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ABSTRACT
Self-distillation methods utilize Kullback-Leibler divergence (KL) loss to transfer the
knowledge from the network itself, which can improve the model performance without
increasing computational resources and complexity. However, when applied to salient
object detection (SOD), it is difficult to effectively transfer knowledge usingKL. In order
to improve SOD model performance without increasing computational resources, a
non-negative feedback self-distillationmethod is proposed. Firstly, a virtual teacher self-
distillation method is proposed to enhance the model generalization, which achieves
good results in pixel-wise classification task but has less improvement in SOD. Secondly,
to understand the behavior of the self-distillation loss, the gradient directions of KL
and Cross Entropy (CE) loss are analyzed. It is found that KL can create inconsistent
gradients with the opposite direction to CE in SOD. Finally, a non-negative feedback
loss is proposed for SOD,which uses differentways to calculate the distillation loss of the
foreground and background respectively, to ensure that the teacher network transfers
only positive knowledge to the student. The experiments on five datasets show that
the proposed self-distillation methods can effectively improve the performance of SOD
models, and the average Fβ is increased by about 2.7% compared with the baseline
network.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Salient object detection, Loss function, Self-distillation, Kullback-Leibler divergence

INTRODUCTION
Salient object detection (SOD) aims to estimate the visual saliency region, and is
an important computer vision task (Ali et al., 2019). In recent years, with the rapid
development of deep neural networks, the performances of SOD have been greatly
improved. However, high-performance SOD networks usually require large network
structures and a large number of computing resources (Chen et al., 2020).

In order to solve the problem of too large network structure, Hinton, Vinyals & Dean
(2015) proposed knowledge distillation to improve the performance of lightweight
networks. Knowledge distillation uses the knowledge transferred from the teacher network
to guild the student network training, which can improve the performance of lightweight
student network. Traditional knowledge distillation methods need to train a large-scale
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teacher network with good performance in advance; then the lightweight student network
can improve its performance by learning the knowledge transferred from the teacher
network. However, the pre-training teacher network still has the complex network
structure, so Zhang et al. (2019a) proposed self-distillation methods to solve this problem.
Self-distillation methods do not require an independent teacher network, and improve the
network performance by distilling the knowledge from the student network itself.

To solve SOD problem, many researchers (Tang, Li & Zou, 2020; Zhang et al., 2019b)
apply knowledge distillation, but pay less attention to self-distillation. Current researches
on self-distillation mainly focus on classification tasks such as image classification (Li et
al., 2020) and semantic segmentation (Ji et al., 2021). In order to improve the performance
of SOD without increasing the network size, we introduce self-distillation into SOD, and
propose a non-negative feedback self-distillation method for SOD.

The output of classification task is the category probability distribution (Xu et al., 2020).
The output of SOD is the category probability (Pang et al., 2022). As the outputs are
different, the self-distillation method used for classification tasks may not be suitable for
SOD.

In classification tasks, the knowledge distillation structure usually uses Cross Entropy
(CE) loss and Kullback–Leibler divergence (KL) loss to guide the student network training
(Kim et al., 2021). CE generates classification loss, which guides the student network to
match the ground truth of training samples. KL produces distillation loss, which guides
the student to match the prediction probability of the teacher network. KL divergence can
effectively measure the similarity between two distributions, and drive the student network
to imitate the performance of the teacher network. However, when KL divergence formula
is directly applied to SOD as distillation loss function of the output layer, it is found that
the signs of the distillation loss and its derivative will be opposite to CE loss. That is, the
optimization direction is not consistent between KL loss and CE loss. The negative feedback
will be generated and attenuate the performance of SOD network.

To solve this problem, we propose a new non-negative feedback self-distillation method.
First of all, inspired by regularization thought (Li et al., 2020), we construct a pixel-wise
virtual teacher model that is based on the ground truth. We find that the virtual teacher
model can achieve good performance in classification tasks, but is not suitable for SOD.
Then, we analyze KL divergence and find out the cause of the negative feedback. Finally,
using the ideas of KL and Focal Loss (Lin et al., 2017), a non-negative feedback distillation
loss is proposed, which calculates the distillation losses of foreground and background by
different ways and is suitable for SOD. The proposed non-negative feedback distillation
loss can drive the transferring of the teacher knowledge to the student network. The main
contributions of this paper are as follows:

(1) The reason why KL divergence formula is not a suitable distillation loss for SOD
is analyzed. The optimization directions of KL and CE are inconsistent, which affect the
network training.

(2) An improved distillation loss with non-negative feedback is proposed, whichmodifies
the formulation of KL to eliminate the negative feedback and holds the same optimization
direction with CE.
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(3) Experiments on five datasets show that the self-distillation architecture can be
applied to SOD; Our self-distillation method improves by about 3.8% in the average E
compared with the baseline network. Compared with other self-distillation methods, our
method can obtain the best experiment results; Our self-distillation method improves by
about 2% in the average Fβ compared with the second-best method (BYOT).

RELATED WORK
Salient object detection
Traditional SOD methods mainly use color (Cheng et al., 2014b), boundary prior (Zhu et
al., 2014), and sparsity (Li, Sun & Yu, 2015) to obtain the object salientmap. Thesemethods
can obtain more detail information, but they are difficult to obtain high-quality semantic
information. The recently developed deep learning methods can obtain both the detail and
semantic information, so more and more scholars (Wei et al., 2020; Chen et al., 2020; Zhao
et al., 2020; Wei, Wang & Huang, 2020; Wu, Su & Huang, 2019; Mao et al., 2021) use deep
learning methods to solve SOD problem.Wei et al. (2020) divided the feature map into two
parts: body map and detail map, and refined the two parts respectively. Chen et al. (2020)
adopted feature interweaved aggregation, self-refined, head attention and global context
flow modules to construct a global context-aware progressive aggregation network. Zhao
et al. (2020) designed a gated dual branch structure. Collaborations between features from
different layers were established to improve the distinguishability of the entire network.
Wei, Wang & Huang (2020)mixed features from different layers by designing cross feature
modules and cascaded feedback decoders, to generate better salient maps.Wu, Su & Huang
(2019) discarded the features from shallow layers to improve the computing efficiency,
and refined the features from deep layers to improve their representation ability. Chen
et al. (2020) introduced initial prediction, side-output residential learning and top-down
reverse attention to solve the complex architecture problem. Mao et al. (2021) used swin
transformer structure to mix multi-layer features, and used attention mechanism to
strengthen feature representation ability. However, these methods usually have large
network structures and are difficult to be directly applied to the reality.

Recently, Zhang et al. (2019b) applied KD to SOD, they reduced the channels amount
to construct the student network, and adopted multi-scale to transfer knowledge from
the teacher to the student. Besides Piao et al. (2020) introduced cross-modal distillation
on RGB-D based SOD, they distilled the depth information through an adaptive distiller.
However, less attention is paid to self-distillation to solve SOD problem.

Self-distillation
Ordinary knowledge distillation requires an additional teacher network to guide the student
network learning. Self-distillation methods do not need an additional teacher network,
and the student network learn the knowledge from itself. Self-distillation methods mainly
construct auxiliary branches to transfer the knowledge to the student network. Ji et al.
(2021) used the auxiliary teacher network to refine the soft label and featuremap knowledge,
which can better preserve the local information. Hou et al. (2019) let the shallow feature
learn the deep feature expression, so as to strengthen the overall feature expression ability.
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Zhang et al. (2019a) divided the original network into several shallow networks according
to the characteristics of the network structure, and distilled the separated shallow networks
respectively. Li & Chen (2020) used consistency strategy to match the knowledge that is
extracted from auxiliary branches.

Li et al. (2020) proved that self-distillation is a special label smoothing regularization
method. Yun et al. (2020) used the predicted distribution of training samples as distillation
knowledge. Therefore, Li et al. (2020) and Yun et al. (2020) considered that self-distillation
is a special regularization method.

At the same time, Xu & Liu (2019) and Lee, Hwang & Shin (2020) considered that
self-distillation is a special data augmentation method. Xu & Liu (2019) used the distorted
versions of training samples as distillation knowledge. Lee, Hwang & Shin (2020) used the
transformations of training samples as distillation knowledge.

The regularization method does not require complex branch structures and matching
strategies, and can further simplify the scale of network parameters. We use pixel-wise
regularized distribution to construct a self-distillation framework.

METHOD
In this section, we firstly introduce a virtual teacher self-distillation architecture; secondly
analyze the distillation loss calculated by KL in classification task, and compare it with CE;
thirdly analyze the distillation loss calculated by KL formula in SOD; finally propose our
non-negative feedback distillation loss.

As the principles of multi classification tasks and binary classification tasks are the
same, we take binary classification task as an example for analysis. Given a training sample
X1= xi,i =1 ,...,W ×H , xi is the i-th pixel in the sample, W and H are the width and
height of the sample, Y1= yi,i=1 ,...,W ×H is the corresponding ground truth. In order
to facilitate the description, yi= 1 means the pixel belongs to the object category; yi= 0
means the pixel belongs to the background category. The sample output is ps in the student
network and pt in the teacher network.

Virtual teacher self-distillation architecture
Li et al. (2020) used the regularized category probability as virtual knowledge to construct
a teacher model, and manually set the output probability of the teacher network. Based
on this, we used the regularized probability distribution to construct a pixel-wise virtual
teachermodel. UnlikeLi et al. (2020), who addressedmulti-classification problems, we have
extended their approach to tackle pixel-wise segmentation problem. The self-distillation
structure is shown in Fig. 1. The output probability of the teacher network is as follows:

pt (ai)=

µ,if ai= yi
(1−µ)
(K −1)

,if ai 6= yi
(1)

where K is the total number of categories, K is 2 in SOD; yi is the correct label; and ai
is the prediction label; µis the predict probability of correct pixel classification. Usually,
µ≥ 0.9 is set (Li et al., 2020), to ensure that the probability of correct pixel classification
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Figure 1 Virtual teacher self-distillation architecture.
Full-size DOI: 10.7717/peerjcs.1435/fig-1

is far greater than wrong classification; we set µ= 0.99. When the pixel is the labeled
foreground, the output probability of the virtual teacher is 0.99; when the pixel is the
labeled background, the output probability of the virtual teacher is 0.01. If the value of µis
small, the predict probability of the student will be greater than the teacher in easy and
well classified pixels. In these pixels, the teacher cannot transfer knowledge to the student,
and will bring negative effect to the network training. Therefore, we set µas 0.99, and Li et
al. (2020) proved it in experiments.

We use the backbone network of F3Net (Wei, Wang & Huang, 2020) as the student
network (the right box in Fig. 1), and build a self-distillation learning framework on this
basis. The virtual teacher provides correct knowledge to the student network, and guild
the student network to optimize. Different from hard label learning which hopes the
output of the teacher and student are the same, this self-distillation method hopes that
the output distribution of the student fits the teacher output distribution. Virtual teacher
self-distillation method provides more distribution information while making the student
results the same as the teacher.

For a training set with N samples, D=
{(
Xj,Yj

)
|1≤ j ≤N

}
, where Xj ∈RH∗W∗3 is the

j-th sample, H and W are the height and width of the sample, Yj is the corresponding
ground truth.WM ={Wm|m= 1,...,L} represents the learnable weight matrix of a L-layer
neural network. The training goal of the neural network is to learn a mapping function
f(Wm;X) :X→ Y. The most common training method is Empirical Risk Minimization
(Wang, 2021). The neural network parameter Wm can be adjusted by optimizing the
following functions.

Arg min
Wm

Lmt (Wm;D), (2)
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where Lmt is the total loss of all training samples. In the self-distillation framework for
SOD, the loss function is determined by pixel-wise CE and KL loss.

Lmt = LKL
(
ps,pt

)
+LCE (Wm;D), (3)

LKL
(
ps,pt

)
=

1
N ∗W ∗H

N∑
j=1

W∗H∑
i=1

psij log
psij
ptij
, (4)

LCE (Wm;D)=−
1

N ∗W ∗H

N∑
j=1

W∗H∑
i=1

[
yij logpsij+

(
1−yij

)
log
(
1−psij

)]
, (5)

where psij is the prediction probability of the student network for i-th pixel in j-th sample; ptij
is the prediction probability of the corresponding teacher network; yij is the corresponding
annotated label, which is 1 when the pixel belongs to the foreground and is 0 when the
pixel belongs to the background.

It is found that this virtual teacher self-distillation architecture can improve the model
performance for classification tasks, but achieve little improvement for SOD. Especially on
easily classified datasets with significant differences between foreground and background,
themodel performance can hardly be improved. To apply the virtual teacher self-distillation
method to SOD, we analyze KL loss and propose a new loss to replace KL loss.

Distillation loss analysis in classification task
In classification task, self-distillation structure usually uses Cross Entropy loss ( LCE) and
Kullback–Leibler divergence loss ( LKL) to guide the student network training (Kim et al.,
2021). The sample loss L is calculated as follows:

L= LKL
(
ps
∥∥pt )+LCE (ps,Y). (6)

In binary classification task, Cross Entropy (CE) is Binary Cross Entropy (Li et al., 2019).
Hossain, Betts & Paplinski (2021) proved that when the pixel belongs to the object, CE loss
is positive and the loss derivative is negative; when the pixel belongs to the background,
CE loss is positive, and the loss derivative is positive. The formulas of CE loss and loss
derivative are shown in Table 1, the loss curves are shown in Fig. 2, and the loss derivative
curves are shown in Fig. 3. The optimization direction of a good distillation loss should be
consistent with CE. If the optimization direction is not consistent, the negative feedback
will be generated. The negative feedback affects the network optimization, and leads to the
poor performance.

KL divergence LKL is calculated by Eq. (7) (Li et al., 2020). As the temperature parameter
does not affect the optimization direction of the loss and loss derivative, the influence of
temperature parameter is not considered.

LKL
(
ps
∥∥pt )= 1

W∗H

W×H∑
i=1

Epsi log
Epsi
Epti
, (7)

where Epsi is the output of the student network, which denotes a 1×k dimensional array.
K is the number of categories, it is 2 in binary classification task. Epti is the output of the
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Table 1 The formulas of CE loss and loss derivative.

Object pixel (y i=1) Background pixel (y i=0)

LCE −logps −log(1−ps)
dLCE
dps −1/ps 1/(1−ps)

Figure 2 Relationship between pixels’ predicted probability and loss. The horizontal coordinate repre-
sents pixel predicted probability, the vertical coordinate represents pixel loss value. CEFore and CEBack
represent Cross Entropy loss; ClassFore and ClassBack represent distillation loss in binary classification
task; SalientFore and SalientBack represent distillation loss in SOD; OurFore and OurBack represent non-
negative feedback distillation loss.

Full-size DOI: 10.7717/peerjcs.1435/fig-2

corresponding teacher network.

Epsi = [p1
s
i,p2

s
i,...,pk

s
i ], (8)

where p1si,p2
s
i,...,pk

s
i are the output probability predicted by the softmax function, and

their summation is 1. In binary classification task, the output of the student network can
be expressed as follows:

Epsi = [p
s
i,1−p

s
i], (9)

where psi is the probability that the student network predicts the pixel i as the object. The
KL loss of the pixel i is calculated as follows:

LiKL
(
Epsi
∥∥∥ Epti )= 1

2

[
psi log

psi
pti
+
(
1−psi

)
log

1−psi
1−pti

]
, (10)

where pti is the probability that the teacher network predicts the pixel i as the object, and
the value of pti is (0,1).

The derivation of LiKL is as follows:

dLiKL
dpsi
=

1
2

[
log

psi
pti
+ log

1−pti
1−psi

]
. (11)

In self-distillation framework, most works construct auxiliary teacher branches to
generate refined knowledge, or adopt deep-level knowledge to guild the shallow-level
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Figure 3 Relationship between pixels’ predicted probability and loss derivative. The horizontal coor-
dinate represents pixel predicted probability, the vertical coordinate represents pixel loss derivative value.
CEFore and CEBack represent Cross Entropy loss; ClassFore and ClassBack represent distillation loss in
binary classification task; SalientFore and SalientBack represent distillation loss in SOD; OurFore and
OurBack represent non-negative feedback distillation loss.

Full-size DOI: 10.7717/peerjcs.1435/fig-3

training. The purposes of these works are to construct the teacher which performance is
better than the student network (Hinton, Vinyals & Dean, 2015). When the pixel belongs
to the object, the output probability of the teacher network is greater than the student
network, that is pti ≥ psi . So (dLiKL/dp

s
i)≤ 0, LiKL is a monotone decreasing function in the

range of values. pti ≥ psi , the maximum value of psi is p
t
i .L

i
KL
(
psi = pti

)
= 0, the minimum

value of LiKL is 0. So, L
i
KL is greater than 0. Therefore, when the pixel belongs to the object,

the distillation loss calculated by KL divergence is greater than 0 and the loss derivative
is less than 0. In the object, the optimization directions of the distillation loss and loss
derivative are consistent with CE.

When the pixel belongs to the background, the output probability of the teacher
network is less than the student network, that is pti ≤ psi . So (dLiKL/dp

s
i)≥ 0, LiKL is a

monotone increasing function in the range of values. pti ≤ psi , the minimum value of psi is
pti .L

i
KL
(
psi = pti

)
= 0, the minimum value of LiKL is 0. So, L

i
KL is greater than 0. Therefore,

when the pixel belongs to the background, the distillation loss calculated by KL divergence is
greater than 0 and the loss derivative is greater than 0. In the background, the optimization
directions of the distillation loss and loss derivative are consistent with CE.

For amore intuitive presentation, we assume that the teacher network output probability
pti is 0.99 in the object pixel and 0.01 in the background pixel. At this time, the distillation
loss and loss derivative formulas are shown in Table 2, the loss curves are shown in Fig. 2,
and the loss derivative curves are shown in Fig. 3.

From Figs. 2 and 3, it can be seen that the signs of distillation loss and loss derivative
value are consistent with CE. As the optimization direction of the distillation loss which
is calculated by KL divergence is consistent with CE, distillation loss can better guide the
student network training in binary classification task.
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Table 2 In binary classification task, the formulas of distillation loss and loss derivative.

object pixel (y i=1) background pixel (y i=0)

LiKL
1
2

[
psi log

psi
pti
+
(
1−psi

)
log 1−psi

1−pti

]
1
2

[
psi log

psi
pti
+
(
1−psi

)
log 1−psi

1−pti

]
dLiKL
dpsi

1
2

[
log psi

pti
+ log 1−pti

1−psi

]
1
2

[
log psi

pti
+ log 1−pti

1−psi

]

Distillation loss analysis in salient object detection
Similar to the classification task, we also use CE loss (LCE) and distillation loss (LKD) to
guide the student network training in SOD. Then the sample loss L is calculated as follows:

L= LKD
(
ps,pt

)
+LCE

(
ps,Y

)
. (12)

In SOD, CE is also the binary CE (Wei, Wang & Huang, 2020). That is, when the pixel
belongs to the foreground, CE loss is positive and the loss derivative is negative. When the
pixel belongs to the background, CE loss is positive, and the loss derivative is positive.

When KL formula is used to calculate the distillation loss in SOD, the distillation loss is
calculated as follows:

LKD
(
ps,pt

)
= LKL

(
ps
∥∥pt )= 1

W∗H

W×H∑
i=1

[
yipsi log

psi
pti
+
(
1−yi

)
psi log

psi
pti

]
, (13)

where yi= 0 means the pixel belongs to the background; yi= 1 means the pixel belongs to
the foreground; psi and pti are the outputs of the student and teacher networks, which are
1-dimensional values. The KL loss of the pixel i is calculated as follows:

LiKL
(
ps
∥∥pt )= psi log

psi
pti
. (14)

The derivation of LiKL is as follows:

dLiKL
dpsi
= log

psi
pti
+1. (15)

In self-distillation framework, most works construct auxiliary teacher branches to
generate refined knowledge, or adopt deep-level knowledge to guild the shallow-level
training. The purposes of these works are to construct the teacher which performance is
better than the student network (Hinton, Vinyals & Dean, 2015). When the pixel belongs
to the foreground, the output probability of the teacher network is greater than the
student network, pti ≥ psi.L

i
KL
(
ps
∥∥pt ) is less than 0. At this time, the sign of distillation

loss is inconsistent with CE. When 0< (psi/p
t
i )≤ (1/e), that is (dLiKL/dp

s
i)≤ 0. At this

time, the sign of loss derivative is consistent with CE. When (1/e)< (psi/p
t
i )≤ 1, that is

(dLiKL/dp
s
i)≥ 0. At this time, the sign of loss derivative is inconsistent with CE. Therefore,

in the foreground, the optimization direction of distillation loss will be inconsistent with
CE, resulting in negative feedback, which will affect the student network performance.

When the pixel belongs to the background, the output probability of the teacher network
is less than the student network, pti ≤ psi.L

i
KL
(
ps
∥∥pt ) is greater than 0; (dLiKL/dp

s
i) is greater
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Table 3 In SOD, the formulas of distillation loss and loss derivative.

foreground
pixel
(y i=1)

background
pixel
(y i=0)

LiKL psi log
psi
pti

psi log
psi
pti

dLiKL
dpsi

log psi
pti
+1 log psi

pti
+1

than 1. At this time, the optimization directions of distillation loss and loss derivative are
consistent with CE. For a more intuitive presentation, we assume that the teacher network
output probability pti is 0.99 in the foreground pixel and 0.01 in the background pixel.
The distillation loss and loss derivative formulas are shown in Table 3, the loss curves are
shown in Fig. 2, and the loss derivative curves are shown in Fig. 3.

Combining Figs. 2 and 3 and the above analysis, it can be seen that when KL formula is
used to calculate the distillation loss in SOD, the optimization direction of the distillation
loss and loss derivative are inconsistent with CE in the foreground. The performance
improvement of the student network is limited. Therefore, it is defective to directly use KL
formula to calculate the distillation loss in SOD.

Non-negative feedback distillation loss (NKL)
In order to transfer the knowledge, the optimization direction of distillation loss should be
consistent with CE. In SOD, when the pixel belongs to the foreground, the loss is greater
than 0, and the loss derivative is less than 0; when the pixel belongs to the background, the
loss is greater than 0, and the loss derivative is greater than 0.

Inspired by KL, CE and Focal loss (Lin et al., 2017), we propose a non-negative feedback
distillation loss, which uses different formulas to respectively calculate foreground and
background distillation loss. The loss is calculated as follows:

LNKL
(
ps,pt

)
=

1
W ∗H

W×H∑
i=1

[
yi
(
1−psi

)α log 1−psi
1−pti

+ (1−yi)
(
psi
)α log psi

pti

]
. (16)

where yi= 0 means the pixel belongs to the background; yi= 1 means the pixel belongs
to the foreground; α is a hyperparameter that is greater than 0 and less than 1, which is
determined by experiments and is selected as 0.3 here.

When the pixel belongs to the foreground, the distillation loss and loss derivative of the
pixel i are calculated as follows:

Li+NKL
(
ps,pt

)
=
(
1−psi

)α log 1−psi
1−pti

, (17)

dLi+KL
dpsi
=

[
α
(
1−psi

)α−1]log 1−pti
1−psi

−
(
1−psi

)α−1
. (18)

At this time, 1≥ pti ≥ psi ≥ 0. Therefore, Li+NKL
(
ps,pt

)
is greater than 0, (dLi+KL/dp

s
i) is less

than 0. Therefore, when the pixel belongs to the foreground, our distillation loss is greater
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than 0 and the loss derivative is less than 0. In the foreground, the optimization directions
of our distillation loss and loss derivative are consistent with CE.

When the pixel belongs to the background, the distillation loss and loss derivative of the
pixel i are calculated as follows:

lLi−NKL
(
ps,pt

)
=
(
psi
)α log psi

pti
, (19)

dLi−KL
dpsi
=α(psi)

α−1 log
psi
pti
+
(
psi
)α−1

. (20)

At this time, 0≤ pti ≤ psi ≤ 1. Therefore, Li−NKL
(
ps,pt

)
is greater than 0, (dLi−KL/dp

s
i) is

greater than 0. Therefore, when the pixel belongs to the background, our distillation loss is
greater than 0 and the loss derivative is greater than 0. In the background, the optimization
directions of our distillation loss and loss derivative are consistent with CE. For a more
intuitive presentation, we assume that the teacher network output probability pti is 0.99
in the foreground pixel and 0.01 in the background pixel. The distillation loss and loss
derivative formulas are shown in Table 4, the loss curves are shown in Fig. 2, and the loss
derivative curves are shown in Fig. 3.

As the optimization direction of our non-feedback distillation loss is consistent with
CE in the foreground and background, it can better guide the student network training in
SOD.

So, in virtual teacher self-distillation architecture, we replace Eq. (4) as Eq. (21).

LNKL
(
ps,pt

)
=

1
N ∗W ∗H

N∑
j=1

W∗H∑
i=1

[
yij
(
1−psij

)α
log

1−psij
1−ptij

+
(
1−yij

)(
psij
)α

log
psij
ptij

]
. (21)

In order to verify the universality of ourmethod, we also apply our non-negative feedback
distillation loss to other self-distillation frameworks. Through experiments in ‘Comparison
with recent self-distillation methods’ we find that our non-negative feedback loss function
can work in other self-distillation methods and work better in our virtual teacher method.
The main reason is that the teacher network performance may be worse than the student in
easy and well classified pixels in other self-distillation methods. In non-negative feedback
loss function, the worse performance teacher cannot guild the student training, which leads
to the limited improvement to the student network. While in the virtual teacher method,
the teacher performance is always better than the student.

EXPERIMENT
Experimental configurations
Model
We use the backbone network of F3Net which is based on Resnet-50 (He et al., 2016) as
the student network. For the convenient analysis, we remove the branches of F3Net, only
use its backbone network as the baseline network. The loss function is CE. We use this
model as the baseline network. During training, the maximum learning rate is 0.005, and
warmup (Priya et al., 2017) and linear decay strategies are used to dynamically adjust the
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Table 4 The formulas of non-negative feedback distillation loss and loss derivative.

Foreground pixel (yi=1) Background pixel (y i=0)

LiKL
(
1−psi

)α log 1−psi
1−pti

(
psi
)α log psi

pti

dLiKL
dpsi

[α
(
1−psi

)α−1
]log 1−pti

1−psi
−
(
1−psi

)α−1
α(psi)

α−1 log psi
pti
+
(
psi
)α−1

learning rate. The training strategy is Stochastic Gradient Descent (SGD). The momentum
and weight decay are set to 0.9 and 0.0005 respectively. In the experiments, the batchsize
is 32, the maximum epoch is 32, and all image sizes are set to 352*352.

Datasets
We conducted experiments on five challenging datasets with salient or camouflaged objects.
The five datasets are COD (Fan et al., 2020), DUT-O (Yang et al., 2013), THUR (Cheng et
al., 2014a), PASCAL-S (Li et al., 2014) and HKU-IS (Li & Yu, 2015). COD is the dataset
with natural camouflaged objects, including 6066 natural images and corresponding
pixel-wise annotation images. DUT-O, THUR, PASCAL-S and HKU-IS are salient object
datasets, which respectively contain 4,447, 5,168, 850, 1,447 images and corresponding
annotation images. COD is divided into training and testing sets by the default setting;
DUT-O and THUR are divided into training and testing sets by the proportion of 0.6 and
0.4. PASCAL-S and HKU-IS are divided into training and testing sets by the proportion of
0.8 and 0.2.

Metrics
We use Fβ Measure (F) (Fan et al., 2020), the mean absolute error (MAE) (Yang et al.,
2021), E-measure (E) (Kang & Kang, 2021) and precision–recall (PR) curve (Xian et al.,
2022) to evaluate the network performance.

F is the weighted mean of precision and recall. The calculation formula is as follows:

Fβ =
(1+β)∗precision*recall
β ∗precision+ recall

, (22)

where β is the weight, usually is set to 0.3; precision focuses on the accuracy of the object
detection; Recall focuses on the integrity of the object detection.

MAE is calculated as follows:

MAE=
1

H×W

H∑
i=1

W∑
i=1

∣∣P (i,j)−G(i,j)∣∣, (23)

where H and W is the height and width of the sample, P is the prediction result of the
network, and G is the ground truth. F and E are larger, MAE is smaller, the network
performance is better.

Hyperparameter selection
Wediscuss the selection ofα in Eq. (16).We select differentα to test themodel performance.
Through experiments, we choose α= 0.3, when the model achieves the best performance.
The result is shown in Table 5.
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Table 5 The results of different hyperparameters (%).

α COD DUT-O

F MAE F MAE

0.2 67.08 5.7 83.11 4.4
0.3 67.58 5.1 83.89 4.1
0.5 66.00 5.1 83.15 4.2
0.8 65.79 5.6 82.08 4.6
1 66.09 5.5 82.71 4.5
1.5 65.83 6.0 52.56 4.8
2 65.16 6.2 82.25 5.0

Notes.
The bold values mean the best results.

The following conclusions are drawn from Table 5. (1) When α takes different values,
the model performance all can be improved. (2) When α is greater than a certain value, the
model performance begins to decline. This shows that the influence of output probability
is not the bigger, the model performance is better. When the influences of misclassified
pixels are too great, the model may be affected just by these pixels. The model only obtains
optimal result in these pixels.

Comparison with different one-dimensional distance metric methods
In SOD, the output is the category probability which is one-dimension, the aim of self-
distillation is that the student network produces the same distribution with the teacher.
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error
(MSE), Cosine Similarity (CS) are the common one-dimensional distance metric functions
and are widely used as the loss functions. Therefore, we use these functions and KL formula
(KL) as distillation loss functions, and compare them with our method (NKL). In the
experiment, virtual teacher self-distillation architecture remained unchanged and only
changed the distillation loss function. The experiment results are shown in Table 6.

The following conclusions can be drawn from Table 6. (1) Not all one-dimensional
distance metric methods can be used as distillation loss function. From the mean
performance over five datasets, when RMSE is used as the distillation loss, the network
performance after distillation is poorer than before distillation. From the evaluating
indicator MAE, when KL formula is used as distillation loss, the network performance
after distillation is poorer than before distillation. (2) Our method (NKL) can transfer the
knowledge well. Our method can achieve the best detection results on all five datasets.
Especially, from the mean E, our method improves 2.2% compare with the second-best
method (KL); from the mean MAE, our method reduces 1.6% compare with KL. These
prove that our method is effective.

Comparison with recent self-distillation methods
First, we use the backbone network of F3Net as the baseline and take this as the student
network. Then, FR (Ji et al., 2021), SA (Hou et al., 2019), BYOT (Zhang et al., 2019a) and
DHM (Li & Chen, 2020) self-distillation methods are introduced into the baseline. Finally,
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Table 6 The results of different distillation loss functions (%).

Methods Baseline KL RMSE MAE MSE CS NKL

F 64.16 67.08 63.96 64.31 64.36 59.90 67.58
MAE 6.3 6.2 6.2 6.2 6.1 6.4 5.1COD
E 73.8 76.3 73.6 74.0 74.0 75.0 80.8
F 81.25 83.11 81.10 80.72 81.38 79.81 83.89
MAE 5.1 5.6 5.1 5.2 5.1 4.9 4.1DUT-O
E 85.6 86.7 85.6 85.1 85.4 87.8 89.9
F 86.74 88.26 86.60 87.01 87.09 86.98 89.33
MAE 3.5 3.9 3.5 3.5 3.4 3.1 2.6THUR
E 90.3 91.7 90.2 90.5 90.5 92.1 93.3
F 82.18 84.52 81.86 82.74 82.35 80.84 84.29
MAE 8.9 9.6 9.1 8.8 8.7 8.9 7.0PASCAL-

S
E 81.4 83.3 81.2 81.5 81.0 81.6 83.2
F 87.94 90.18 88.25 88.36 88.77 88.09 90.57
MAE 4.9 5.0 4.8 4.8 4.6 4.3 3.5HKU-IS
E 91.5 92.7 91.9 92.0 92.5 93.0 94.4
F 80.45 82.63 80.35 80.63 80.79 79.12 83.13
MAE 5.74 6.06 5.74 5.70 5.58 5.52 4.46MEAN
E 84.52 86.14 84.50 84.62 84.68 85.90 88.32

Notes.
The bold values mean the best results.

KL formula and our non-negative feedback loss function (NKL) are respectively used as
distillation loss to train the network. The experiment results are shown in Table 7.

SA directly uses pixel-wise attention features in the backbone network as distillation
knowledge. FR uses Bi-directional Feature PyramidNetwork (BiFPN) to generate pixel-wise
knowledge. Therefore, SA and FR can be directly applied to SOD. BYOT and DHM cannot
directly generate pixel-wise knowledge. Therefore, we modify them to ensure that they can
be applied to the self-distillation framework for SOD. We mainly make the following two
modifications. (1) We adjust the step size of the first convolution layer in the bottleneck
module from 2 to 1. This operation is to maintain the spatial size of the feature in the
bottleneck module of the auxiliary branch. (2) We change the full connected layer of
the auxiliary branch to the convolution layer. This operation is to generate pixel-wise
knowledge that can be transferred to the backbone network.

From Table 7, we draw the following conclusions. (1) Self-distillation methods are also
suitable for SOD. The results in the table show that self-distillation methods can improve
the network performance. Compared with the baseline, our method improves the average F
by nearly 2% and the average E by nearly 3.8%. (2) Our virtual teacher model is better than
other self-distillation methods. In the five datasets, our virtual teacher model can achieve
the best detection results. Especial, from the mean F, our method improves nearly 2%
compare with the second-best method (BYOT); from the mean E, our method improves
nearly 3% compare with the second-best method (BYOT). (3) Our non-negative feedback
loss function (NKL) achieves better results than KL formula in different self-distillation
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Table 7 The results of recent self-distillation methods (%).

Methods Baseline BYOT DHM SA FR OUR

KL NKL KL NKL KL NKL KL NKL KL NKL

F 64.16 65.16 64.81 64.12 64.61 64.32 64.73 64.34 63.70 67.08 67.58
MAE 6.3 6.0 6.0 6.2 6.1 6.1 6.1 6.1 6.2 6.2 5.1COD
E 73.8 74.7 74.8 74.0 74.1 73.8 73.9 74.1 73.6 76.3 80.8
F 81.25 81.36 82.17 80.95 81.25 80.93 81.22 80.93 81.66 83.11 83.89
MAE 5.1 5.0 5.0 5.2 5.2 5.2 5.2 5.1 5.0 5.6 4.1DUT-O
E 85.6 85.8 86.3 85.2 85.4 85.2 85.3 85.8 85.8 86.7 89.9
F 86.74 87.43 87.66 86.91 87.02 87.17 87.13 87.08 87.26 88.26 89.33
MAE 3.5 3.4 3.4 3.5 3.5 3.5 3.5 3.4 3.4 3.9 2.6THUR
E 90.3 91.0 91.2 90.6 90.7 90.9 90.5 90.6 90.9 91.7 93.3
F 82.18 82.29 82.33 82.27 82.32 81.89 82.08 82.27 83.11 84.52 84.29
MAE 8.9 8.9 8.7 9.0 8.8 9.0 8.9 8.9 8.9 9.6 7.0PASCAL-S
E 81.4 81.4 81.5 81.3 81.8 81.1 81.7 80.7 81.9 83.3 83.2
F 87.94 88.66 88.47 87.70 88.23 88.64 88.66 88.42 88.89 90.18 90.57
MAE 4.9 4.6 4.6 4.8 4.8 4.8 4.7 4.7 4.6 5.0 3.5HKU-IS
E 91.5 92.3 92.2 91.5 91.9 92.2 92.5 91.9 92.4 92.7 94.4
F 80.45 80.98 81.01 80.39 80.69 80.59 80.77 80.61 80.93 82.63 83.13
MAE 5.74 5.58 5.54 5.74 5.68 5.72 5.68 5.64 5.62 6.06 4.46MEAN
E 84.52 85.04 85.2 84.52 84.78 84.64 84.78 84.62 84.92 86.14 88.32

Notes.
The bold values mean the best results.

methods in SOD. In DHM, NKL can achieve better detection results in five datasets.
Among other methods, NKL can also achieve better results in at least three datasets. And
KL is mainly better than our method in COD. As the foreground and background are
similar in camouflaged images, the prediction result of the teacher network may be worse
than that of the student network in other self-distillation methods. In NKL, the worse
performance teacher cannot guild the student training, which limits the improvement of
the network performance. (4) NKL can work better in our virtual teacher method than
other self-distillation methods. From the mean E, NKL improves nearly 2% compare with
KL in virtual teacher, but improves nearly 0.3% in other self-distillation methods. The
main reason is that the teacher network performance may be worse than the student in easy
and well classified pixels in other self-distillation methods. In NKL, the worse performance
teacher cannot guild the student training, which leads to the limited improvement to the
student network.

Comparison with recent SOD methods
We compared with five SOD methods, namely LDF (Wei et al., 2020), GCP (Chen et al.,
2020), RAS (Chen et al., 2020), GateNet (Zhao et al., 2020), CPD (Wu, Su & Huang, 2019).
All methods are used their default learning rate, momentum, weight decay and maximum
epochs.

Table 8 quantitatively shows the detection results of different methods. It can be seen
that our method can achieve good detection results on five datasets, and can achieve
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Table 8 The results of recent SODmethods (%).

Methods LDF GCP RAS GateNet CPD OUR

F 67.93 67.88 69.54 65.42 57.75 67.58
MAE 5.3 5.8 4.6 5.9 7.7 5.1COD
E 79.3 75.2 83.8 74.4 71.6 80.8
F 84.27 84.16 84.28 82.81 82.63 83.89
MAE 4.1 4.2 4.1 4.5 5.1 4.1DUT-O
E 89.0 88.6 90.0 87.0 87.5 89.9
F 89.29 88.85 88.03 87.80 87.18 89.33
MAE 2.6 2.7 2.8 3.2 3.1 2.6THUR
E 93.1 92.3 92.6 91.7 91.8 93.3
F 84.11 85.16 84.88 84.98 83.27 84.29
MAE 7.2 7.7 7.5 7.4 8.7 7.0PASCAL-S
E 82.9 82.8 83.1 84.2 82.0 83.2
F 89.24 90.01 87.05 89.39 89.11 90.57
MAE 4.0 4.2 4.5 4.1 4.2 3.5HKU-IS
E 93.3 93.4 91.4 93.1 93.0 94.4
F 82.97 83.21 82.75 82.08 79.99 83.13
MAE 4.64 4.92 4.7 5.02 5.76 4.46MEAN
E 87.52 86.46 88.18 86.08 85.18 88.32

Notes.
The bold values mean the best results.

the best detection results on THUR and HKU-IS. From the mean performance over five
datasets, our method also achieves the best detection results. From the mean E, our method
improves nearly 3% compare with CPD.

Figure 4 shows the precision–recall curves of different methods. It can be seen that our
curves are higher than other methods in COD, THUR and HKU-IS, which prove that our
method can achieve good performance.

Table 9 shows the detection efficiency of different methods. We compare the model
efficiency from the model parameter size and detection speed. It can be seen that our
method has the smallest parameter scale and the fastest detection speed, when our model
performance is similar to other methods. From the size of params, our method reduces
near 100M compare with GateNet.

CONCLUSIONS
Self-distillation has been proven to improve the performance of the lightweight network,
and is widely used in computer vision tasks. However, when self-distillation is applied to
SOD, the commondistillation loss function (KLdivergence)will generate negative feedback.
In order to solve this problem, a non-negative feedback distillation loss is proposed. The
experiment results show that our method can improve the network performance. As the
advantages of self-distillation, more and more tasks will make use of self-distillation in the
future. Our method further expands the application scope of self-distillation, and provides
a new attempt to adopt self-distillation for new tasks.
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Figure 4 PR curve of different methods.
Full-size DOI: 10.7717/peerjcs.1435/fig-4

Table 9 The efficiency comparison with recent SODmethods.

Metric LDF GCP RAS GateNet CPD OURS

#Params (MB) 25.15 67.06 24.70 128.63 47.85 23.79
Speed (FPS) 47.56 50.52 50.34 41.53 38.72 74.42

Notes.
The bold values mean the best results.
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