas and methods for reliability evaluation and optimization analysis
of high reliability system or module. The results show that the three-state reliability
evaluation method proposed in this article is consistent with the actual engineering
situation, providing a scientific theoretical basis for preventive maintenance of high
reliability system. At the same time, the research method not only helps evaluate the
reliability state of a high reliability system accurately, but also achieves the goal of
effectively reducing test costs with good economic benefits and engineering application
value.
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INTRODUCTION
In the management activities of the whole life cycle of high reliability system, regular
reliability sampling inspection is required at all stages. Considering that the limitation
of small sample size and test cost are always the key factors which restrict the reliability
evaluation. In order to make up for the shortage of test sample size, the historical test
data or test identification data of similar products can also be used as the data source for
evaluating the reliability of new prototype, providing a large amount of prior information
for the sampling test, which ensures the best evaluation effect can be obtained at a small
test cost. Besides, it maintains the equipment integrity rate and task success of the system in
production, storage, use and other stages (Zhang et al., 2005). For high reliability system, in
order to meet the task requirements of high load and other harsh environments, the fault
detection method has become a necessary means to maintain the operation efficiency and
good safety of high reliability system. Traditional maintenancemethods (post maintenance,
scheduled maintenance, preventive maintenance) cannot meet the requirements of power
system when carry out tasks such as high load. Condition based maintenance has become
an inevitable development trend. Effective fault diagnosis and prediction are prerequisite
for condition based maintenance (CBM) (Ahmed & Kabir, 2020). In engineering practice,
most faults are three-states process that gradually evolves from normal to failure, and these
states change cannot be directly observed. Fault diagnosis, fault prediction and identifying
the operating state of the high reliability system according tomeasured signals, can estimate
state in the future, and predict the remaining service life of keymodules. At present, the fault
of high reliability system is mainly detected online by temperature, current, deformation
and other sensors. The type of fault is determined by the reflection process of the fault point
to the signal. However, due to the limitation of the measuring point or the unreachability
of the measuring point and other factors, it is still very difficult to predict the early fault
of power system. Lavau, Suhrke & Knott (2023) used a variety of sensors to complete the
constraint control of state quantity, and realized the determination of control threshold;
Kim & Kim (2022) used the improved mixed Gaussian clustering model and accelerated
testing experiments to detect early faults in high reliability system, and predicted the faults
that may be detected or occurred in the future; Song et al. (2023) detected and estimated
the early fault condition of the motor by monitoring the current signal change of the
inverter; Wang et al. (2017) established a new power system fault prediction model based
on GM forecasting method. However, there are still many problems should be solved for
potential failure prediction without failure data or obvious failure feature information
during the use stage of equipment. Therefore, it is particularly urgent to explore the
three-state reliability state evaluation method and potential failure detection technology of
high reliability system.
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Reliability centered maintenance analysis can confirm that the potential failure state
has the characteristics of weak fault signal, unobvious fault signal characterization, little
fault feature information, and many uncertain factors. Therefore, we can evaluate the
potential failure state probability with the help of three-state reliability theory. However,
the traditional fault diagnosis mainly aims at the situation where the fault mechanism is
clear or there are many historical failure data (Zhang et al., 2022; Babb & Rogatko, 2004).
For the potential failure prediction, it is difficult to locate the fault and determine the
fault latency. In engineering practice, the symptom information of the initiation and
expansion of potential failure in high reliability system has been reflected in its internal
unit structure (Feng et al., 2022;Mosleh et al., 2022). Therefore, putting forward a scientific
method for detecting potential failure in high reliability system, separating and extracting
the characteristics of potential failure, and exploring the harm degree, the development law
and the damage mechanism of potential failure will certainly contribute to the reliability
state assessment of the high reliability system. Considering that Markov process states the
transfer relationship between ‘‘current state’’ and ‘‘future state’’ of dynamic system from
the perspective of probability. At the same time, Markov process effectively realizes the
tracking of potential failure state, but in the process of state transition, there is a lot of
uncertain factors, which are difficult to quantify accurately. Taking aerospace equipment
as an example, aerospace equipment is a typical system with complexity, accuracy and
high reliability. When the aerospace equipment is in a potential failure state, its external
performance is weak, non-stationary and no substantial damage to the system. The detected
data are ‘‘no failure’’ data, so the characteristic information of potential failure is relatively
small, which belongs to typical small sample information. In order to accurately diagnose
the latent failure of aerospace equipment with progressive development characteristics
and no failure information, the quality status of aerospace equipment must be correctly
evaluated. Therefore, the study of a set of reliability evaluation methods of aerospace
equipment considers prior information is the premise of realizing the fault diagnosis
of aerospace equipment. Besides, for aerospace equipment, simply relying on the whole
machine operation and experience accumulation to obtain the diagnostic information of
key modules cannot meet the requirements of equipment safety and reliability in terms
of time and cost (Ming et al., 2023; Huang, Duan & Hao, 2010). Therefore, the correct
evaluation of the reliability status of aerospace equipment will be helpful to the qualitative
and quantitative analysis of potential failure laws. Take multi-electric/all electric aircraft as
an example, the airborne power distribution system is very complex, and the number of
aviation cables has increased significantly. Due to the limited internal space of the aircraft,
thousands of cables are distributed and stacked in a crossmanner, and have been working in
high temperature; cold, strong ultraviolet radiation; vibration and other environments for
a long time, resulting in gradual aging and damage of cables, arc failure, etc. However, the
current airborne BIT is mostly aimed at explicit fault alarm, and the accuracy of early fault
prediction is far from enough, which seriously affects social and personal safety. Therefore,
it is urgent to study accurate fault prediction technology. Implicit or intermittent failure is
an objective existence in aerospace equipment and highly integrated equipment, which has
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obvious latency, intermittent and transient characteristics. It leads to the failure of timely
protection of airborne TCBs and ECBs.

The traditional two-state (normal or failure) reliability theory can’t explain the reliability
problem of three-state complex system with progressive development characteristics
(Zhang, 2018), especially for the acceptance test and sampling test of high reliability system.
Those tests are typically small sample tests, the contradiction between small test samples
and high reliability requirements directly affects the economic and social benefits (Liu et
al., 2020). As we all know, the use of subjective experience has always been a controversial
issue in reliability evaluation. However, in many cases, the use of subjective experience
is an integral choice. The Bayes method does not exclude subjective experience, and
regards it as a part of prior information. In engineering practice, the practical experience
of experts and technicians is very valuable (Ghosh, 2020; Cotterill, 2005). Proper use of
these experiences not only solve some theoretical difficulties, but also save a lot of test
costs. Therefore, subjective experience shouldn’t be excluded in engineering application,
how to reasonably integrate these experiences and properly use them in specific problems
should be studied. Due to the fact that multi-state reliability analysis more accurately
reflects the actual working status of equipment, it has a wildly application in equipment
fault diagnosis and prediction. In recent years, the author has conducted in-depth research
on the role of multi-state reliability analysis in the state evaluation of high reliability
system in the National Natural Science Foundation project. At the same time, the high
value and the limited quantity of high reliability systems are difficult to collect sufficient
information to accurately evaluate the reliability status of the system. Therefore, it is of
great engineering significance to fully integrate multi-source information to make up for
the shortcomings of on-site testing data and study the method of multi-source information
fusion on reliability evaluation. This article studies the fusion method of prior information
in three-state system, establishes a reliability evaluation model based on multi-source
information fusion, and solves two problems related to binomial distribution: (1) how to
determine the non-information prior distribution; (2) for multi-layer Bayes method, how
to ascertain the super prior distribution by integrating expert experience. The solution of
the above problems will help to reasonably evaluate the reliability status of the potential
failure of the system and further identify the potential failure mode. The above methods
and models are applicable to the system reliability assessment at all stages in the whole
life cycle, and have positive engineering significance for saving test costs and ensuring the
quality status of high reliability system.

PROPOSED METHODOLOGY
Bayes hypothesis of non-information prior distribution
The Bayes method puts forward that the unknown parameter is assumed to have equal
probability within its possible range of values, that is when the unknown parameter is a
continuous random variable, it is assumed to obey the uniform distribution in a certain
interval (Marichal, Mathonet & Paroissin, 2017; Ashrafi & Asadi, 2014). If the unknown
parameter is a discrete random variable with only a limited numerical value, it is assumed
that the probability of taking these values is equal.
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Criterion 1: for the success rate R in binomial distribution:
According to the Bayes hypothesis andmaximum entropymethod, the prior distribution

density is Beta(1,1). On the basis of Jeffreys’ criterion, its prior distribution density is
Beta(1/2,1/2). According to the method of Reformulation and ALI, the prior distribution
density is Beta(0,0).

In the above three kinds of non-information prior distributions, Beta(0,0) =
R−1(1−R)−1 is not a normal density function, but a generalized prior distribution, and
named prior distribution 1. Beta(1/2,1/2) and Beta(1,1) are normal density functions,
named prior distribution 2 and prior distribution 3 respectively.

Determination method of non-information prior distribution
The non-failure data source is a synthesis of machine data, information data and cross-
border data of the industrial chain from all aspects of the equipment life cycle. In principle,
the attributes of non-failure data sources belong to uncertain data, and their significant
characterization feature is non-stationary. It is well known that the sharp changes of
non-stationary signals are the most critical points in analyzing signals (Le Guen & Thome,
2023). For example, during the operation of precision electronic module, due to the erosion
of insulation layer, acid, alkali, moisture and the role of cyclic stress, etc. It is very easy to
catalyze the initiation and evolution of potential failure, thus leading to open circuit, short
circuit, electric leakage, arc fault and other functional failures.

For the whole population (binomial distribution) of success or failure type test, the prior
distribution of its distribution parameter R (success rate) usually uses its conjugate prior
distribution Beta(a,b), so the problem becomes: how to determine the super parameters
a and bwithout prior information. The usual practice is to take the prior distribution as
Beta(0,0), Beta(1/2,1/2) or Beta(1,1) (Chien et al., 2023; Xu, Liu & Xiao, 2023; Stefan et
al., 2022). When solving specific engineering problems, how to determine which of them
should be taken as a prior distribution is an important scientific problem.

Comparison of several non-information prior distributions
In Criterion 1, we can see that the three non-information prior distributions have their
own rationality in theory. It has been pointed out that no matter which one is used as
a prior distribution, it has little impact on the results of Bayesian statistical indifference
(Coolen, Coolen-Maturi & Al-refaiee, 2014; Mkrtchyan, Podofillini & Dang, 2016; Jusn, Kim
& Kim, 2013). However, this is not necessarily the case.

Criterion 2: when the prior distribution is Beta(0,0),Beta(1/2,1/2),Beta(1,1),
respectively, for the given confidence 1−α and test result (s,f ), the corresponding lower
limit of reliability is R1

L, R
2
L and R3

L respectively, when s> f , there is a following formula:

R1
L>R2

L>R3
L (1)

Here, if s= 0 or f = 0, then R1
L does not exist.

According to (Huang, Duan & Hao, 2010; Wang, Cai & Jiao, 2007), the differences
between R1

L, R
2
L and R3

L are investigated through the simulation calculation. In each case
of R= 0.99, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55 and 0.50, we achieve a set of
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random numbers conforming to binomial distribution according to the sample size n= 5,
8, 10, 15, 20, 30, 40, 60, 80, 100. For each group of 5,000 pieces, calculate the lower limit
of reliability R1

L, R
2
L and R3

L according to three different prior distributions. Then calculate
the average value and the risk ratio (percentage of Ri

L> R) of these 5000 Ri
L pieces. The

lower average value indicates that Ri
L achieved is conservative. A higher risk ratio indicates

that Ri
L achieved risk tendency. Since Beta(0,0) is not applicable to zero failure, in order to

facilitate comparative analysis, the generated random numbers are divided into two cases:
non-zero failure and zero failure (all). The following table shows only some results. All
calculations of the above methods are completed by using MATLAB, and the results are
shown in Tables 1, 2 and 3.

As shown in Tables 1, 2 and 3:
(1) The difference of the reliability lower limit achieved by using different prior

distributions that decreases with the larger sample size. After n> 40, the difference is
not obvious; the sample size is smaller, the difference is more significant.

(2) When the reliability R is high (more than 0.85) and the sample size is small (less than
30), it is more appropriate to use Beta(0,0) for reliability evaluation with prior distribution;
When the reliability R is low (less than 0.70) and the sample size is large (more than 40),
the prior distribution should be Beta(1,1); When the R is between 0.7 and 0.85, sample
size is between 30 and 40, Beta(1/2,1/2) shall be adopted.

The above results can explain the reason for using different non-information prior
distribution in engineering problems. For high reliability system, its layout, materials and
technology are kept improving, and the preliminary tests are sufficient. In such conditions,
the products should have high reliability while other systems may not be able to do so.

Application of fuzzy comprehensive evaluation
When non-information prior distribution is adopted, the result reflects a prior
understanding of the unknown entirety. The ‘‘non-information’’ doesn’t mean ignorance.
Through understanding the product design, materials, process, manufacturing and other
aspects, we can always have a certain understanding of the reliability level of the product, but
this understanding is empirical and subjective (Goode & van de Lindt, 2013; Williamson,
2001; Lecoutre & Poitevineau, 2022). If the reliability of the product is considered high
enough, Beta(0,0) can be used; if the reliability of the product is considered medium level,
Beta(1/2,1/2) can be used; when the reliability of the product is completely uncertain,
Beta(1,1) should be adopted from a conservative perspective.

It can be difficult to divide people’s prior understanding of product reliability into
the above three levels. In actual use, it is easy to focus on the middle level, that is
Beta(1/2,1/2). Therefore, two mixed beta distributions, [Beta(0,0)+Beta(1/2,1/2)]/2
and [Beta(1/2,1/2)+Beta(1,1)]/2 are constructed as uninformative prior distributions.
The lower reliability limit achieved from them which is recorded as R4

L and R5
L.

Criterion 3: for the given confidence level 1−α and test result (s,f ), s represents the
number of successful tests, and f represents the number of failed tests. When s> f , there
is a following formula:

R1
L>R4

L>R2
L>R5

L>R3
L. (2)
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Table 1 Differences in the lower limit of reliability obtained by three prior distributions for different sample sizes.

Average value all
non-zero failure

Aggressive
ratio all
non-zero
failure

n= 5 n= 10 n= 20 n= 40

prior distribution 1
0.51184 0 0.70345 0 0.79571 0 0.83663 0.2129
0.65361 0 0.73805 0 0.79204 0.1218 0.82708 0.0792

prior distribution 2
0.47634 0 0.66517 0 0.77216 0 0.82474 0.0638
0.58077 0 0.69700 0 0.76971 0 0.51593 0.0792

prior distribution 3
0.45668 0 0.63688 0 0.75217 0 0.81377 0.0638

Notes.
When the reliability and confidence levels are taken as 0.9, the difference in the lower limit of reliability obtained by different sample sizes according to three prior distributions.

Table 2 Differences in the lower limit of reliability obtained by three prior distributions for different sample sizes.

Average value all
non-zero failure

Aggressive
ratio all
non-zero
failure

n= 5 n= 10 n= 20 n= 40

prior distribution 1
0.45038 0 0.60977 0 0.68384 0.1940 0.71789 0.1560
0.53817 0 0.61697 0.112 0.67101 0.0640 0.71046 0.0772

prior distribution 2
0.42712 0 0.58412 0 0.66806 0.0536 0.71041 0.0770
0.50068 0 0.59269 0.112 0.65770 0.0640 0.70343 0.0772

prior distribution 3
0.41538 0 0.56503 0 0.65505 0.0536 0.70338 0.0770

Notes.
When the reliability and confidence levels are taken as 0.8 and 0.9 respectively, the difference in the lower limit of reliability obtained by different sample sizes according to three
prior distributions.

Table 3 Differences in the lower limit of reliability obtained by three prior distributions for different sample sizes.When the reliability and
confidence levels are taken as 0.7 and 0.9, respectively, the difference in the lower limit of reliability obtained by different sample sizes according to
three prior distributions.

Average value all
non-zero failure

Aggressive
ratio all
non-zero
failure

n= 5 n= 10 n= 20 n= 40

prior distribution 1
0.38591 0 0.51384 0.1260 0.57178 0.1087 0.60608 0.1034
0.43764 0.1604 0.51079 0.1526 0.56405 0.1094 0.60191 0.1034

prior distribution 2
0.37476 0 0.49966 0.1260 0.56375 0.1087 0.60191 0.1034
0.41983 0 0.49878 0.0298 0.55700 0.1094 0.59798 0.1034

prior distribution 3
0.37106 0 0.48928 0 0.55672 0.1087 0.59798 0.1034

Proof: ψ(x)= M ·B(1/2,1/2)
∫ 1
x R

s−1(1−R)f−1dR+
∫ 1
x R

1/2+s−1(1−R)1/2+f−1dR

M ·B(1/2,1/2)
∫ 1
0 R

s−1(1−R)f−1dR+
∫ 1
0 R

1/2+s−1(1−R)1/2+f−1dR

Where,M > 0, that is Beta(0,0)=M ·R−1(1−R)−1.
Obviously, for a given s and f , ψ(x) is a monotone decreasing function.
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Table 4 People’s prior knowledge of product reliability.

Levels Prior distributions

level 1 (high) Beta(0,0)
level 2 ( average) [Beta(0,0)+Beta(1/2,1/2)]/2
level 3 (medium) Beta(1/2,1/2)
level 4 (low) [Beta(1/2,1/2)+Beta(1,1)]/2
level 5 (unknown) Beta(1,1)

After the above formula is simplified, there are

M ·B(1/2,1/2)
∫ 1
R1
L
Rs−1(1−R)f−1dR+

∫ 1
R2
L
R1/2+s−1(1−R)1/2+f−1dR

M ·B(1/2,1/2)
∫ 1
0 R

s−1(1−R)f−1dR+
∫ 1
0 R

1/2+s−1(1−R)1/2+f−1dR
= 1−α

Then according to R1
L>R2

L in Eq. (1), then ψ(R1
L)< 1−α, ψ(R2

L)> 1−α.
According to ψ(R4

L)= 1−α, then R1
L>R4

L>R2
L.

Similarly, R2
L>R5

L>R3
L.

In this way, expert’s prior knowledge of product reliability can be divided into the above
five levels: high, average, medium, low, unknown. The corresponding prior distributions
are as shown in in Table 4.

Based on the prior knowledge of experts and engineering technicians, the prior
distribution can be determined more accurate by using the comprehensive evaluation
method (Balakrishnan, Hon & Navarro, 2011; De Luca, 2021; Wang et al, 2019). There
are many methods for fuzzy comprehensive evaluation. Here, the Delphi method with
confidence is used as follows:

Step 1: a threshold λ(1/2<λ< 1) should be specified as the lower bound of expert
opinion concentration.

Step 2: n experts are invited to independently judge the product reliability according
to their own experience and understanding of the product: high, average, medium, low,
unknown.

Step 3: count the number of each level expert (Ni), and calculate Zi = Ni/n(i=
1,2,3,4,5). If there is Zi<λ for each expert i, repeat the first step and return the statistical
result (Z1,Z2,Z3,Z4,Z5) to the experts for reference. Until k appears, so that Zk ≥ λ.

Step 4: the expert is asked to do a final judgment, give the trust degree of the
judgment γj(j = 1,2,...,n). Set the lower limit of the trust γ0, and omit the opinion
of the expert whose trust degree is less than γ0. Recalculate (Z1,Z2,Z3,Z4,Z5) and record
Z =max{Z1,Z2,Z3,Z4,Z5}, then K corresponding to Z is the final evaluation result.
The number of experts who choose level K is NK , and the trust degree given by them is
γ
(K )
1 ,γ

(K )
2 ,...,γ

(K )
NK

, then the trust degree of the evaluation result can be expressed as:

γ =
1
NK

NK∑
j=1

γ
(K )
j (3)
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Priori information fusion method
For the traditional reliability theory (normal or failure), the prior distribution in the
engineering application usually uses its conjugate prior Beta(a,b), the prior density is:

π1(R;a,b)=Beta(a,b)=
1

β(a,b)
Ra−1(1−R)b−1 0≤R≤ 1 (4)

Where a,b is super parameters respectively, so there are two corresponding second prior
distributions, which are the uniform distributions on [aL,aU ] and [bL,bU ] respectively,
and the density is:

π21(a)=

{
1/(aU −aL), aL< a< aU

0, other
(5)

π22(a)=

{
1/(bU −bL), bL< b< bU

0, other
(6)

According to the multi-layer Bayes method of binomial distribution, the multi-layer
prior density of R is:

π(R)=
∫ bU

bL

∫ aU

aL
π1(R;a,b).π21(a)π22(b)dadb=

∫ bU

bL
∫ aU

aL
1

β(a,b)R
a−1(1−R)b−1dadb

(aU −aL)(bU −bL)
. (7)

Considering that estimation and inspection are all based on posterior distribution, when
a prior distribution is available and on-site data (n,s) is achieved, n is the total number
of tests and s is the number of successful tests, the posterior density can be achieved as
follows:

π(R|n,s)=
Rs(1−R)n−sπ(R)∫ 1

0 R
s(1−R)n−sπ(R)dR

=

∫ bU

bL
∫ aU

aL
1

β(a,b)R
a+s−1(1−R)b+n−s−1dadb∫ bU

bL
∫ aU
aL

β(a+s,b+n−s−1)
β(a,b) dadb

(8)

When the test data is failure, a> 1 and 0< b< 1 are determined according to the
principle that R is more likely when there is no failure, but R is less likely when there is
less , and the second prior is the uniform distribution on (1,c) and (0,1) (Shen et al., 2023;
Levitin, 2001), that is

aL= 1,aU = c,bL= 0,bU = 1. (9)

If the first prior distribution is Beta(a,b), the significance of the super parameter a,b
will be weakened, the multi-layer prior density formula Eq. (7) and the posterior density
formula Eq. (8) are no longer conjugate, thus losing the advantages of the beta distribution.
Therefore, the first prior distribution is the uniform distribution on (a,1), and the super
parameter a is the lower bound of the possible value of reliability R.

When the on-site data and historical batch data are respectively from two different
populations X and Y , we proposed most of the historical batch data, a mixed prior is
introduced. The mixed prior of the success or the failure population is:

πρ(R)= ρBeta(a,b)+ (1−ρ) 0≤ ρ ≤ 1 (10)
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When evaluating the reliability of high reliability system, given the confidence degree γ ,
RL will be solved from Eq. (11):∫ 1

RL

πρ(R|s)= γ (11)

Reliability evaluation model of three-state system
For a high reliability module, assume that the module is composed of n components from
the functional logic, which is recorded as N = (1,2,...,n); the i component has multiple
states, which is recorded as M = (1,2,...,m); the occurrence probability of each state is
recorded as pij(i= 1,2,...,n;j = 0,1,...,m), and

∑m
i=0pij(i= 1,2,...,n). There are two

possibilities for each state: occurrence and non-occurrence, and the probabilities are pij
and 1−pij .

For the i component, the historical data is recorded as X = (x0,x1,...,xm), and xj is the
numerical value of historical data in j state. On-site data is recorded as X

′

= (x
′

0,x
′

1,...,x
′

m),
and x

′

j is the numerical value of on-site data in j state.
The on-site data and historical data are from two categories, decrease the effect of

historical data and on-site data on reliability evaluation (Zhan & Niu, 2013; Liu, Paulino
& Gardoni, 2016; Bai et al., 2021). At the same time, make the most of the information in
historical data, a mixed prior is introduced:

πρ(pij)= ρBeta

xj,
m∑

k=0,k 6=j

xk

+ (1−ρ)0≤ ρ ≤ 1 (12)

After obtaining the on-site data Y
′

=

(
x
′

j ,
∑m

k=0,k 6=jx
′

k

)
, the posterior density can be

derived as:

πρ(pij |x)=
MBeta

(
x
′

j +1,
∑m

k=0,k 6=j x
′

k+1
)
+NBeta(x

′

j +xj,
∑m

k=0,k 6=j(x
′

k+xk))

M+N
(13)

Where,M = (1−ρ)β
(
xj,
∑m

k=0,k 6=jxk
)
β(x

′

j +1,
∑m

k=0,k 6=jx
′

k+1)

N = ρβ

x
′

j +xj,
m∑

k=0,k 6=j

(x
′

k+xk)


According to Eq. (11), for reliability evaluation of high reliability system, pijL is solved

from the following equation after the confidence γ is given:∫ 1

pijL
πρ(pij |x)= γ (14)

Huang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1439 10/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1439


EXPERIMENTAL RESULTS AND DISCUSSION
Reliability analysis process of three-state system
In order to effectively evaluate the reliability of the three-state system, a typical module
with progressive development trend must be reasonably selected (Xu & Chen, 2014; Kwon,
2014). There are three states for a typical module: functional failure, potential failure
and safety, which are recorded as M = (0,1,2); the probabilities of occurrence and non-
occurrence of each state are pij and 1−pij

(
j = 0,1,2

)
respectively. For the i component, the

historical data is recorded as X = (x0,x1,x2), and x0,x1,x2 represent the numerical value
of functional failures, the numerical value of potential failures and the numerical value of
safety of the historical data respectively. On-site data are recorded as X

′

= (x
′

0,x
′

1,x
′

2), x
′

0,x
′

1
and x

′

2 represent the numerical value of functional failures, the numerical value of potential
failures and the numerical value of safety of on-site data, respectively. If the occurrence
and non-occurrence of the failure of the i component obeys the binomial distribution, the
historical data X = (x0,x1,x2) is marked as Y = (x0,x1+x2), x0 and (x1+x2) represent the
fault numerical value and the fault-free numerical value in the historical data respectively.
On-site data X

′

= (x
′

0,x
′

1,x
′

2) can be recorded as Y
′

= (x
′

0,x
′

1+x
′

2), x
′

0 and (x
′

1+x
′

2) represent
the fault numerical value and the fault-free numerical value in the on-site data respectively
.

According to formula Eqs. (12)–(14):

πρ(pi0)= ρBeta(x0,x1+x2)+ (1−ρ)0≤ ρ ≤ 1 (15)

πρ(pi0|x)=
MBeta(x

′

0+1,x
′

1+x
′

2+1)+NBeta(x
′

0+x0,x
′

1+x
′

2+x1+x2)
M+N

(16)

Where,M = (1−ρ)β(x0,x1+x2)β(x
′

0+1,x
′

1+x
′

2+1)

N = ρβ(x
′

0+x0,x
′

1+x
′

2+x1+x2).

Therefore, the reliability calculation formula is as follows:∫ 1

pi0L
πρ(pi0|x)= γ (17)

State probability of potential failure unit
In the high reliability system, it is efficient to determine the reliability of the unit structure
by using ni−1 test items. Assuming that the unit reliability index without considering j
test items is RLi,j(j = 1,2,...,ni), then rearrange RLi,j :

R∗Li,1≤R∗Li,2≤ ...R
∗

Li,j ≤R∗Li,ni (18)

And

RLi≤R∗Li,1≤R∗Li,2≤ ...R
∗

Li,j ≤R∗Li,ni . (19)

From the formula above, the reliability index is RLi,ni , the corresponding test items
have the biggest impact to the evaluation of unit reliability. Hence, the test items which
correspond to RLi,ni are the key tracking test links.
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For high reliability system, if the unit has the ‘Safety-Potential failure-Functional failure’
work mode, then the following steps can be considered:

The state probability of unit safety is the unit reliability by all test items.
The state probability of unit functional failure is the lose efficiency which not considering

the tracking items.
The difference numerical value between the reliability without considering the tracking

items and the reliability with considering all test items is the state probability of unit
potential failure.

Then
P(xi= 1)=RLi

P(xi= 0.5)=R∗Li,ni−RLi

P(xi= 0)= 1−R∗Li,ni

(20)

Result comparison and analysis
The reliability of the equipment is evaluated according to the conjugate prior and mixed
prior methods, respectively. This paper adopts data from open literature (Huang, Duan
& Hao, 2010; Wang, Cai & Jiao, 2007). In the process of multi-source data fusion, firstly,
the detection items (performance indicators) are considered as a series system, and their
reliability is calculated separately; secondly, it comprehensively evaluates the three state
reliability of each module based on the Bayesian reliability evaluation method.

Method 1: according to Bayes hypothesis, the distribution interval of R is (0,1).
Method 2: the distribution interval of R is (a,1).
Method 3: the distribution interval of R is (a,1), the expert gives the estimation interval

(interval number) of a, and gives the confidence level of this interval number. The results
of expert opinions are shown in Table 5.

A typical module is composed of power supply (D), control circuit (K), photoelectric
converter (G), shaping amplifier (X), rotor (Z), amplifier (F), trigger circuit (C), counter
(J) and other modules.

The photoelectric converter and the shaping amplifier are mutually compensated and
backed up; the rotor, amplifier and trigger circuit form a compensation backup system.
The control circuit, photoelectric converter and shaping amplifier in the system have three
states respectively: 1 (safe), 0.5 (potential failure) and 0 (functional failure); The other
units are in two states: 1 (safe) and 0 (functional failure). The multi-state electronic system
structure with potential failure units effectively reflects the actual operation of the system,
the system reliability block diagram is shown in Fig. 1.

The field test conditions of the typical module are: 8 tests, 6 failures. That is n= 8,s= 2.
The reliability evaluation is carried out according to the above different methods. When
we set the confidence to 0.9, the comparison of reliability evaluation results are shown in
Table 6.

The first group of experts has a detailed understanding of the development process
of the virtual prototype. They know that most of the components and subsystems of the
virtual prototype have been fully tested and should have high reliability. However, because
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Table 5 Summary of expert opinions.

Expert No. 1 2 3 4 5 6 7 8

lower 0.55 0.65 0.55 0.75 0.35 0.45 0.35 0.45Estimation
interval of a upper 0.85 0.95 0.95 0.95 0.75 0.65 0.75 0.65

lower 0.65 0.65 0.75 0.65 0.85 0.75 0.85 0.75
Trust

upper 0.75 0.75 0.85 0.75 0.95 0.85 0.95 0.85

Figure 1 Reliability block diagram of a typical module.
Full-size DOI: 10.7717/peerjcs.1439/fig-1

Table 6 Comparison of reliability evaluation results.

Method a RL

Method 1 0 0.50992
set 1 0.7625 0.77571
set 2 0.4875 0.55434Method 2

all data 0.6250 0.65962
set 1 (0.5666, 0.8778) 0.65622
set 2 (0.3438, 0.6562) 0.58619Method 3

all data (0.4426, 0.7627) 0.63097

of virtual prototype, they are not very confident about the design scheme of the virtual
prototype and the assembly process of the system, the first group of experts gave a high
estimate of a, but only 60% to 70% confidence. The second group of experts, based on
the experience gained from the development of similar or similar products, believe that
the reliability of the virtual prototype was generally 30 to 70 percent of that of the formal
product, and have a high degree of confidence in this judgment.

Since it is difficult to distinguish the importance of the two groups of experts, equal
weights are used in method 2. As can be seen in Table 4, the opinions of the two groups’
experts are quite different. Therefore, it is difficult for the experts to agree with the reliability
evaluation results achieved by averaging the experts’ experience directly. In method 3, due
to the use of interval numbers, the trust of experts is used as the weight to reduce the
difference among the opinions of the two groups of experts. At the same time, due to the
robustness of the method, the evaluation results are easily accepted by all aspects.

On the basis of the above reliability evaluation results, we adopted the method 3 to
estimate the state probability of the eight constituent units of the typical module, fully
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Table 7 Conditional probability of each unit state of the system.

state D K G X Z F C J

1 1 0.1256 0.7030 0.7284 0.9930 0.9901 0.9941 1
0.5 0 0.8744 0.2909 0.2684 0 0 0 0
0 0 0 0.0060 0.0032 0.0070 0.0099 0.0059 0

integrating the historical test data and field test data of each unit, and the conditional
probability results of each unit are shown in Table 7. The data in the Table 7 is consistent
with the actual work of this typical module.

It can be seen from the above table that when considering the potential failure state, the
conditional probability of the control circuit K in the potential failure is the highest, so it
is necessary to strengthen the detection of the control circuit K.

CONCLUSIONS
Detection, classification, identification of recessive or intermittent failure features and
quantitative evaluation of uncertain data are urgent problems in the field of condition
monitoring of high reliability system. Aiming at the limitations of traditional Bayesian
networks in dealing with the reliability problems of three-state related systems, considering
the degradation process and the propagation trend of high reliability system.

Accurate analysis of the statistical characteristics of non-failure data forms a dominant
modal data set, which is based on the statistical characteristics of non-failure data sources.
That helps to identify the system reliability status in real time and objectively reflects the
actual operation process of equipment. It is beneficial to the reliability state assessment and
quantitative analysis of early faults of high reliability system. This article makes full use of
the potential failure characteristics of non-failure information, and establishes a three-state
system reliability evaluation model which reflects the actual work of high reliability system.
The main conclusions obtained are as follows:

(1) A multi-source information fusion model was established under the condition of
no prior failure information. The reasonable fusion of the historical data in the three-state
system and the on-site data can effectively obtain the prior information and it can be used
to evaluate lower limits of equipment reliability, which can help to evaluate the reliability
state of high reliability system and predict the early failure.

(2) A reliability evaluation model for a three state system was established based on the
fusion of prior data and on-site data. This method can train mathematical models by using
a large amount of historical detection data, and using the tolerance between on-site data
and normal data as input vectors, greatly improved the accuracy of reliability evaluation.

(3) The effectiveness of theoretical methods and mathematical models was verified
through experiments. The research methods and models in this paper can be extended to
the reliability sampling test of the whole life cycle management of the same type system
at various stages, such as research and development, production, storage and use, so as to
correctly evaluate the quality status, performance propagation trend of the system, and
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obtain better economic and social benefits at a small testing expenses. The follow-up work
of the paper will focus on the potential failure prediction of the three-state system.
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