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ABSTRACT
Many important engineering optimization problems require a strong and simple
optimization algorithm to achieve the best solutions. In 2020, Rao introduced three
non-parametric algorithms, known as Rao algorithms, which have garnered significant
attention from researchers worldwide due to their simplicity and effectiveness in
solving optimization problems. In our simulation studies, we have developed a new
version of the Rao algorithm called the Fully Informed Search Algorithm (FISA),
which demonstrates acceptable performance in optimizing real-world problems while
maintaining the simplicity and non-parametric nature of the original algorithms. We
evaluate the effectiveness of the suggested FISA approach by applying it to optimize the
shifted benchmark functions, such as those provided in CEC 2005 and CEC 2014, and
by using it to design mechanical system components. We compare the results of FISA
to those obtained using the original RAO method. The outcomes obtained indicate
the efficacy of the proposed new algorithm, FISA, in achieving optimized solutions for
the aforementioned problems. The MATLAB Codes of FISA are publicly available at
https://github.com/ebrahimakbary/FISA.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence,
Optimization Theory and Computation, Scientific Computing and Simulation
Keywords Optimization, Rao algorithms, Fully Informed Search Algorithm (FISA),
Constrained engineering optimization

INTRODUCTION
The objective of maximizing profits or minimizing losses is a crucial concern in several
fields, including engineering. In brief, an optimization problem refers to the situation
where the aim is to maximize or minimize a function.With the development of technology,
optimization problems have become increasingly complex and abundant across a wide
range of scientific fields. The complexity and interdependence of modern engineering
systems and problems necessitate the selection of the best optimization method to solve
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them. Metaheuristic algorithms are among the strongest, simplest, and most commonly
used optimizationmethods in recent years (Gogna & Tayal, 2013;Zervoudakis & Tsafarakis,
2020).

In general, a mathematical model in the optimization process has three main parts:
objective function, design variables, and problem and system constraints. Design or
decision variables are the independent variables that must be optimally determined and
are denoted by the D-dimensional vector X . According to the problem’s nature, they can
have a combination of several types of discrete and continuous decision variables. The
objective function, also called the cost function, is a function of the decision variables that
should be minimized or maximized. The goal of solving optimization problems is to obtain
an acceptable solution that minimizes/maximizes objective function while satisfying the
problem constraints. The constraints are the same as the physical and design constraints of
the problem that must be satisfied in the optimization process so that a practical optimal
solution can be obtained (Gogna & Tayal, 2013).

Optimization problems can be broadly categorized into two types: unconstrained
optimization problems and constrained optimization problems. In the latter case, the
design space is limited by one or more constraints, which can take the form of equality or
inequality equations. These constraints determine the acceptable region in the design space
where the optimal solution must be found.

Optimization algorithms
Optimization algorithms can be broadly classified into two types: exact methods and
approximate methods. Exact methods are capable of guaranteeing an optimal solution, but
they may require significant computational resources and time. In contrast, approximate
methods focus on finding good solutions in a reasonable amount of time. Heuristic
algorithms are a popular type of approximate methods that are designed to quickly
generate high-quality solutions to a wide range of problems. The effectiveness of heuristic
algorithms depends on the nature of the problem being solved (Gogna & Tayal, 2013).

Metaheuristic methods
Metaheuristics refer to methods that guide the search process and are often inspired
by nature. Unlike heuristic algorithms, due to their problem-independent nature, these
algorithms can be utilized to optimize a diverse range of problems. These methods are
among the most important and promising research in the optimization domain.

The general principles of metaheuristic methods are as follows:

• Employing a given number of repetitive efforts
• Employing one or more agents (particles, neurons, ants, chromosomes, etc.)
• Operation (in multi-factor mode with a cooperation-competition mechanism)
• Creating methods of self-change and self-transformation

Nature has two great tactics:
1. Rewarding strong personal characteristics and punishing weaker ones.
2. Introducing random mutations, which can lead to the birth of new individuals.
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Recently, many optimization techniques have been proposed that operate on the basis
of natural behaviors and social behaviors. In the initialization stage, these algorithms
randomly generate solutions and in the later stages, they rely on natural processes to
produce better answers.

Some of the popular and widely used types of metaheuristics are Particle swarm
optimization algorithm (PSO) (Kennedy & Eberhart, 1995), differential evolution (DE)
(Storn & Price, 1995), genetic algorithm (GA) (Whitley, 1994), firefly algorithm (Yang,
2009), ant colony optimization (Dorigo & Di Caro), bat algorithm (Yang, 2010), teaching–
learning-based optimization (TLBO) (Rao, Savsani & Vakharia, 2011), grey wolf optimizer
(GWO) (Mirjalili, Mirjalili & Lewis, 2014), artificial bee colony algorithm (ABC) (Karaboga
& Basturk, 2007), imperialist competitive algorithm (ICA) (Atashpaz-Gargari & Lucas,
2007), moth-flame optimization algorithm (MFO) (Mirjalili, 2015), gravitational search
algorithm (GSA) (Rashedi, Nezamabadi-pour & Saryazdi, 2009), shuffled frog-leaping
algorithm (SFLA) (Eusuff, Lansey & Pasha, 2006), whale optimization algorithm (WOA)
(Mirjalili & Lewis, 2016), etc.

Now the question is why all these new optimization algorithms, either modified or
combined, are needed. The main reason for this is the inability to determine with certainty
which optimization or metaheuristic algorithm is appropriate for resolving a problem, and
only through the comparison of the outcomes can it be asserted which algorithm provides
a superior approach. In addition, based on (Mirjalili, Mirjalili & Lewis, 2014), an algorithm
may perform well for some groups of functions but not for some other groups. Therefore,
the motivation to modify algorithms or introduce new algorithms has been very high in
recent years (Mirjalili & Lewis, 2016).

In 2020, Rao (2020) suggested three effective and powerful straightforward algorithms
for optimization problems without the use of metaphors. These methods use the most
and least optimal solutions in each iteration and the casual interrelations between possible
solutions. Additionally, thesemethods need no control parameter other than the population
size and the number of iterations.

Rao algorithms have been successfully used by researchers in the short time since they
have been introduced, some of which include the engineering design optimization (Rao
& Pawar, 2020a; Rao & Pawar, 2020b; Rao & Pawar, 2022; Rao & Pawar, 2023), weight
optimization of reinforced concrete cantilever retaining wall (Kalemci & Ikizler, 2020),
cropping pattern under a constrained environment (Kumar & Yadav, 2019), construction
scheduling (Yılmaz & Dede, 2023), photovoltaic cell parameter estimation (Premkumar et
al., 2020;Wang et al., 2020), optimization of energy systems (Rao et al., 2022), and optimal
power flow (Sahay, Upputuri & Kumar, 2023).

A significant proportion of optimization problems encountered in practical applications
contain shifted functions, for which the performance of Rao algorithms may not be much
optimal, as demonstrated in the simulation section. This article introduces a new algorithm,
called Fully Informed Search Algorithm (FISA), which is based on Rao algorithms and
address this drawback. FISAnot only outperforms the original Rao algorithms in optimizing
shifted functions but also preserves their simplicity and requires no control parameters. The
suggested algorithm’s performance is evaluated by optimizing benchmark problems with
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shifted functions and real-world problems. The results demonstrate that FISA outperforms
not only the original Rao algorithms but also other state-of-the-art methods, indicating its
superior performance.

The article continues in four sections: the formulation of the suggested and Rao
algorithms is presented in the following section. Reporting the outcomes of simulations
and presenting and discussing the findings are done in next section. Lastly, the conclusions
are presented.

PROPOSED ALGORITHM
Rao algorithms
The basic formulations of Rao algorithms, which are very simple algorithms without
control parameters, rely on the difference vectors obtained by subtracting the position
(location) of the worst individual from the location of the finest individual in the present
iteration. This ensures that the population always moves towards a better solution. These
algorithms consist of three distinct movements (position update) vectors for updating the
position which are defined as follows (Rao, 2020):

Rao-1 algorithm:

Xnew
i,j =X Iter
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X Iter
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In the above equations,X Iter
i represents the ith solution’s location in the present iteration

Iter; j(changing from 1 toD) represents the jth dimension of each solution; X Iter
best and X

Iter
worst

represent the position of the highest and lowest performing members of the population
during the present iteration, in that order; r1 and r2 are two randomly selected values
between 0 and 1 with the dimension of D; X Iter

k represents the position of the kth solution,
which is indiscriminately chosen; and f (.) represents the numerical output of the function
being optimized of the corresponding solution in the present iteration. The location of the
ith solution in the next iteration is obtained using Eq. (4):{
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i if f
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X Iter+1
i =X Iter

i else.
(4)
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The proposed Fully Informed Search Algorithm (FISA)
The performance of Rao algorithms in optimizing shifted functions, which may be the
case for many real-world problems, may be suboptimal. This will be demonstrated in the
simulation section. Therefore, we propose a new algorithm, the Fully Informed Search
Algorithm (FISA), which is based on Rao algorithms and is designed to address this issue.
FISA improves the optimization of shifted functions while retaining the simplicity and
absence of control parameters of the original algorithms. Similar to Rao algorithms, FISA
moves the population towards better solutions. In summary, FISA can be summarized as
follows:

Xnew
i,j =X Iter

i,j + r1,j
(
MX Iter

best,j−X
Iter
i,j

)
+ r2,j

(
X Iter
i,j −MX Iter

worst,j

)
. (5)

In fact, in FISA, each member moves away from the mean position of the individuals
within the population that have worse fitness values and approaches the mean position
of the individuals that have better fitness values than the associated member. Then, the
position of each member is updated using Eq. (4). In Eq. (5), the values of MX Iter

best,j and
MX Iter

worst,j in each iteration are calculated using Eqs. (6) and (7), respectively:

MX Iter
best=

X Iter
best+

∑
l∈BiX

Iter
l

length(Bi)+1
(6)

MX Iter
worst=

X Iter
worst+

∑
l∈WiX

Iter
l

length(Wi)+1
(7)

where Bi andWi are the set of population members that have a better and worse fitness
value than the i th member in iteration Iter, respectively, and length(.) represents the count
of the individuals in the set.

The flowchart of FISA is shown in Fig. 1.

NUMERICAL RESULTS OF FISA FOR SOLVING BENCHMARK
TEST FUNCTIONS
FISA for solving CEC2005 problems
To assess the effectiveness of the suggested algorithm in comparison to the original Rao
algorithms, we have chosen 14 real-world shifted functions with 30 dimensions (including
unimodal, multimodal, and expanded multimodal functions), numbered in the order
introduced in CEC 2005 (Liu et al., 2013), whose data were extracted from Suganthan et al.
(2005). These functions have been successfully utilized in many articles (Ghasemi, Aghaei
& Hadipour, 2017; Birogul, 2019; Ghasemi et al., 2019; Ghasemi et al., 2022a; Ghasemi et al.,
2022b; Ghasemi et al., 2023; Akbari, Rahimnejad & Gadsden, 2021; Premkumar et al., 2021;
Zou et al., 2022). The total count of function evaluations (NFE) during the execution of
each algorithm is considered 300,000 based on Liu et al. (2013); accordingly, the number
of population members of each algorithm during the optimization is 30; therefore, the
convergence curves, in this study, have been extracted for 10,000 iterations. Furthermore,
to acquire the optimal solution for each function, each algorithm has been executed

Ghasemi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1431 5/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1431


 

 

Initialize population, termination criterion

Calculate the mean of each design variable

Modify solution based on full solutions

( ) ( )i, j , j 1, best, j , j 2, , j , j

new Iter Iter Iter Iter Iter

i j i j i worstX X r MX X r X MX= + − + −

YesNo Is new solution

better than existing?

Is termination

criteria satisfied?

Final value of solutions and end.

Yes No

Accept as the new solution: new

iX
The previous solution to be 

preserved. 

 

Figure 1 Flowchart of FISA.
Full-size DOI: 10.7717/peerjcs.1431/fig-1

independently for 25 runs. A summary of the results comprising the average value, standard
deviation, and rank for each algorithm amongst the investigated algorithms is given in
Table 1. In this table, Nb and Nw represent the total instances where the corresponding
algorithm has the best or the worst result among the studied algorithms, respectively. MR

also represents the mean ranking of each algorithm for 14 test functions.
After a concise investigation of Table 1, it can be observed that the FISA algorithm

noticeably outperformed the original Rao algorithms, particularly for functions F2, F4, and
F6. The proposed algorithm surpassed the Rao-2 and Rao-3 algorithms for all investigated
functions, except for the F8 test function where it achieved the same performance as the
Rao algorithms. Although the FISA algorithm showed slightly lower performance than
the Rao-1 algorithm for test functions F1, F7, and F9, these results were close, and FISA
outperformed the Rao-1 algorithm for the remaining 10 test functions. These findings
indicate that the proposed algorithm has a strong capability to achieve optimal solutions
for practical problems. Additionally, the convergence behaviors of different algorithms
for solving the selected functions are presented in Fig. 2, which provides evidence of the
superior convergence behavior of the suggested algorithm.

FISA for solving CEC2014 problems
In the second part of demonstrating the efficacy of the suggested method, FISA, in
comparison with the RAO algorithms, 30 test functions from CEC 2014 Test Functions,
with dimension 30 are selected (Askari & Younas, 2021; Suganthan et al., 2005; Liu & Nishi,
2022; Meng et al., 2022; Band et al., 2022), whose data were extracted from (Suganthan et
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Table 1 The optimal results obtained by Rao algorithms and FISA on the 30-D real-parameter test
functions of CEC 2005.

F Rao-1 Rao-2 Rao-3 FISA
Mean Mean Mean Mean
Std Dev Std Dev Std Dev Std Dev
Rank Rank Rank Rank

2.88E−29 2.39E−05 4.11E+03 3.37E−27
7.64E−29 3.43E−05 5.53E+02 5.54E−27F1
1 3 4 2
3.32E−07 7.53E+03 1.51E+04 2.04E−26
8.76E−07 2.52E+03 2.91E+03 3.89E−27F2
2 3 4 1
1.61E+07 7.02E+07 8.41E+07 5.83E+06
8.89E+06 2.19E+07 2.36E+07 3.84E+06F3
2 3 4 1
2.18E+02 2.09E+04 2.11E+04 4.01E−05
5.09E+02 8.84E+03 8.43E+03 9.75E−05F4
4 2 3 1
3.63E+03 3.35E+03 5.56E+03 2.34E+03
1.70E+03 2.44E+03 2.07E+03 9.42E+03F5
3 2 4 1
2.19E+01 5.55E+06 1.09E+08 4.01E+00
3.54E+01 1.47E+07 2.51E+07 4.96E+07F6
2 3 4 1
1.98E−02 2.64E−01 3.03E+02 2.88E−02
1.36E−02 2.50E−01 5.19E+01 1.32E−02F7
1 3 4 2
2.09E+01 2.09E+01 2.09E+01 2.09E+01
5.39E−02 3.42E−02 6.51E−02 5.69E−02F8
1 1 1 1
1.63E+02 2.02E+02 2.33E+02 1.91E+02
5.71E+01 1.44E+01 1.21E+01 2.00E+01F9
1 3 4 2
2.28E+02 2.34E+02 3.03E+02 1.78E+02
2.15E+01 1.48E+01 2.60E+01 1.99E+01F10
2 3 4 1
4.02E+01 3.93E+01 3.89E+01 3.77E+01
1.25E+00 5.42E−01 1.11E+00 1.65E+00F11
4 3 2 1
6.11E+04 1.93E+05 1.62E+05 5.28E+04
5.85E+04 1.60E+05 6.39E+04 5.05E+04F12
2 4 3 1

(continued on next page)
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Table 1 (continued)

F Rao-1 Rao-2 Rao-3 FISA
Mean Mean Mean Mean
Std Dev Std Dev Std Dev Std Dev
Rank Rank Rank Rank

1.70E+01 1.78E+01 3.38E+01 1.50E+01
8.39E−01 1.61E+00 3.59E+00 1.23E+00F13
2 3 4 1
1.33E+01 1.34E+01 1.34E+01 1.27E+01
2.29E−01 2.08E−01 1.16E−01 2.02E−01F14
2 3 3 1

Nb/Nw/MR 4/2/2.071 1/2/2.786 1/10/3.429 11/0/1.214
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Figure 2 The convergence characteristics of FISA and the Rao algorithms for some selected CEC2005
benchmark functions. (A) F1 test function. (B) F2 test function. (C) F10 test function. (D) F14 test func-
tion.

Full-size DOI: 10.7717/peerjcs.1431/fig-2

al., 2005). The optimal value for all functions is 0. The population number was selected as
30 and the stopping criterion was selected as 10,000 iterations for all algorithms; so that
the NFE for each algorithm is equal to 300,000. The experiment is conducted by running
each algorithm independently 25 times for every function. The summary of the results
comprising the Mean value, standard deviation, and best value for each of the investigated
algorithms is given in Table 2.

After reviewing the results presented in Table 2, taking into account the average value,
standard deviation, and also the best optimal value of 25 runs, we can see that the suggested
algorithm has a significant advantage over the Rao algorithms. The last row of the table
shows the number of test functions in which each algorithm achieved their best solution,
denoted as Nb. It is evident that the proposed method outperformed the other algorithms
by obtaining the best solution in 23 out of 30 test functions. This indicates the strength and
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efficiency of the suggested technique as a new optimization algorithm. The convergence
characteristics of algorithms for some selected test functions are displayed in Fig. 3.

NUMERICAL RESULTS OF FISA IN SOLVING ENGINEERING
PROBLEMS
To demonstrate the effectiveness and optimization efficiency of FISA, three widely
recognized engineering problems, namely optimal design of a pressure vessel,
tension/compression spring, and welded beam, have been selected. Then, we perform
the optimization operation for these optimization problems under the same conditions
for all algorithms. The number of populations for each algorithm is chosen as 60, and the
number of iterations of the algorithms for each run is chosen as 2000. In addition, each
optimization operation is performed in 30 separate runs for each problem, using all the
parameters as suggested by the respective algorithm designers in their original publications.

Pressure vessel optimal design
The goal of the problem is to minimize the overall costs of a pressure vessel, comprising
material, forming, and welding expenses. As depicted in Fig. 4, this problem involves four
design variables: shell thickness (denoted as x1 or T s), head thickness (denoted as x2 or
Th), inner radius (denoted as x3 or R), and cylindrical section length (denoted as x4 or L).
While x3 and x4 are continuous variables, x1 and x2 are discrete variables represented as
integer multiples of 0.0625 in.

The problem’s objective function is nonlinear and it has both a linear and a nonlinear
inequality constraint, which are illustrated below (Askarzadeh, 2016):

Minimize:

f (X)= 0.6224x1x3x4+1.7781x2x23+3.1661x
2
1x4+19.84x

2
1x3 (8)

subject to:

g1(X)=−x1+0.0193x3≤ 0, (9)

g2(X)=−x2+0.00954x3≤ 0, (10)

g3(X)=−πx23x4−
4
3
πx33+1,296,000≤ 0, (11)

g4(X)= x4−240≤ 0, (12)

0≤ xi≤ 100, i= 1, 2
10≤ xi≤ 200, i= 3, 4.
Table 3 compares the outcomes achieved by the proposed algorithm for the problem

and other widely used standard algorithms, including quantum-inspired PSO (QPSO)
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Table 2 Mean statistical results of the optimization algorithms. The optimal results obtained by Rao algorithms and FISA on the 30-D real-parameter test functions of
CEC 2014.

Number
Functions

Mean Std. Best

Rao-1 Rao-2 Rao-3 FISA Rao-1 Rao-2 Rao-3 FISA Rao-1 Rao-2 Rao-3 FISA

F1 9582162 50437582 81428816 2800719 3079516 20123351 39651820 2150031 6946796 14997575 29955287 628863

F2 120.89 659713 6137293771 0.2668 112.9 848640 2928707621 0.2912 0.4824 29241 3010346193 0.008785

F3 4485 40811 38797 31.1 2228.7 10093 9319 31.85 1526 24146 23581 0.4269

F4 61.73 133.42 342.18 24.415 51.53 39.751 69.579 31.2 1.21 64.89 270.3 1.379e−05

F5 20.90 20.87 20.93 20.94 0.06756 0.0954 0.0494 0.06964 20.79 20.65 20.85 20.77

F6 15.33 30.14 30.72 9.535 7.284 5.586 4.372 2.443 6.486 15.29 22.86 6.25

F7 0.005914 0.0994 15.59 0.00689 0.005473 0.1606 5.7095 0.00919 3.41e−13 2.27e−13 10.26 3.41e−13

F8 171.18 194.74 194.73 183.55 45.848 20.150 27.835 10.84 48 169.00 131.77 172.33

F9 223.75 250.58 239.61 183.97 19.06 15.61 20.347 8.097 203.1 230.54 217.6 172.2

F10 5984.46 4211.659 4524 6108 407 1432 1348 369 5393 1312 1425.08 5490

F11 6931.32 6635.03 6865 6566 475.32 354.75 408.21 294.6 5868 5981 6113.02 6321

F12 2.345 2.60 2.53 2.40 0.3794 0.2785 0.3263 0.2383 1.7 2.221 1.746 2.017

F13 0.5111 0.552 1.5011 0.34246 0.1238 0.0895 0.41817 0.0583 0.2819 0.3974 1.083 0.2657

F14 0.5391 0.7987 7.732 0.28264 0.2937 0.342 4.556 0.0343 0.29 0.28242 2.6359 0.243

F15 17.02 23.12 66.97 15.42 2.404 10.571 77.772 1.47 14.30 17.71 27.308 12.92

F16 12.81 12.79 12.83 11.90 0.266 0.1874 0.1794 0.2726 12.38 12.398 12.42 11.47

F17 965058 3981833 2540846 389902 436615 2490205 1244123 326223 129986 1177515 1107044 22824

F18 199137 30841200 36432033 11283 449272 80536940 34940261 9520 25671 11381 7416244 2405

F19 10.584 26.22 25.60 28.62 1.678 33.385 1.80 32.333 8.794 7.106 22.86 5.597

F20 1463 4209.6 3737.2 348.8 807.5 2655 2537 118.5 807.2 1001.8 823.585 191.2

F21 287610 1244033 710914 153382 187045 1293203 354945 121947 132730 235591 299730 27539

F22 586.5 458.5 665.70 378.992 166.88 126.3 143.81 133 352.7 216.55 425 173

F23 315.244 315.257 334.029 315.244 8.78e−13 0.0158 7.95 5.95e−13 315.244 315.245 325.65 315.244

F24 240.398 220.55 200.124 228.68 9.096 13.208 0.0523 7.22 222.9 201.711 200.05 222.4

F25 205.676 212.8 217.134 204.147 3.137 4.553 4.393 0.9164 203.06 205.69 211.18 202.84

F26 124.44 164.57 111.935 110.34 75.72 110.71 33.7 31.53 100.27 100.501 100.61 100.27

F27 763.611 972.56 996.85 623.0 189.926 168.99 77.46 99.14 427.3 713.631 881.77 424.97

F28 1236.6 987.07 1282.0 1070.2 252.42 71.279 216.6 144.7 946.5 901.36 1039.66 900.4

F29 9508567 3573247 3049683 1965559 7769278 4629638 4599150 4156387 4780.58 1711 82249 1494

F30 22053 4434 9726 4809 22730 1248 7326.9 2402 2337.4 2256 4387 1934

Nb 5 4 1 21 2 3 4 21 5 3 1 23
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Figure 3 The convergence characteristics of FISA and the Rao algorithms for some selected CEC2014
benchmark functions. (A) F2 test function. (B) F6 test function. (C) F15 test function. (D) F20 test func-
tion. (E) F24 test function. (F) F29 test function.

Full-size DOI: 10.7717/peerjcs.1431/fig-3
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Figure 4 Schematic of the pressure vessel design problem.
Full-size DOI: 10.7717/peerjcs.1431/fig-4

and Gaussian QPSO (G-QPSO) (Coelho, Dos Santos Coelho & Coelho, 2010), ABC (Akay
& Karaboga, 2012), a GA equipped with a constraint-handling via dominance-based
tournament selection (GA4) (Coello Coello et al., 2002), co-evolutionary PSO (CPSO) (He
&Wang, 2007), co-evolutionary DE (CDE) (Huang, Wang & He, 2007), unified PSO
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Table 3 Best statistical results of various algorithms for pressure vessel optimal design problem.

Methods Best Mean Worst Std.

QPSO (Coelho, Dos Santos Coelho & Coelho, 2010) 6059.7209 6440.3786 8017.2816 479.2671
ABC (Akay & Karaboga, 2012) 6059.714339 6245.308144 N.A. 2.05e+02
GA4 (Coello Coello et al., 2002) 6059.9463 6177.2533 6469.3220 130.9297
CPSO (He &Wang, 2007) 6061.0777 6147.1332 6363.8041 86.4545
CDE (Huang, Wang & He, 2007) 6059.7340 6085.2303 6371.0455 43.013
G-QPSO (Coelho, Dos Santos Coelho & Coelho, 2010) 6059.7208 6440.3786 7544.4925 448.4711
UPSO (Parsopoulos & Vrahatis, 2005) 6154.70 8016.37 9387.77 745.869
ES (Mezura-Montes & Coello, 2008) 6059.746 6850.00 7332.87 426
T-Cell (Aragón, Esquivel & Coello, 2010) 6390.554 6737.065 7694.066 357
GA3 (Coello Coello, 2000) 6288.7445 6293.8432 6308.4970 7.4133
HAIS-GA (Bernardino et al., 2008) 6832.584 7187.314 8012.615 276
CSA (Askarzadeh, 2016) 6059.71436343 6342.49910551 7332.84162110 384.94541634
BFOA (Mezura-Montes & Hernández-Ocana, 2008) 6060.460 6074.625 N.A. 156
BIANCA (Montemurro, Vincenti & Vannucci, 2013) 6059.9384 6182.0022 6447.3251 122.3256
QS (Zhang et al., 2018) 6059.714 6060.947 6090.526 N.A.
Rao-1 (Rao & Pawar, 2020b) 6059.714334 6069.230694 6093.903548 10.451664
Rao-2 (Rao & Pawar, 2020b) 6059.714334 6062.055668 6090.526202 7.171409
Rao-3 (Rao & Pawar, 2020b) 6059.714334 6061.883052 6090.526202 7.810982
FISA 6059.714334 6061.320721 6066.824063 4.74

(UPSO) (Parsopoulos & Vrahatis, 2005), Crow search algorithm (CSA) (Askarzadeh,
2016), hybridizing a genetic algorithm with an artificial immune system (HAIS-GA)
(Bernardino et al., 2008), bacterial foraging optimization algorithm (BFOA) (Mezura-
Montes & Hernández-Ocana, 2008), evolution strategies (ES) (Mezura-Montes & Coello,
2008), A modification of the T-Cell algorithm (Aragón, Esquivel & Coello, 2010), a GA
enhanced with a self-adaptive penalty method (GA3) (Coello Coello, 2000), queuing search
(QS) algorithm (Zhang et al., 2018), and a GA equipped with a constraint-handling via
automatic dynamic penalization (ADP) method (BIANCA) (Montemurro, Vincenti &
Vannucci, 2013). Furthermore, the best solution found for the problem using the suggested
technique was shown in Table 4. Tables 3 and 4 demonstrate that FISA outperforms other
algorithms with the smallest value for the best solution, and ranking first for the worst
solution and average value. This confirms that FISA performs well and reliably in tackling
the pressure vessel optimal design problem.

Tension/compression spring optimal design
According to Fig. 5, the goal of the problem includes reducing the tension/compression
spring weight while satisfying four inequality limitations (one linear and three nonlinear).
The problem comprises three continuous design variables: wire diameter (denoted as d or
x1), mean coil diameter (denoted as D or x2), and the number of active coils (denoted as
P or x3) (Askarzadeh, 2016).
Minimize:

f (X)= (x3+2)x2x21 (13)
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Table 4 The best solutions found for the pressure vessel optimal design problem by FISA.

Design variables FISA

x1 0.8125
x2 0.4375
x3 42.098446
x4 176.63660
g 1(X) −1.1300e−10
g 2(X) −0.035881
g 3(X) −2.788752e−05
g 4(X) −63.36340
Best 6059.714334
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d

 

Figure 5 The tension/compression spring optimal design problem.
Full-size DOI: 10.7717/peerjcs.1431/fig-5

subject to:

g1(X)= 1−
x32x3

71,785x41
≤ 0, (14)

g2(X)=
4x22−x1x2

12,566
(
x31x2−x

4
1
)+ 1

5,108x21
−1≤ 0, (15)

g3(X)= 1−
140.45x1
x22x3

≤ 0, (16)

g4(X)=
x1+x2
1.5
−1≤ 0. (17)

0.05≤ x1≤ 2, 0.25≤ x2≤ 1.3, 2≤ x3≤ 15.
Table 5 describes the outcomes of the proposed algorithm for the problem in comparison

with other standard and well-known algorithms including BFOA (Mezura-Montes &
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Table 5 Best statistical results of various algorithms for tension/compression spring optimal design problem.

Methods Best Mean Worst Std.

CA (Coello Coello & Becerra, 2004) 0.012721 0.013568 0.0151156 8.4e−04
BFOA (Mezura-Montes & Hernández-Ocana, 2008) 0.012671 0.012759 N.A. 1.36e−04
T-Cell (Aragón, Esquivel & Coello, 2010) 0.012665 0.012732 0.013309 9.4e−05
CDE (Huang, Wang & He, 2007) 0.012670 0.012703 0.012790 2.07e−05
CPSO (He &Wang, 2007) 0.0126747 0.012730 0.012924 5.19e−05
TEO (Kaveh & Dadras, 2017) 0.012665 0.012685 0.012715 4.4079e−06
G-QPSO (Coelho, Dos Santos Coelho & Coelho, 2010) 0.012665 0.013524 0.017759 1.268e−03
SBO (Ray & Liew, 2003) 0.012669249 0.012922669 0.016717272 5.92e−04
GA4 (Coello Coello et al., 2002) 0.012681 0.012742 0.012973 9.5e−05
GA3 (Coello Coello, 2000) 0.0127048 0.012769 0.012822 3.93e−05
(l+ k)-ES (Mezura-Montes & Coello, 2005) 0.012689 0.013165 N.A. 3.9e−04
UPSO (Parsopoulos & Vrahatis, 2005) 0.01312 0.02294 N.A. 7.2e−03
GWO (Mirjalili, Mirjalili & Lewis, 2014) 0.0126660 N.A. N.A. N.A.
WCA (Eskandar et al., 2012) 0.012665 0.012746 0.012952 8.06e−05
BIANCA (Montemurro, Vincenti & Vannucci, 2013) 0.012671 0.012681 0.012913 5.1232e−05
SDO (Zhao, Wang & Zhang, 2019) 0.0126663 0.0126724 0.0126828 6.1899e−06
QS (Zhang et al., 2018) 0.012665 0.012666 0.012669 N.A.
Rao-1 (Rao & Pawar, 2020b) 0.012666 0.012712 0.012846 3.6195e−05
Rao-2 (Rao & Pawar, 2020b) 0.012669 0.013232 0.030455 2.5886e−03
Rao-3 (Rao & Pawar, 2020b) 0.012672 0.013086 0.017773 1.2062e−03
FISA 0.012665 0.012666 0.012675 7.05e−07

Hernández-Ocana, 2008), T-Cell (Aragón, Esquivel & Coello, 2010), CDE (Huang, Wang &
He, 2007), a cultural algorithm (CA) (Coello Coello & Becerra, 2004), CPSO (He &Wang,
2007), GA4 (Coello Coello et al., 2002), GA3 (Coello Coello, 2000), TEO (Kaveh & Dadras,
2017), G-QPSO (Coelho, Dos Santos Coelho & Coelho, 2010), SBO (Ray & Liew, 2003),
evolutionary algorithms ((l+ k)-ES) (Mezura-Montes & Coello, 2005), grey wolf optimizer
(GWO) (Mirjalili, Mirjalili & Lewis, 2014), UPSO (Parsopoulos & Vrahatis, 2005), QS
(Zhang et al., 2018), SDO (Zhao, Wang & Zhang, 2019), BIANCA (Montemurro, Vincenti
& Vannucci, 2013), and water cycle algorithm (WCA) (Eskandar et al., 2012). Furthermore,
Table 6 shows the optimal solution obtained for the problem using the suggested algorithm.
The tables demonstrate that FISA outperforms all other algorithms in terms of the best
value, with the worst solution and average value being the smallest. This suggests that FISA
is more effective than other competitive optimizers in solving this problem.

Welded beam optimal design
The goal of the problem is the minimization of the cost of a welded beam. The problem
has four continuous decision variables, as depicted in Fig. 6, namely x1(h),x2(l),x3(t ), and
x4(b), along with two linear and five nonlinear inequality limitations (Askarzadeh, 2016).
Minimize:

f (X)= 1.10471x2x21+0.04811x3x4(14+x2) (18)
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Table 6 The best solutions found for the tension/compression spring optimal design problem by
FISA.

Design variables FISA

x1 0.0517770562
x2 0.3588357559
x3 11.1661043232
g 1(X) −1.310475e−05
g 2(X) −5.853421e−06
g 3(X) −4.057851
g 4(X) −0.727695
Best 0.012665
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P 

Figure 6 Schematic of welded beam optimal design problem.
Full-size DOI: 10.7717/peerjcs.1431/fig-6

Subject to:

g1(X)= τ (x)−τmax≤ 0, (19)

g2(X)= σ (x)−σmax≤ 0, (20)

g3(X)= x1−x4≤ 0, (21)

g4(X)= 0.10471x21+0.04811x3x4(14+x2)−5≤ 0. (22)

g5(X)= 0.125−x1≤ 0, (23)

g6(X)= δ(x)−δmax≤ 0, (24)
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g7(X)= P−Pc (x)≤ 0, (25)

Where

τ (x)=
√
(τ ′)2+2τ ′τ ′′

x2
2R
+(τ ′′)2 (26)

τ ′=
P

√
2x1x2

, τ ′′=
MR
J
, (27-28)

M = P
(
L+

x2
2

)
, R=

√
x22
4
+

(
x1+x3

2

)2

, δ(x)=
4PL3

Ex33x4
(29-31)

J = 2

[
√
2x1x2

{
x22
12
+

(
x1+x3

2

)2
}]
, σ (x)=

6PL
x4x23

, (32-33)

Pc (x)=
4.013E

√
x64 x

2
3

36

L2

(
1−

x3
2L

√
E
4G

)
, (34)

P = 6,000 lb; L= 14 in; E = 30e6 psi G= 12e6 psi, τmax =13,000 psi, σmax =30,000 psi
δmax= 0.25 in, 0.1≤ x1≤ 2, 0.1≤ x2≤ 10, 0.1≤ x3≤ 10,0.1≤ x4≤ 2.
The performance of the suggested method for the problem is presented in Table 7,

where it is compared to other widely used algorithms, including a cooperative PSO with
stochastic movements (EPSO) (Ngo, Sadollah & Kim, 2016), BFOA (Mezura-Montes &
Hernández-Ocana, 2008), T-Cell (Aragón, Esquivel & Coello, 2010), CDE (Huang, Wang
& He, 2007), a hybrid real-parameter GA (HSA-GA) (Hwang & He, 2006), CPSO (He
&Wang, 2007),TEO (Kaveh & Dadras, 2017), SBO (Ray & Liew, 2003), Derivative-Free
Filter Simulated Annealing Method (FSA) (Hedar & Fukushima, 2006), GA4 (Coello Coello
et al., 2002), (l + k)-ES (Mezura-Montes & Coello, 2005), GWO (Mirjalili, Mirjalili &
Lewis, 2014), SFO (Shadravan, Naji & Bardsiri, 2019), HGSO (Hashim et al., 2019), UPSO
(Parsopoulos & Vrahatis, 2005), WCA (Eskandar et al., 2012), BIANCA (Montemurro,
Vincenti & Vannucci, 2013). Furthermore, Table 8 displays the optimal solution obtained
by the suggested algorithm for the problem. Table 7 and 8 demonstrate that FISA is
capable of discovering the most effective optimization solution. The statistical findings also
indicate that FISA surpasses other methods and canmore effectively handle the constrained
engineering problems.

MANAGERIAL IMPLICATIONS
Metaheuristic methods provide managers and decision makers with reliable tools for
finding appropriate solutions to real-world problems with a limited computational burden
and a limited time. Since there are major difficulties in finding the exact solutions of a wide
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Table 7 Best statistical results of various algorithms for welded beam optimal design problem.

Methods Best Mean Worst Std.

EPSO (Ngo, Sadollah & Kim, 2016) 1.7248530 1.7282190 1.7472200 5.62e−03
BFOA (Mezura-Montes & Hernández-Ocana, 2008) 2.3868 2.4040 N.A. 1.6e−02
T-Cell (Aragón, Esquivel & Coello, 2010) 2.3811 2.4398 2.7104 9.314e−02
CDE (Huang, Wang & He, 2007) 1.73346 1.768158 1.824105 2.2194e−02
CPSO (He &Wang, 2007) 1.728024 1.748831 1.782143 1.2926e−02
HSA-GA (Hwang & He, 2006) 2.2500 2.26 2.28 7.8e−03
FSA (Hedar & Fukushima, 2006) 2.3811 2.4041 2.4889 N.A.
TEO (Kaveh & Dadras, 2017) 1.725284 1.768040 1.931161 5.81661e−02
SBO (Ray & Liew, 2003) 2.3854347 3.0025883 6.3996785 9.59e−01
GA4 (Coello Coello et al., 2002) 1.728226 1.792654 1.993408 7.47e−02
(l+ k)-ES (Mezura-Montes & Coello, 2005) 1.724852 1.777692 N.A. 8.8e−02
UPSO (Parsopoulos & Vrahatis, 2005) 1.92199 2.83721 N.A. 6.83e−01
GWO (Mirjalili, Mirjalili & Lewis, 2014) 1.72624 N.A. N.A. N.A.
SFO (Shadravan, Naji & Bardsiri, 2019) 1.73231 N.A. N.A. N.A.
HGSO (Hashim et al., 2019) 1.7260 1.7265 1.7325 7.66e−03
WCA (Eskandar et al., 2012) 1.724856 1.726427 1.744697 4.29e−03
BIANCA (Montemurro, Vincenti & Vannucci, 2013) 1.725436 1.752201 1.793233 2.3001e−02
Rao-1 (Rao & Pawar, 2020b) 1.724852 1.724852 1.724852 2.62
Rao-2 (Rao & Pawar, 2020b) 1.724852 1.724852 1.724852 9.83e−04
Rao-3 (Rao & Pawar, 2020b) 1.724852 1.724852 1.724852 2.06e−03
FISA 1.724852 1.724852 1.724852 5.93e−05

Table 8 The best solutions found for the welded beam optimal design problem by FISA.

Design variables FISA

x1 0.20572963980
x2 3.4704886655
x3 9.0366239101
x4 0.2057296398
g 1(X) −2.2653330e−07
g 2(X) −3.1932722e−07
g 3(X) 0.0
g 4(X) −3.43298379
g5(X) −0.08072964
g6(X) −0.23554032
g7(X) −1.10549263e−06
Best 1.7248523

variety of real-world problems, metaheuristic methods are still the focus of many studies
for tackling these issues. The article proposed a simple non-parametric algorithm, named
Fully Informed Search Algorithm. The suggested algorithm’s effectiveness was verified
by testing it on both shifted benchmark functions and mechanical design problems.
The non-parametric nature of the proposed method along with its good performance in
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finding high quality solution of complicated real-world optimization problems make it
a good choice for supporting managers in decision making without having to deal with
sophisticated parameter tuning.

CONCLUSIONS
In this article, a new and powerful variant of Rao algorithms, entitled Fully Informed
Search Algorithm (FISA), is suggested to enhance the performance of Rao algorithms in
optimizing real-parameter shifted functions. The efficacy of the suggested algorithm was
assessed compared to three original Rao algorithms for test functions presented in CEC
2005 and CEC 2014 and engineering design optimization problems. The obtained results
demonstrated that the proposed algorithm has a much better performance compared to
the original Rao algorithms.

On the other hand, each algorithm has its own limitations. For this reason, after
presenting each algorithm, its improved and modified versions are published one after
another in different formats and forms. Like any other algorithm, the proposed algorithm
can have limitations, like low convergence speed or getting stuck in local optima. Here we
propose several ways to improve and evolve this algorithm. However, themost effective way
to evaluate the performance of an algorithm for any given problem is through experimental
testing.

In future studies, the suggested FISA can be utilized for solving various complex
optimization problems that occur in the real world. Additionally, our future plans involve
creating binary andmultiobjective variants of FISA. Also, the optimization of support vector
machines or kernel extreme learning machines is possible using FISA. By merging FISA
with other algorithms, we can establish new hybrid algorithms that take advantage of the
strengths and abilities of both algorithms. Recently, many studies in high-dimensional
optimization have been conducted, with the majority focusing on the cooperative
co-evolution technique. In upcoming studies, FISA could be integrated into various
cooperative co-evolution frameworks with different classes to enhance its effectiveness.
Additionally, FISA can tackle other practical large-scale optimization problems. Moreover,
initializing with opposite learning in FISA would be an appropriate domain to be explored
in the future.
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