
Cost-efficient enactment of stream processing topologies in

public clouds utilizing container technologies

Christoph Hochreiner Corresp., 1 , Michael Vögler 2 , Stefan Schulte 1 , Schahram Dustdar 1

1 Distributed Systems Group, TU Wien, Vienna, Austria

2 TU Wien, Vienna, Austria

Corresponding Author: Christoph Hochreiner

Email address: c.hochreiner@infosys.tuwien.ac.at

The continuous increase of unbound streaming data poses several challenges to

established data stream processing engines. One of the most important challenges is the

cost-efficient enactment of stream processing topologies under changing data volume.

These data volume pose different loads to stream processing systems whose resource

provisioning needs to be continuously updated at runtime. First approaches already allow

for resource provisioning on a virtual machine based level, but this only allows for coarse

resource provisioning strategies. Based on current advances and benefits for containerized

software systems, we have designed a cost-efficient resource provisioning approach and

integrated it into the runtime of the Vienna Ecosystem for Elastic Stream Processing. Our

resource provisioning approach maximizes the resource usage for virtual machines

obtained from cloud providers while at the same time minimizing the number of

reconfigurations for the enacted topology. The evaluation shows that our approach leads

to a cost reduction of 12% compared to techniques presented in our previous publication

while maintaining the same level of quality of service.

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Cost-efficient enactment of stream1

processing topologies in public clouds2

utilizing container technologies3

Christoph Hochreiner1, Michael Vögler2, Stefan Schulte1, and Schahram4

Dustdar1
5

1Distributed Systems Group, TU Wien, Vienna, Austria6

2TU Wien, Vienna, Austria7

ABSTRACT8

The continuous increase of unbound streaming data poses several challenges to established data stream

processing engines. One of the most important challenges is the cost-efficient enactment of stream

processing topologies under changing data volume. These data volume pose different loads to stream

processing systems whose resource provisioning needs to be continuously updated at runtime. First

approaches already allow for resource provisioning on a virtual machine based level, but this only allows

for coarse resource provisioning strategies. Based on current advances and benefits for containerized

software systems, we have designed a cost-efficient resource provisioning approach and integrated it into

the runtime of the Vienna Ecosystem for Elastic Stream Processing. Our resource provisioning approach

maximizes the resource usage for virtual machines obtained from cloud providers while at the same

time minimizing the number of reconfigurations for the enacted topology. The evaluation shows that our

approach leads to a cost reduction of 12% compared to techniques presented in our previous publication

while maintaining the same level of quality of service.

9

10

11

12

13

14

15

16

17

18

19

20

Keywords: Cloud Computing, Data Stream Processing, Resource Elasticity, Resource Optimization21

1 INTRODUCTION22

Due to the transition towards a data-centric society, today’s stream processing engines (SPEs) need to deal23

with a continuous increase of unbound streaming data regarding volume, variety, and velocity (McAfee24

et al., 2012). Currently, this growth in data is mainly driven by the advent of the Internet of Things (IoT)1.25

Sensors, which represent a vital part of the IoT, emit a huge volume of streaming data that needs to be26

processed to provide additional value to users or to trigger actions for IoT devices or other services, e.g.,27

handling user notifications. Furthermore, many scenarios call for data processing in near real-time, which28

requires the application of SPEs like System S (Gedik et al., 2008), Apache Storm (Toshniwal et al., 2014),29

Heron (Kulkarni et al., 2015), or Apache Spark (Zaharia et al., 2010). State-of-the-art SPEs provide the30

user with an extensive set of APIs to design and enact stream processing topologies. These topologies31

represent a choreography of different stream processing operators, like filters, transformations, or other32

operations, which are required to process data (Gedik et al., 2008).33

Although SPEs are highly efficient regarding data processing, they struggle with varying volumes of34

data over time (Hochreiner et al., 2015). Because most SPEs operate on a fixed amount of computational35

resources, e.g., on clusters, they cannot adapt to changes of the data volume at runtime (Hochreiner et al.,36

2016a). One solution for this issue is the over-provisioning of computational resources so that the SPE37

can process any amount of incoming data while complying with given Service Level Agreements (SLAs).38

While this approach ensures a high level of SLA compliance, it is not cost-efficient because the provisioned39

computational resources are not used most of the time. The more economically feasible approach to this40

challenge is under-provisioning, where an SPE is equipped with computational resources to cover most41

of the incoming data scenarios. However, in the case of underprovisioning, the SPE may cover most42

scenarios, but it may also violate SLAs in some high load scenarios, due to a delay in the data processing.43

1http://www.gartner.com/newsroom/id/3165317

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Based on the Cloud Computing paradigm (Armbrust et al., 2010), a more promising provisioning44

approach, namely elastic provisioning for stream processing systems, emerged in recent years (Satzger45

et al., 2011; Gedik et al., 2014; Heinze et al., 2015; Lohrmann et al., 2015; Xu et al., 2016). This approach46

allows the SPE to lease computational resources on-demand whenever they are required. Resources can47

be released again as soon as they are not needed anymore. This approach allows for the cost-efficient48

enactment of stream processing topologies while maintaining high SLA compliance (Hochreiner et al.,49

2016a). Up to now, most elastic provisioning approaches only consider virtual machines (VMs) as the50

smallest entity for leasing and releasing of computational resources. This approach is perfect applicable51

for private clouds, where the only objective of resource provisioning algorithms is resource-efficiency,52

and there is no need to consider any billing aspects or Billing Time Units (BTUs). A BTU defines the53

minimum leasing duration for computational resources, e.g., VMs, and often amounts to one hour like on54

Amazon EC22. The concept of the BTU means that the user has to pay for each started hour, regardless55

of how many minutes the VM is used. Because of the BTU, the repeated leasing and releasing of VMs56

may result in even higher cost than an over-provisioning scenario (Genaud and Gossa, 2011), because57

releasing a VM before the end of the BTU results in a waste of resources.58

To address this shortcoming, this paper considers an additional resource abstraction layer on top59

of the VMs, to allow for more fine-grained elastic provisioning strategies with the goal to ensure the60

most cost-efficient usage of the leased resources while respecting given SLAs. This additional layer61

is realized by applying the recent trend towards containerized software components, i.e., containerized62

stream processing operators. The containerization provides several advantages regarding deployment and63

management of computational resources. Besides the smaller granularity compared to VMs, containerized64

stream processing operators also allow for a faster adoption of the stream processing topology on already65

running computational resources. An additional layer of containers also enables reusing already paid66

computational resources, i.e., resources can be utilized for the full BTU. Today, frameworks like Apache67

Mesos (Hindman et al., 2011) or Docker Swarm3 provide the functionality to deploy containerized68

applications on computational resources. However, these frameworks rely on simple principles like69

random deployment, bin-packing, or equal distribution to deploy containers across multiple hosts. QoS70

aspects are not taken into account. Furthermore, the frameworks are optimized to operate on static71

computational resource configurations and do not consider the resource elasticity aspect of the cloud72

computing paradigm.73

In this paper, we leverage containerized stream processing operators and propose an elastic resource74

provisioning approach which ensures an SLA-compliant enactment of stream processing topologies while75

maximizing the resource usage of computational resources and thus minimizing the operational cost76

for the topology enactment. To demonstrate the feasibility of our solution, we integrate our proposed77

approach in the Vienna Ecosystem for Elastic Stream Processing (VISP) (Hochreiner et al., 2016b) and78

evaluate it based on a real world scenario from the manufacturing domain. The results of our evaluation79

show that our approach achieves a cost reduction of about 12% compared to already existing approaches80

while maintaining the same level of quality of service.81

The remainder of this paper is structured as follows: First, we provide a motivational scenario, discuss82

the system architecture and present the derived requirements in Section 2. Based on these requirements83

we then provide the problem definition for the optimization problem in Section 3, which leads to our84

optimization approach presented in Section 4. In Section 5, we present our evaluation setup and in85

Section 6 we present the evaluation results and their discussion. Section 7 provides an overview on the86

related work, before we conclude the paper in Section 8.87

2 MOTIVATION88

2.1 Motivational Scenario89

In the following paragraphs, we describe a data stream processing scenario from our EU H2020 project90

Cloud-based Rapid Elastic Manufacturing (CREMA) (Schulte et al., 2014). Figure 1 shows a stream91

processing topology, which is composed of nine different stream processing operator types (O1 – O9) that92

process the data originating from three different sources (S1, S2, S3). Each of the operator types performs93

a dedicated operation to transform the raw data from manufacturing machines into value-added and human-94

2https://aws.amazon.com/ec2/pricing/
3https://docs.docker.com/swarm/

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Manufacturing Machine
Manufacturing Machine

Manufacturing Machine

Calculate Performance (O3) Calculate Availabil ity (O4) Calculate Quality (O5) Monitor Temperature (O6)

Calculate OEE (O7)

Filter Availability (O2)

Generate Report (O9)Inform User (O8)

Parse and Distribute Data (O1)

Availability Sensor (S1) Production Data (S2) Temperature Sensor (S3)

Figure 1. Stream Processing Topology from the Manufacturing Domain

readable information. The information from the data sources is used to monitor three different aspects,95

like the availability of the manufacturing machines or the machine temperature to avoid overheating of96

the machines and assess their Overall Equipment Effectiveness (OEE). In this scenario, we have two97

different types of data sources. The first type of data source are sensors, i.e., S1 and S3, which emit98

machine-readable data and can be directly accessed via an API. The second type of data, e.g., S2, is99

a video feed, which scans a display of the manufacturing machines because some information is not100

directly accessible via an API. This information needs additional preprocessing to transform the data into101

machine-readable data.102

The Availability Sensor (S1) emits the current status, i.e., available, defect or planned downtime, of the103

manufacturing machine every two seconds. This information is then filtered by the Filter Availability (O2)104

operator, which generates warnings for each new downtime incident of a specific manufacturing machine.105

The warning is then forwarded to the Inform User (O8) operator, which informs a human supervisor of106

the machines.107

The second data source is the Production Data (S2), which is obtained by a video stream, i.e., an108

image taken every ten seconds. This image contains different production related information, such as the109

amount of produced goods and needs further processing, e.g., by Optical Character Recognition (OCR),110

to extract machine-readable information. The Parse and Distribute Data (O1) operator distributes the111

information to the three operators O3, O4, O5 that calculate the different components of the OEE value.112

These individual components are then united by the Calculate OEE (O7) operator and then forwarded to113

the Generate Report (O9) operator, which generates a PDF-report every minute. This report aggregates114

the information of all monitored machines and is forwarded once every minute to the Inform User (O8)115

operator.116

The Temperature Sensor (S3) emits the temperature twice every second. This information is processed117

by the Monitor Temperature (O6) operator, which triggers a warning whenever the temperature exceeds a118

predefined threshold. This warning is then also forwarded to the Inform User (O8) operator to inform the119

human supervisor.120

Due to the different levels of complexity of the operations, each of these operator types has different121

computational resource requirements, e.g., CPU or memory. Some of the operators, e.g., the Parse and122

Distribute Data operator type, require more resources for processing one data item than others, like the123

Filter Availability. Besides the computational requirements, each operator type is also assigned with124

specific Service Level Objectives (SLOs), like the maximal processing duration of one single data item.125

These SLOs are monitored, and whenever one operator type threatens to violate the imposed SLA, the126

system needs to provide more computational resources for data processing.127

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

VISP Runtime

Topology Definition

 Computational Resources

Virtual Machine 1

Operator 1

Operator N

Virtual Machine N

Operator X

Operator Z

Messaging Infrastructure

Resource Optimization

Resource Provisioning

Resource Monitor

Data Source N

Data Source 1

R
R

Operator Image N

Operator Image 1

Operator Repository

Shared State

Figure 2. VISP Stream Architecture

2.2 System Architecture128

To enact the stream processing topology from the motivational scenario, it is required to instantiate it on an129

SPE. For our work at hand, we are extending the VISP ecosystem4, which was introduced in our previous130

work (Hochreiner et al., 2016b). VISP represents an SPE, which is capable of provisioning computational131

resources on demand to adapt to the incoming load from data sources. VISP is composed of different132

components, to cover the whole lifecycle of the stream processing topology enactment. Figure 2 shows a133

subset of these components, which are relevant for enacting the topology. For a detailed description of the134

components, please refer to our previous work (Hochreiner et al., 2016b).135

The primary task of the SPE, i.e., VISP Runtime, is to process data originating from data sources136

(on the left side of the figure) to obtain value added data for users (on the right side of the figure). The137

data sources push the data to the Messaging Infrastructure of VISP, which routes the data based on the138

Topology Definition. The actual data processing is conducted by Operators, which are deployed on139

computational resources, e.g., VMs, provided by an Infrastructure as a Service (IaaS) environment. Each140

operator type is instantiated from dedicated operator images, which are hosted on an external operator141

repository. To instantiate a specific operator instance on any host for the first time, the operator image142

needs to be downloaded from the registry, which takes a certain amount of time, depending on the size143

of the operator image. After the first instantiation of the operator type, the operator image is cached144

locally on the host to speed up the instantiation of future instances. Each operator type is also assigned145

with individual SLAs whereas each SLAs consists of different SLOs. The first SLO is the maximum146

processing duration for one data item and ensures the near real-time processing capabilities of the stream147

processing topology. The second SLO describes the minimal resource requirements that are needed to148

instantiate the stream processing operator. These requirements are represented by the minimum amount149

of memory, i.e., Memory in MegaByte (MB), and the number of CPU shares.150

For the enactment of a stream processing topology, each Operator from the topology is represented by151

at least one, but up to arbitrarily many Operators. These Operators fetch the data from the Messaging152

Infrastructure, process it and push it back for further processing steps. The remaining components of the153

VISP Runtime are in charge of monitoring the load on the Messaging Infrastructure as well as on the154

Operators. This monitoring information is then used by the Resource Optimization component to evaluate155

whether operator types need to be replicated to deal with the incoming load. The last component, the156

Resource Provisioning component is in charge of deploying and un-deploying Operators on computational157

resources.158

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

H1

Stage 1

Arrival of Streaming Data over Time

A
m

o
u

n
t

o
f

 M
a
n

u
fa

ct
u

ri
n

g
 M

a
c
h

in
e

s

O2

H2

O1

O3

O4

O5

O6

O7

O8

O9

Stage 2

H3H1

O2

H2

O1

O3

O4

O5

O6

O7

O8

O9

O1

O6

O2

Stage 3

H3H1

O2

H2

O1

O3

O4

O5

O6

O7

O8

O9

O1

O6

O2

O1

O10

O3

O4

O5

H4

Stage 4

H3H1

O2

H2

O6

O7

O8

O9

O1

O6

O2

O1

O9

O3

O4

H4

O5

O2

Figure 3. Deployment Stages

2.3 Enactment Scenario159

During the enactment, the stream processing operators need to deal with streaming data from a varying160

amount of manufacturing machines, as shown in Figure 3 at the bottom. This varying data volume requires161

the SPE to adapt its processing capabilities, i.e., the number of operator instances for specific operator162

types, which are hosted on an arbitrary amount of hosts, e.g., H1 – H4 in Figure 3, on demand to comply163

with the SLAs. Nevertheless, the SPE aims at minimizing the needed number of hosts, since each host164

amounts for additional cost, by using an optimal deployment.165

The enactment of our motivational scenario is partitioned into different stages, with a varying number166

of running manufacturing machines in each stage. At the beginning of Stage 1, each operator is deployed167

once across the two hosts. Since the volume of streaming data increases after some time, the SPE needs168

to adapt the processing capabilities by deploying replicas of the operator types O1, O2 and O6 in Stage 2.169

These operator instances are hosted on a new host H3 because the two already existing hosts cannot cope170

with the additional operator instances. Because the amount of data increases again in Stage 3, the SPE171

needs to replicate further operators to comply with the SLAs. Although the second replication of the172

operator type O1 is feasible on the currently available resources, the SPE is required to lease a new host173

for the additional operator instances of types O3, O4, O5, and O9.174

At the end of Stage 3, the first two hosts meet the end of their BTU. Therefore, the SPE evaluates175

whether some of the replicated operators can be removed again without violating the SLAs. Because176

the amount of data is decreasing after Stage 3, the system can remove (O1, O3, O4, and O5) or migrate177

(O2) some of the operator instances to other hosts. The result is that no operator instances are running178

on host H1 at the end of its BTU and the SPE can release the host H1 at the end of its BTU, while the179

host H2 needs to be leased for another BTU.180

2.4 Requirements181

Based on our motivational scenario, we have identified several requirements, which need to be addressed182

by the optimization approach.183

SLA Compliance The first requirement is SLA compliance, i.e., maximum processing duration, for184

data that is processed by the stream processing topology. This compliance is the overall goal that needs to185

be met, regardless of the actual incoming data rate.186

Cost Efficiency The second requirement is the cost efficiency for the enactment. This requirement asks187

for a high system usage of leased resources and an efficient usage of cloud resources, especially regarding188

their BTU.189

Optimization Efficiency The optimization efficiency requirement can be split into two different aspects.190

The first aspect is the solution of the optimization problem presented in Section 3. Because this optimiza-191

tion problem is NP-complete (see Section 3.2), it is required to devise heuristics to achieve a time and192

resource efficient optimization approach. The second aspect is that the optimization needs to minimize193

the number of reconfigurations, e.g., scaling operations, for the stream processing topology because each194

reconfiguration activity has a negative performance impact on the data processing capabilities.195

4https://visp-streaming.github.io

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

3 PROBLEM DEFINITION196

3.1 System Model and Notation197

The system model is used to describe the system state of the individual operator types that form the198

stream processing topology as well as the used computational resources. The individual operator types199

are represented by O = {1, . . . ,o#}, where o ∈ O represents a specific operator type. Each operator type o200

is assigned with minimal resource requirements ocpu and omemory, which need to be met, to instantiate an201

operator on any host. At runtime, each operator type is represented by at least one, but up to arbitrary202

many operator instances, which are described by the set I = {1, . . . , i#}, whereas each itype is assigned to203

a particular operator type o ∈ O.204

This set of operator instances I is running on arbitrarily many hosts that are represented by the set205

H = {1, . . . ,h#}, whereas each host hosts a subset of I. Each of these hosts is furthermore assigned with a206

set of attributes. The attributes hcpu and hmemory represent the overall computational resources of the host,207

and the attributes hcpu∗ and hmemory∗ represent the remaining computational resources at runtime. The208

attributes hcpu∗ and hmemory∗ are decreased for every operator instance i on the specific host h and can be209

used to determine if it is possible to deploy an additional operator instance on this particular host h. The210

attribute hcost represents the cost for the host, which needs to be paid for each BTU. The attribute hBTU∗211

represents the remaining, already paid, BTU time. To represent the different startup times between cached212

and non-cached operator images, each host furthermore denotes a set of images himg. This set contains all213

operator images o ∈ O, which are cached on this particular host. Each operator type is assigned a specific214

image, whose identifier is identical to the name of the operator type.215

Besides the fundamental operator type attributes for instantiating operators, there is also a set of216

attributes, which is used to ensure the SLA compliance for data processing. Each operator type is assigned217

with an estimated data processing duration oslo, that represents the time to process one data item and218

pass it on to the following operator type according to the stream processing topology. The oslo value is219

recorded in an optimal processing scenario, where no data item needs to be queued for data processing.220

Since the SLO oslo only presents the expected processing duration, we also denote the actual processing221

duration for each operator od and the amount of data items oqueue that are queued for a particular operator222

type for processing.223

Besides the current od , the system model also considers previous processing durations. Here we224

consider for each operator type o, the last N processing durations od denoted as od1
to odN

, whereas each225

of the values gets updated after a new recording of the od , i.e., od1
obtains the value of od and od2

obtains226

the value of od1
, etc. If the actual processing duration od takes longer than the SLO oslo, penalty cost P227

accrue to compensate for the violated SLAs each time a violation v ∈V occurs.228

Furthermore, we denote two operational attributes for each operator type. The attribute o# represents229

all current instances, i.e., the sum of all instances of the operator type o and the attribute os represents all230

already executed scaling operations, both upscaling and downscaling, for a specific operator type. Last,231

we also denote the current incoming amount of data items as DR.232

3.2 Optimization Problem233

Based on the identified requirements in Section 2.4, we can formulate an optimization problem as shown234

in Equation 1. The goal of this optimization problem is to minimize the cost for the topology enactment235

while maintaining given SLOs. This equation is composed of four different terms, which are designed236

to cover the different requirements. The first term represents the cost for all currently leased hosts by237

multiplying the number of all currently leased hosts with the cost for a single host. The second and third238

term are designed to maximize the resource usage on all currently leased hosts regarding the CPU and239

memory. The last term ensures the SLA compliance of the deployment, due to the penalty cost, which240

accrue for each SLO violation.241

Although the solution of this optimization problem provides an optimal solution for a cost-efficient242

deployment, it is not feasible to rely on the solution of this problem due to its complexity. To define243

the complex nature of this problem, we are going to provide a reduction to an unbounded knapsack244

problem (Andonov et al., 2000), which is known to be NP-hard.245

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Min h# ·hcost

+
∑h∈H hcpu −∑i∈I∩itype=o ocpu

∑h∈H hcpu

+
∑h∈H hmemory −∑i∈I∩itype=o hmemory

∑h∈H hmemory

+ ∑
v∈V

v ·P

(1)

Definition of Knapsack Problem The unbounded knapsack problem assumes a knapsack, whose246

weight capacity is bounded by a maximum capacity of C and a set of artifacts A. Each of these artifacts a247

is assigned with a specific weight aw > 0 as well as a specific value av > 0 and can be placed an arbitrary248

amount of times in the knapsack. The goal is to find a set A1 of items, where ∑a∈A aw ≤C and ∑a∈A av is249

maximized.250

NP-Hardness of the Optimization Problem For our reduction, we assume a specific instance of our251

optimization problem. For this specific instance, we assume that the number of hosts is fixed and that252

each of the operators has the same memory requirements omemory. Furthermore, we define the value of a253

specific operator by the amount of data items oqueue that are queued for a specific operator type, i.e., the254

more items need to be processed, the higher is the value for instantiating a specific operator.255

Based on this specific instance of the optimization problem, we can build an instance of the unbounded256

knapsack problem, where the maximum capacity C is defined by the maximum amount of CPU resources257

on all available hosts ∑h∈H hcpu, the weight aw of the artifacts a is defined by the CPU requirements ocpu258

of one operator and the value av of the artifact is defined by the number of items waiting on the operator259

type-specific queue oqueue.260

Because a specific instance of our optimization problem can be formulated as a knapsack problem,261

we can conclude that our optimization problem is also NP-hard. This concludes that there is no known262

solution which can obtain an optimal solution in polynomial time. Since this conclusion conflicts with the263

third requirement given in Section 2.4, we decided to realize a heuristic-based optimization approach,264

which can be solved in polynomial time.265

4 OPTIMIZATION APPROACH266

The overall goal our optimization approach is to minimize the cost for computational resources and267

maximize the usage of already leased VMs while maintaining a high quality of service. Therefore, we268

apply an on-demand approach to reduce the deployment and configuration overhead, i.e., instantiating269

and removing additional operator instances, and minimize the computation resources required for finding270

an optimal deployment configuration. Due to our emphasis on the BTUs of VMs, we call our approach271

BTU-based approach in the remainder of this paper.272

4.1 Ensure Sufficient Processing Capabilities273

To avoid penalty cost, our approach continuously evaluates the SLA compliance of the stream processing274

topology. Whenever the individual processing duration od of a particular operator type o exceeds or275

threatens to exceed the maximum allowed processing duration oslo according to the Upscaling Algorithm276

as shown in Algorithm 1, the upscaling procedure for the specific operator type is triggered.277

This upscaling procedure consists of several steps, as depicted in Figure 4. The first task is to evaluate278

if any of the currently running hosts offers enough computational resources to host the additional instance279

of the specific operator. Therefore, we apply the Host Selection Algorithm, as described in Algorithm 2,280

for every currently running host to obtain a utility value for the host. Assuming that there is at least one281

host with a positive utility value, the host with the best utility value is selected to deploy the new operator282

instance, and the upscaling procedure is finished.283

When no host with a positive utility value is available, i.e., no hosts offers enough computational284

resources to instantiate a new instance for the required operator type, there are two possibilities to obtain285

the required computational resources. The first possibility is to scale down existing operators when286

they are not required anymore. We therefore apply the Operator Selection Algorithm, as described in287

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Best host

selected

Sufficient processing

capabilities for

specific operator type
Add instance for

specific operator type

Not enough

resources

available

Not enough

resources

available
Try scaledown for

other operator types

Scaledown successful

Scaledown not

successful

Enough resources

availableLease another

 host

Add instance for

specific operator type

Upscaling for a

specific operator

type triggered
Assess utility

of hosts

Enough resources

available Select best host

Figure 4. Upscaling procedure for a specific operator type

Algorithm 3. This algorithm assigns each operator with a utility value, which describes the suitability to288

scale down one instance of a particular operator type. Whenever there is an operator type with a positive289

utility value, one operator instance for the operator type with the highest utility value will be scaled down.290

After the scale down operation is finished, the procedure starts the upscaling procedure for the particular291

operator type again.292

If there is no operator with a positive utility value, i.e., all operators are needed for SLA-compliant293

data stream processing, the SPE needs to start a new host, deploys the operator instance on the new host294

and finishes the upscaling procedure. To eliminate any unnecessary system reconfigurations, we apply a295

preliminary simulation phase for the downscaling operations. This simulation step ensures that enough296

operator instances can be scaled down to host the new operator instance. If the simulation fails, a new297

host is spawned immediately without any further system reconfigurations.298

4.2 Optimize Resource Usage299

To minimize the cost of computational resources, the optimization approach aims at using the leased300

resources as efficient as possible. This means that the SPE uses all paid resources until the end of their301

BTUs and evaluate shortly before, i.e., within the last 5% of the BTU, whether a host needs to be leased302

for another BTU, i.e., the resources are still required, or if the host can be released again.303

To achieve this releasing procedure, as shown in Figure 5, all operator instances running on the304

designated host, which is targeted to be shut down, need to be either migrated to other hosts or can be305

released as well. Therefore, the optimization approach applies the Operator Selection Algorithm for all306

operator types, which have running instances on this host, and obtains their utility value. If any of the307

operator types has a positive utility value, the operator instances of this type running on this host are308

released.309

When any operator instances are remaining whose operator types cannot be scaled down, the opti-310

mization approach tries to migrate the operators to other, currently running hosts. Here we apply the311

upscaling procedure for operator types, as described in Section 4.1. The only difference is that the host,312

which is targeted to be released, is omitted as a suitable host. If all operator instances can be successfully313

migrated, i.e., instantiated on other hosts, the operator instances are removed from this host and the host314

can be released again. When the migrations are not feasible, the host is leased for another BTU.315

4.3 Algorithms316

To realize our resource provisioning approach, we have devised three algorithms, which are discussed in317

detail in this section.318

The first algorithm, the Upscaling Algorithm as listed in Algorithm 1, is used to evaluate whether319

any operator needs to be scaled up. This algorithm is executed on a regular basis, e.g., every 10 seconds320

for each operator type o and either returns 0, if the current stream processing capabilities are enough to321

comply with the SLAs, or 1 if the operator type needs to be scaled up. Therefore, this algorithm considers,322

on the one hand, the current processing duration of the operator (Line 2) and, on the other hand, the trend323

of the previous processing durations. For the trend prediction, we apply a simple linear regression for the324

last N observations, based on the linear least squares estimator (Lines 5 – 9). If the current duration od or325

the predicted duration is higher than the SLO oslo, we consider the operator type to be scaled up (Line 10).326

Before we trigger the upscaling operation, we apply an additional check if the upscaling operation is327

required.328

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

BTU of host ends

No running operator

instances

Try scaledown of all

operator instances

Successful

scaledown

Not successful

scaledown

Still running operator

instances

Try migration of all

operator instances

Successful

migration

Migration is not

successful

Still running operator

instances

Host leased for

another BTU

Prolong leasing

Host released

Release host

Figure 5. Downscaling procedure for a host

The stream processing topology may retrieve short-term data peaks whose volume can be so high that329

it can be only processed with a short delay. This results in a short time in high processing durations that330

disappear without any further activity already after a short time. Nevertheless, the upscaling algorithm331

would trigger the upscaling procedure, although the additional resources may not be required anymore.332

Therefore, the algorithm also considers the current load of data items oqueue before scaling up by checking333

whether the amount of queued items for processing exceeds a configurable scalingT hreshold (Lines 13 –334

16).335

Algorithm 1 Upscaling Algorithm

1: function UPTRIGGER(o,N)

2: if od > oslo then

3: upscaling = 1

4: end if

5: observationsMean = 1
N
∗∑

N
i=1 i

6: durationMean = 1
N
∗∑

N
i=1 odi

7: β =
∑

N
i=1(i−observationsMean)∗(odi

∗durationMean)

∑
N
i=1(i−observationsMean)2

8: α = durationMean−β ∗observationsMean

9: predictedDuration = α +β ∗ (N +1)
10: if predictedDuration > oslo then

11: upscaling = 1

12: end if

13: if upscaling = 0 then

14: return 0

15: end if

16: if oqueue > scalingThreshold then

17: return 1

18: end if

19: return 0

20: end function

The second algorithm, the Host Selection Algorithm (see Algorithm 2), is used to rank all currently336

leased hosts according to their suitability to host a new operator instance of a particular operator type.337

Therefore, the algorithm evaluates for each host h whether a new instance of the required operator type o338

could be hosted on that specific host at all. Here, the algorithm considers both, the CPU and memory339

requirements, and derives the maximum amount of instances that can be hosted. If this value is less340

than 1, i.e., there are no resources left for a single additional operator instance, the function returns a341

negative value. The first check evaluates the feasibility of deploying a new operator instance on the host342

(Lines 2 – 5). In a second stage, this algorithm evaluates the suitability of this host. Here the algorithm343

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

simulates the resource usage of the host, assuming the operator instance would be deployed on the host.344

The overall goal is an equal distribution of CPU and memory usage across all hosts, to avoid situations345

where hosts maximize their CPU usage, but hardly use any memory and vice versa. Therefore, the346

algorithm calculates the difference between the normalized CPU usage and memory usage, whereas a347

lower value represents a better ratio between CPU and memory and therefore a better fit (Lines 6 – 9).348

Besides the equal distribution of memory and CPU on the individual hosts, we also want to distribute the349

operators equally among all currently leased hosts. The assigned CPU ocpu and memory omemory attributes350

only represent the resources which are guaranteed for the operators. This allows operators to use currently351

unused resources of the hosts based on a first come first service principle. To maximize the usage, we aim352

for an equal distribution of the unassigned resources, i.e., hcpu∗ and hmemory∗, which can be used by the353

operators to cover short-term data peaks without any reconfigurations required. This aspect is covered by354

dividing the di f f erence value by the f easibility value to prefer those hosts which are least used (Line 9).355

Last, we also consider the deployment time aspect for a particular operator type. Here, we prefer those356

hosts, which have already the operator image cached. Therefore, we multiply the suitability value with a357

constant factor CF to prefer those hosts which have a cached copy (Lines 10 – 12).358

This allows us to prioritize those hosts that provide a fast startup while maintaining the resource-based359

ranking. The result of this algorithm is either a negative value for a host, i.e., the host can run the new360

operator instance, or a positive value, whereas the lowest value among several hosts shows the best361

suitability.362

Algorithm 2 Host Selection Algorithm

1: function UP(h,o)

2: feasibilityThreshold = min((hcpu∗/ocpu),(hmemory∗/omemory))
3: if feasibilityThreshold < 1 then

4: return -1

5: end if

6: remainingCPU = hcpu∗−ocpu

7: remainingMemory = hmemory∗−omemory

8: difference = | remainingCPU
hcpu

− remainingMemory
hmemory

|

9: suitability = difference
feasibilityThreshold

10: if s ∈ himg then

11: suitability = suitability * CF

12: end if

13: return suitability

14: end function

The third algorithm, the Operator Selection Algorithm (see Algorithm 3), is used to select operator363

types which can be scaled down without violating the SLOs. Therefore, this algorithm considers several364

static as well as runtime aspects of the operator types. The goal of the algorithm is to obtain a value which365

describes the suitability of a particular operator type to be scaled down. Whenever the value is negative,366

the operator type must not be scaled down, i.e., all operator instances for this type are required to fulfill367

the SLO.368

First, the algorithm ensures that there is at least one operator instance for the given operator type369

(Lines 2 – 4). Second, the function considers the amount of all currently running instances for the specific370

operator type and normalizes it to obtain a value between 0 and 1 (Line 5). This normalization is carried371

out based on the maximal respectively minimal amount of instances for all operator types. This value372

represents the aspect that it is better to scale down an operator type with numerous operator instances373

because the scale down operation removes a smaller percentage of processing power compared to an374

operator type with fewer operator instances.375

Furthermore, we consider the SLA compliance of the particular operator. Here, we consider the actual376

compliance for the processing duration and multiply with the penalty cost as a weighting factor (Line 7).377

Whenever the processing duration od takes longer than the SLO oslo, the delay value will be less than one,378

but when there is any delay, the delay value can become arbitrarily high. The next value for consideration379

is the relative amount of scaling operations (both up and down) in contrast to the entire scaling operations380

(Lines 7). Here, we penalize previous scaling operations because we want to avoid any oscillating effects,381

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Table 1. Sensor Types

Emission Rate / min Size (Bytes)

Availability Sensor (S1) 5 95

Production Data (S2) 1 12500

Temperature Sensor (S3) 10 90

i.e., multiple up- and downscaling operations for a specific operator. The last factor is the queueLoad. In382

the course of our evaluations, we have seen that the algorithm may take a long time to recover after a load383

peak, i.e., release obsolete operator instances as soon as the data is processed. This can be observed when384

the SPE is confronted with a massive data spike followed by a small data volume for some time. For this385

scenario, the heuristic discourages any downscaling operation due to the delay factor, which may be high386

due to the delayed processing of the data spike. To resolve this shortcoming, we introduce the queueLoad387

factor QL, which encourages the downscaling of an operator type, as soon as no data items are waiting in388

the incoming queue oqueue (Lines 8 – 12).389

Finally, we join the distinct aspects to obtain the overall utility value. While the number of instances390

represents a positive aspect to scale down an operator, all other aspects discourage a scaling operation.391

Therefore, we apply different weights W1,W2,W3, and W4 on the individual values and deduce all other392

aspects from the instance value. The result is the utility value, which describes the suitability of the393

particular operator to be scaled down, whereas a higher value suggests a better suitability (Line 13).394

Algorithm 3 Operator Selection Algorithm

1: function DOWN(o)

2: if o# < 2 then

3: return -1

4: end if

5: instances =
o#−min(o#∈O)

max(o#∈O)−min(o#∈O)

6: delay =
od

oslo
* P

7: scalings = os

∑os∈O os

8: if oqueue < 1 then

9: queueLoad = QL

10: else

11: queueLoad = 0

12: end if

13: return (instances ∗ W1) − delay * W2 − scalings * W3 + queueLoad ∗ W4

14: end function

5 EVALUATION395

5.1 Evaluation Setup396

For our evaluation, we revisit out motivational scenario (see Section 2) and discuss the concrete imple-397

mentation of this topology.398

5.1.1 Sensor Types399

First, we are going to discuss the sensors which emit the data items for our topology. In this topology, we400

consider three different sensor types, as listed in Table 1. Each of these sensor types generates a data item,401

with a particular structure, which can be only processed by a dedicated operator type, e.g., O1 for sensor402

type S2. Due to the different structure, the size of the data items also differs. The first and the last sensor403

type (S1 and S3) encode the information in plain text that results in rather small data items with a size404

of 9 to 95 Bytes. The second sensor type encodes the information with an image and is therefore much405

larger, i.e., around 12500 Bytes.406

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Table 2. Stream Processing Operator Types

Processing CPU Memory Storage Outgoing

Duration (ms) Shares (MB) (MB) State Ratio

Parse and Distribute Data (O1) 900 660 452 89 1:3

Filter Availability (O2) 600 131 524 68 X 50:1

Calculate Performance (O3) 750 100 430 68 1:1

Calculate Availability (O4) 750 83 502 68 X 1:1

Calculate Quality (O5) 750 77 527 68 X 1:1

Monitor Temperature (O6) 600 65 440 68 X 100:1

Calculate OEE (O7) 700 46 464 68 X 3:1

Inform User (O8) 500 74 466 68 1:0

Generate Report (O9) 1300 47 452 70 X 300:1

5.1.2 Operator Types407

The second important implementation aspect for the topology are the operators. Each of these operator408

types performs a specific task with specific resource requirements and specific processing durations.409

Table 2 lists all operator types which are used in this evaluation. Each operator is assigned a number of410

different performance as well as resource metrics. The resource metrics represent mean values across411

several topology enactments. The processing duration represents the average times which are required412

to process one specific data item as well as the time the data item is processed within the messaging413

infrastructure between the previous operator and the one in focus. The CPU metric represents the amounts414

of shares, which are required by the operator when executed on a single core VM. The memory value415

represents the mean memory usage. This memory value accumulates the actual used memory by the416

operator instances and the currently used file cache, which results in a rather high value compared to417

the actual size of the operator image. The CPU metric and the memory metric are determined based418

on long term recordings, whereas the stated value in the table is calculated by adding both the absolute419

maximum and the average value of all observations for a specific operator and dividing this value by420

2. For the processing duration, we have conducted several preliminary evaluations, where the SPE is421

processing constant data volumes in a fixed over-provisioning scenario to avoid any waiting durations for422

the recordings.423

For the storage operator, we have three different sizes. Because the majority of the processing424

operators only implement processing logic, the size of the images is the same for them. The only two425

exceptions are the Generate Report (O9) image, which also contains a PDF generation library and the426

Parse and Distribute Data (O1) operator, which also contains the Tesseract binary, which is required to427

parse the images. Each of the stateful operators, as indicated in the table, can store and retrieve data from428

the shared state to synchronize the data among different data items and different instances of one operator429

type. The outgoing ratio describes whether a particular operator type consumes more data items than it430

emits, e.g., O7 combines three data items before it emits a combined one, or whether it emits more data431

items than it receives, e.g., O1 distributes the production information to three other operator types.432

For our scenario, we have implemented nine different operators5 as Spring Boot6 applications, which433

are discussed in detail in the remainder of this section.434

Parse and Distribute Data (O1) The Parse and Distribute Data operator type is designed to receive an435

image with encoded production data and parse this image to extract the information. For our implementa-436

tion, we use the Tesseract OCR Engine7 to parse the image and then the Spring Boot application forwards437

the machine readable production data to the downstream operator types.438

5https://github.com/visp-streaming/processingNodes
6https://projects.spring.io/spring-boot/
7https://github.com/tesseract-ocr/tesseract

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

OpenStack Cloud

VISP

Data Provider

VISP Runtime

Message

Infrastructure
Shared State

Data Storage Operator

Instance

Operator

Instance

Docker Hub

Operator

Image

Operator

Image
Data Provider VM Infrastructure VM Dockerhost VM

Figure 6. Deployment for the Evaluation Scenario

Filter Availability (O2) Each manufacturing machine can have three different availability types: avail-439

able, planned downtime, and defect. While the first two types represent intended behavior, the last type440

signals a defect and should be propagated to a human-operator. This operator issues a new warning for441

each new defect notification and filters all other data items.442

Calculate Performance (O3) The Calculate Performance operator type calculates the performance of443

the last reporting cycle, i.e., the time between two production data emissions. The actual performance is444

derived by the formula shown in Equation 2 (Nakajima, 1988).445

per f ormance =
producedItems · idealProductionTime

reportingCycle
(2)

Calculate Availability (O4) The Calculate Availability operator type represents the overall availability446

of the manufacturing machine from the beginning of the production cycle, e.g., the start of the evaluation.447

The availability is defined by the formula shown in Equation 3 (Nakajima, 1988).448

availability =
totalTime− scheduledDowntime−unscheduledDowntime

totalTime
(3)

Calculate Quality (O5) The Calculate Quality operator type represents the ratio between all produced449

goods against defect goods from the beginning of the production cycle. The quality is defined by the450

formula shown in Equation 4 (Nakajima, 1988).451

quality =
totalProducedGoods− totalDe f ectiveGoods

totalProducedGoods
(4)

Monitor Temperature (O6) The Monitor Temperature operator type filters all temperatures below a452

predefined threshold and issues a notification to the human operator for each new temperature violation.453

Calculate OEE (O7) The Calculate OEE operator synchronizes the upstream operations based on the454

timestamp of the initial data item and calculates the overall OEE value according to the formula in455

Equation 5.456

oee = availability · per f ormance ·quality (5)

Inform User (O8) The Inform User operator type forwards the notifications to a human user. In our457

evaluation scenario, this operator type only serves as a monitoring endpoint for the SLA compliance and458

all incoming data items are discarded at this operator type.459

Generate Report (O9) The Generate Report operator aggregates multiple OEE values and generates a460

PDF report which aggregates a predefined amount of OEE values. This report is then forwarded to the461

user for further manual inspection.462

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

5.2 Evaluation Deployment463

For our evaluation, we make use of the VISP Testbed (Hochreiner, 2017), which is a toolkit of different464

evaluation utilities that support repeatable evaluation runs. The most notable component of this toolkit is465

the VISP Data Provider, which allows simulating an arbitrary amount of data sources by emitting them466

according to a predefined message structure. Furthermore, the Data Provider also allows defining different467

arrival patterns (see Section 5.4) to evaluate the adaptation possibilities of the VISP Runtime, in particular468

of its scaling mechanism.469

The evaluation runs are carried out in a private cloud running OpenStack8, whereas the components470

are deployed on different VMs, as depicted in Figure 6. The most relevant VM for our evaluation is the471

Infrastructure VM, which hosts the VISP Runtime as well as all other relevant services, like the Message472

Infrastructure, i.e., RabbitMQ9, the Shared State, i.e., Redis10 and the Data Storage, i.e., a MySQL11
473

database.474

For the topology enactment, the VISP Runtime leases (and releases) an arbitrary amount of VMs, i.e.,475

Dockerhost VMs, on the private OpenStack-based cloud at runtime. These Dockerhost VMs are used to476

run the Operator Instances, which take care of the actual data processing as described in Section 2.2. The477

BTU for these VMs is set to 600 seconds, which represents a rather short BTU for public cloud providers.478

Nevertheless, we have chosen this interval on purpose to evaluate the applicability of our BTU-based479

approach as often as possible during our evaluation runs. Furthermore, we use a homogeneous size for all480

Dockerhost VMs with 3 virtual CPU cores and 5 GB Ram. The Operator Images, which are required to481

run the Operator Instances, are hosted on an external service, i.e., Dockerhub12. Finally, the Data Provider482

VM is in charge of simulating the data stream from the sensors, as described in Section 5.1.1.483

5.3 Baseline484

To evaluate our BTU-based optimization approach, we have selected a threshold-based baseline provision-485

ing approach. The baseline implements a commonly used provisioning approach which was also used in486

our previous work (Hochreiner et al., 2016a). The approach considers the amount of data items waiting487

on the incoming queue for processing as scaling trigger. As soon as the variable oqueue exceeds an upper488

threshold, i.e., 250, the SPE triggers an upscaling operation for this operator and as soon as oqueue falls489

below a lower threshold, i.e., 1, the SPE triggers one downscaling action of an operator. Besides the single490

upscaling trigger, our threshold-based approach triggers the upscaling operation twice, if oqueue surpasses491

a second upper threshold of 1000 data items waiting for processing. Regarding the leasing of VMs, we492

apply an on-demand approach, where the SPE leases a new VM as soon as all currently used VMs are493

fully utilized and releases a VM, as soon as the last operator instance on that VM is terminated. Analogous494

to the BTU-based provisioning, the threshold-based provisioning mechanism was also executed every 20495

seconds.496

5.4 Data Arrival Pattern497

For our evaluation, we have selected two different arrival patterns which simulate different load scenarios498

for the SPE by submitting different data volumes to the SPE. The first arrival pattern has three different499

data volume levels, which are changed stepwise, so that the resulting arrival pattern could be approximated500

to a sinus curve, as shown in Figure 7. These three different volume levels simulate different amounts of501

manufacturing machines ranging from two to six machines that emit different amounts of data items, as502

shown in Table 1. To speed up the evaluation, we simulate the data emissions, which would arise every503

minute every 480 milliseconds. This enables us on the one hand to simulate 500 real time minutes within504

only four minutes in the course of our evaluation and therefore also increases the load on the SPE. This505

also results in a volume level change every four minutes.506

The second arrival pattern has only two levels, i.e., the lowest and the highest of the first pattern,507

which confronts the SPE with more drastic volume changes. Due to the fact that we only apply two508

different levels, the state changes are twice as long as for the first pattern, i.e., eight minutes.509

8https://www.openstack.org
9https://www.rabbitmq.com

10http://redis.io
11https://www.mysql.com
12https://hub.docker.com

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

0
2

4
6

8

Data Arrival Pattern

0 20 40 60 80 100 120

Time (Minutes)

M
a

n
u

fa
c
tu

ri
n

g
 M

a
c
h

in
e

s

Stepwise 2−Level

Figure 7. Data Arrival Pattern for the Evaluation

Both patterns are continuously generated by the VISP Data-Provider13 for the whole evaluation510

duration of 120 minutes.511

5.5 Metrics512

To compare the evaluation results for both the BTU-based and the threshold-based resource provisioning513

approaches, we have selected several metrics to describe both the overall cost as well as QoS metrics.514

After each evaluation run, these metrics are extracted by the VISP Reporting Utility14. The most important515

metric is Paid BTUs, which describes the total cost for data processing. This value comprises all VM516

Upscaling and VM Prolonging operations, which either lease new VMs or extend the leasing for another517

BTU for existing ones. The VM Downscaling sums up all downscaling operations, which are conducted518

before the end of the BTU.519

The next set of metrics describes the QoS of the stream processing application. Each stream processing520

operator is assigned a specific processing duration which describes the processing duration in a constant521

over-provisioning scenario. Due to the changing data volume in our evaluation scenarios, it is often the522

case that the system suffers from under-provisioning for a short time, which results in longer processing523

durations. To assess the overall compliance of the processing durations, we define three different SLA-524

compliance level. The first compliance level requires real-time processing capabilities, and states the525

share of data items that are produced within the given processing duration. The second level applies526

near-realtime requirements, which is defined by processing durations that take at most twice as long as527

the defined processing duration, and the third level applies a relaxed strategy, which means that the data528

items need to be processed within at most five times the stated processing duration. These SLA metrics529

are obtained from the processing duration of the data items, which are recorded by the operators. To530

reduce the overall monitoring overhead, we only measure the processing duration of every tenth data531

item. Nevertheless, preliminary evaluations with other intervals, e.g., every data item or every third data532

item have shown a similar metric reliability. This similar reliability can be explained due to the fact that533

observing every tenth data item still yields about 20-40 performance readings/second (depending on the534

data volume). Therefore it is save to assume that these metrics cover all effects of the SPE because all535

other activities, e.g., spawning a new operator instance takes 5-10 seconds or leasing a new VM takes536

about 30-60 seconds.537

13https://github.com/visp-streaming/dataProvider
14https://github.com/visp-streaming/reporting

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Table 3. Evaluation Results

Stepwise Pattern 2-Level Pattern

BTU-based Threshold-based BTU-based Threshold-based

Paid BTUs 72 82 76 86

VM Upscaling 27 29 26 25

VM Prolonging 45 53 50 61

VM Downscaling 21 0 18 0

VM Early-Downscaling 0 24 0 18

Real-time Compliance 40.58% 40.28% 33.71% 40.53%

Near-real-time Compliance 72.79% 68.86% 60.08% 68.56%

Relaxed-time Compliance 76.24% 72.72% 63.07% 71.21%

Real-time Compliance

without O2 and O6 50.19% 58.28% 50.05% 57.54%

Near-real-time Compliance

without O2 and O6 86.10% 87.83% 86.61% 85.45%

Relaxed-time Compliance

without O2 and O6 89.29% 89.27% 90.38% 86.94%

Mean Time To Adapt (s) 16.90 2.09 17.71 2.05

(σ = 23.46) (σ = 5.69) (σ = 28.28) (σ = 5.53)

Operator Instance Up 151 178 176 177

Operator Instance Down 126 159 148 159

Operator Instance Migration 93 0 81 0

The Time To Adapt metric states the arithmetic mean duration, which is required until the delayed538

processing for an operator type is back to real-time processing.539

The last metrics describe the scaling operations of operator instances. Here we consider Upscaling,540

Downscaling as well as Migration operations among different hosts.541

6 RESULTS AND DISCUSSION542

To obtain reliable numbers, we have conducted three evaluation runs for each provisioning approach and543

data arrival pattern, which results in 12 total evaluation runs. These evaluations have been executed as544

three batches over the time span of one week to avoid any corruption of the results due to different loads545

on the private OpenStack-based testbed.546

The raw data for all evaluation runs is provided as supplemental material, nevertheless for our547

discussion we have selected the evaluation run for each evaluation scenario, which we are analyzing548

in detail in the remainder of this section. The overall results of these evaluations are listed in Table 3,549

whereas the description for the individual metrics can be found in Section 5.5. To visualize the results, we550

provide one comparison figure (see Figures 8a and 8b) for each data arrival pattern. These figures depict551

the total amount of leased VMs as well as operator instances over time. For reference, we also provide the552

amount of data items, which are emitted by the sensors. Furthermore, we provide for each evaluation553

scenario a dedicated figure (see Figures 9 and 10), which show the scaling activities mapped to the total554

number of leased VMs as well as operator instances.555

The discussion of the evaluation consists of two parts, which are separated into two data arrival556

patterns.557

6.1 Stepwise Data-arrival Pattern558

For the stepwise pattern we can see that the overall enactment cost, i.e., paid BTUs, is 12% lower for the559

BTU-based approach (72 paid BTUs) than for the threshold-based, which requires 82 paid BTUs. The560

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

0 20 40 60 80 100 120

Time (Minutes)

O
p
e
ra

to
r

In
s
ta

n
c
e
s
 a

n
d
 V

M
s

0

50

100

150

In
c
o
m

in
g
 D

a
ta

 I
te

m
s

VM and Operator Instance Provisioning

0

5

10

15

20

25

30

35

VMs (BTU)

VMs (Threshold)

Operator Instances (BTU)

Operator Instances (Threshold)

Production Data

Availability Data

Temperature Data

(a) Running Operator Instances and VMs for Stepwise

Pattern

0 20 40 60 80 100 120

Time (Minutes)

O
p

e
ra

to
r

In
s
ta

n
c
e

s
 a

n
d

 V
M

s

0

50

100

150

In
c
o

m
in

g
 D

a
ta

 I
te

m
s

VM and Operator Instance Provisioning

0

5

10

15

20

25

30

35

VMs (BTU)

VMs (Threshold)

Operator Instances (BTU)

Operator Instances (Threshold)

Production Data

Availability Data

Temperature Data

(b) Running Operator Instances and VMs for 2-Level

Pattern

Figure 8. Resource Provisioning Recordings

reason for this cost reduction is that the threshold-based approach does not consider the end of a BTU,561

which results in potentially unnecessary VM prolonging. Furthermore, this also results in premature562

VM downscaling operations before the actual end of the BTU, which results in a waste of already paid563

computational resources. Nevertheless, it must be noted, that the threshold-based approach is still more564

cost-efficient than a fixed over-provisioning one, which would have resulted in 96 paid BTUs. For the565

over-provisioning scenario we assume the constant leasing of eight VMs, which is the maximum of leased566

VMs for both the threshold-based and the BTU-based scenario according to Figure 8a.567

Regarding SLA compliance, i.e., compliance to the predefined processing durations, both approaches568

perform at similar levels, although it must be noted that the BTU-based approach performs better despite569

less cost. For the SLA compliance, we can also observe that the operators O2 and O6 have a higher impact570

on the SLA compliance compared to the other operators. This is because these two operators receive571

the majority of the incoming traffic and in the case of a volume change, it is harder for them to scale572

up immediately. When we compare the SLA compliances of all operators against the SLA compliances573

without the operators O2 and O6, we can see that the SLA compliance for the realtime restriction is 9.61%574

higher for the BTU-based approach and 18% higher for the threshold-based one. This difference can575

be explained due to the lazy release approach of the BTU-based approach. While the threshold-based576

approach releases obsolete operator instances as soon as possible, the BTU-based approach only releases577

them when it is required, i.e., one VM reaches the end of a BTU, or other upscaling operations need578

computational resources. Due to the eager downscaling activities of the threshold-based approach, it579

is often required to compensate the lacking resources for the operators O2 and O6 within a short time,580

while the BTU-based approach may maintain this overcapacity and does not need to adapt to the volume581

change.582

Regarding the mean time to adapt, the threshold-based approach outperforms the BTU-based one,583

because the BTU-based one is more conservative in leasing new VMs. Instead of immediately leasing a584

new VM when there are no computational resources available, the BTU-based approach first evaluates585

whether it can scale down other operator instances for the new operator instance. This evaluation operation586

and the further downscaling operation take around 20 seconds because we apply a graceful downscaling587

approach for the operator instances. This graceful approach deregisters the operator for new data items588

and waits for 20 seconds before being released. We choose these 20 seconds waiting time to ensure that589

all data items are safely processed, and none of them are lost. Nevertheless, these additional waiting time590

to release computational resources results in the higher time to adapt compared to the threshold-based591

approach.592

When we analyze the scaling activities in Figure 9a, we can see that there are several migration593

operations which are triggered whenever the BTU of a VM is at its end. Although such a migration594

operation triggers a downscaling and upscaling operation, which causes additional overhead for the SPE,595

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

0
5

1
0

1
5

0 20 40 60 80 100 120

Time (Minutes)

S
c
a

lin
g

 A
c
ti
v
it
ie

s

 Scaling Activities

0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

O
p

e
ra

to
r

In
s
ta

n
c
e

s
 a

n
d

 V
M

s

Operator Upscaling

Operator Downscaling

Operator Migration

VMs

Operator Instances

(a) BTU-based Approach

0
5

1
0

1
5

0 20 40 60 80 100 120

Time (Minutes)

S
c
a
lin

g
 A

c
ti
v
it
ie

s

 Scaling Activities

0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

O
p
e
ra

to
r

In
s
ta

n
c
e
s
 a

n
d
 V

M
s

Operator Upscaling

Operator Downscaling

Operator Migration

VMs

Operator Instances

(b) Threshold-based Approach

Figure 9. Scaling Activities for the Stepwise Pattern

it is still more cost-efficient than the threshold-based approach, which does not consider these migrations.596

Furthermore, it must be noted that the BTU for our evaluation is rather short, which triggers a high amount597

of migration operations. When the SPE would operate with longer BTUs, these migration operations598

would be less and thus improve the overall performance of the SPE, including the SLA compliance. For599

the threshold-based approach (Figure 9b), it is more straightforward because the number of operator600

instances are aligned with the incoming load.601

In Figure 8a, it can can be further observed that the number of leased VMs is several times higher for602

the BTU-based approach than for the threshold-based one, although the total cost are lower. This can be603

explained due to the fact that the threshold-based approach often releases VMs prematurely, which may604

render a lower number of VMs in the picture, but still, leads to higher cost.605

6.2 2-Level Data-arrival Pattern606

For the second part, we discuss the 2-level pattern. This data arrival pattern poses significant volume607

changes to the SPE, compared to the stepwise pattern, which requires more scaling effort to comply with608

the incoming load. Regarding the overall enactment cost, we can also observe for this scenario, that609

the BTU-based renders less cost (12%) compared to the threshold-based approach and about 29% less610

cost compared to a fixed-provisioning scenario, where we assume that we constantly lease nine VMs611

(according to Figure 8a) which results in 108 paid BTUs.612

Nevertheless, it can be observed that this cost reduction also has a negative impact on the SLA613

compliance. In Table 3, it can be seen that the BTU-based approach performs worse than the threshold-614

based one. This is mainly due to the higher agility of the threshold-based approach, which can lease new615

computational resources on demand, and does not need to wait until existing resources are freed by getting616

rid of obsolete operator instances. This effect can be especially observed when comparing the overall617

compliance metrics to the compliance metrics without the operators O2 and O6. Here we can see that the618

realtime compliance without the operators O2 and O6 (50.05%) is more than 16% higher than the total619

compliance of 33.71%. This difference shows that the operators O2 and O6 are confronted with a large620

volume increase every 16 minutes, and the SPE needs to adapt. This adaptation takes some time, which in621

turn results in a lower SLA compliance. Nevertheless, when we observe the near-time compliance and the622

relaxed-time compliance, we can see that the BTU-based approach provides better compliance results623

because the majority of the other components is not changed in the low volume phases and therefore624

require less adaptation than for the threshold-based approach. For the time to adapt approach, we can625

observe a similar behavior compared to the stepwise pattern, where the BTU-based approach has a higher626

mean time to adopt than the threshold-based approach.627

Regarding operator instance scaling activities it can be observed in Figure 8b that the number of628

operators for the threshold-based approach roughly follows the data volume pattern. Nevertheless, we can629

sometimes observe two operator instance spikes for one volume spike. This can be explained by the fact630

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

0
5

1
0

1
5

0 20 40 60 80 100 120

Time (Minutes)

S
c
a
lin

g
 A

c
ti
v
it
ie

s

 Scaling Activities

0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

O
p
e
ra

to
r

In
s
ta

n
c
e
s
 a

n
d
 V

M
s

Operator Upscaling

Operator Downscaling

Operator Migration

VMs

Operator Instances

(a) BTU-based Approach

0
5

1
0

1
5

0 20 40 60 80 100 120

Time (Minutes)

S
c
a

lin
g

 A
c
ti
v
it
ie

s

 Scaling Activities

0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

O
p

e
ra

to
r

In
s
ta

n
c
e

s
 a

n
d

 V
M

s

Operator Upscaling

Operator Downscaling

Operator Migration

VMs

Operator Instances

(b) Threshold-based Approach

Figure 10. Scaling Activities for the 2-Level Pattern

that the threshold-based approach operates based on the amount of data items waiting on the incoming631

queue. At the beginning of the volume spike, the queued data items increase, until the SPE has enough632

computational resources available. As soon as this is the case, the queued data items drop to zero, and the633

threshold-based approach starts to get rid of operator instances due to its downscaling threshold. After a634

short time, i.e., the next optimization cycle, the threshold-based approach again realizes that there are too635

little computational resources available and triggers the upscaling procedure again. While the BTU-based636

approach is immune to this preliminary downscaling, it must be noted that the BTU-based approach637

also needs to deal with up- and downscaling incentives. Due to the rather short BTU of 10 minutes for638

the evaluation, it is often the case that the downscaling procedure triggers downscaling activities, which639

results in a similar situation as for the threshold-based approach, e.g., around minute 45 in Figure 8b.640

This can be also observed in Figure 10a, where each VM downscaling approach triggers a number of641

migrations. Nevertheless it must be said, that the number of active up- and downscaling activities for642

the BTU-based approach (see Figure 10a) is lower than the ones for the threshold-based approach (see643

Figure 10b).644

In conclusion, it can be said that the BTU-based approach renders less cost for the enactment of stream645

processing topologies due to the better usage of computational resources while maintaining a similar or646

even higher level of SLA compliance. Furthermore, it must be noted that the BTU-based approach is rather647

suited for smaller volume changes, like the stepwise pattern in contrast to drastic changes, like the 2-level648

pattern. Nevertheless, based on the evaluation, we can see that the BTU-based approach performs better649

than a threshold-based approach and way more cost-efficient than a fixed over-provisioning approach.650

6.3 Threats to Applicability651

Although the presented system model builds on top of real world observations, there are nevertheless652

several aspects which may have an adverse impact to its applicability in real world environments. The first653

aspect is a threat to the validity for our evaluation results. Due to the cloud-based evaluation environment,654

we cannot rule out any influences of other VMs that are running on the same hardware. We tried to655

mitigate this effect repeating our evaluation three times on different workdays (including the weekend),656

but still, we cannot rule out these effects to our evaluation. The second aspect considers the applicability657

of the BTU-based approach to different data arrival pattern. While the evaluation shows that BTU-based658

approaches are a promising fit for data volumes which are not exposed to high changes, like the stepwise659

pattern, they sometimes struggle to keep up with the SLA compliance for rapidly changing data volumes.660

Finally, it also needs to be mentioned that the BTU-based approach has only limited applicability for661

private clouds since they do not require any BTU-based payments.662

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

7 RELATED WORK663

In the last couple of years, the landscape of SPEs has been constantly increasing. In contrast to the rather664

basic SPEs, like Aurora (Balakrishnan et al., 2004) or Borealis (Abadi et al., 2005), which have been665

designed more than a decade ago, today’s SPEs incorporate technological advances like cloud computing666

and can process large volumes of data in parallel. While some of these SPEs are rather focused on667

cluster-based deployments, like System S (Gedik et al., 2008), most are designed to utilize cloud-based668

deployments, like Apache Spark (Zaharia et al., 2010), Apache Flink (Carbone et al., 2015), Apache669

Storm (Toshniwal et al., 2014) or its derivative Heron (Kulkarni et al., 2015). Despite the focus on670

designing efficient SPEs, there are to the best of our knowledge no established SPEs which support elastic671

stream processing, especially the cost-efficient enactment of stream processing topologies. Nevertheless,672

there are a couple of prototypes and concepts in the literature, which propose a mechanism for elastic673

stream processing.674

Several research groups have picked up the challenge of replacing the previously dominant strategy675

of data quality degradation, i.e., load shedding (Babcock et al., 2004; Tatbul et al., 2007), with resource676

elasticity. One of the first publications was authored by Schneider et al. (2009), which proposed the677

parallelization of stream processing operations with System S. Because this first approach only considered678

stateless operators, the authors complemented their approach in a succeeding publication to consider679

the replication of stateful operators (Gedik et al., 2014). Besides the elasticity extension to System S,680

there are also several proposed extensions to Apache Storm, which replace the default scheduler with681

custom implementations to optimize the parallelization of operators as well as the placement thereof on682

different computational resources. Two of these approaches have been presented by Aniello et al. (2013)683

and Xu et al. (2014). These two publications present threshold-based custom schedulers, which can adopt684

the topology deployment at runtime, depending on the incoming data volume and the actual load for685

Apache Storm. Although any replication of a specific operator provides additional processing capabilities,686

it needs to be noted that any reconfiguration of the topology enactment has a negative impact on the687

processing performance. To minimize these reconfiguration aspects, Stela (Xu et al., 2016), introduces688

new performance indicators to focus on the actual throughput of the SPE and to reduce any reconfiguration689

aspects.690

To extend the rather static aspect of the threshold-based scaling approaches, Heinze et al. (2015)691

propose a threshold-based resource optimization, whose thresholds are adopted based on an online692

learning mechanism within a custom SPE. This allows resource optimization to adapt the otherwise693

fixed thresholds, which are predefined before the topology enactment, at runtime to improve the resource694

utilization based on actual monitoring data. SEEP (Castro Fernandez et al., 2013), another custom SPE,695

also proposes a simple threshold-based replication mechanism. In contrast to the other already discussed696

approaches, SEEP focuses on stateful operators and employs a dedicated fault tolerance mechanism.697

Besides the basic replication approaches, there are also some works that optimize specific aspects698

for the topology enactment. One of these aspects is the partitioning of data to optimize the data flow699

among the operators, especially regarding stateful operators. The Streamcloud (Gulisano et al., 2012) SPE,700

proposes a mechanism to partition the incoming data to distribute it efficiently among different replicas of701

one operator type. Another approach for optimizing the overall efficiency of a topology enactment is to702

optimize the placement of operators within a potential heterogeneous pool of computational resources.703

Cardellini et al. (2015) propose an extension to Apache Storm, which considers an optimal placement of704

operators in terms of QoS criteria on different cloud resources. Furthermore, De Matteis and Mencagli705

(2016) present a predictive approach to minimize the latency and improve the energy efficiency of the706

SPE. This approach furthermore allowed them to reduce the reconfiguration of SPEs, which is also one707

of the objectives in our approach. The last notable approach for optimizing the topology enactment on708

cloud resources is to optimize the deployment of operators according to their specific processing tasks.709

Hanna et al. (2016) consider different types of VMs, e.g., with an emphasis on CPU or GPU, and optimize710

the deployment based on the suitability of these machines to conduct specific operations, e.g., matrix711

multiplications are significantly faster when executed on the GPU.712

Although the literature already provides different optimization approaches, to the best of our knowl-713

edge, none of these approaches considers the BTU aspect of VMs when optimizing processing resources as714

proposed in this paper. Furthermore, most of the discussed approaches only aim at optimizing the amount715

of replicas for processing operators, but do ignore the reconfiguration overhead during the topology716

enactment.717

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

8 CONCLUSION718

Within this paper, we have discussed the most important requirements for optimizing data stream pro-719

cessing in volatile environments. Based on these requirements, we have developed an extensive system720

model for which we have presented a BTU-based optimization approach. This optimization approach721

has also been evaluated against a threshold-based approach, which is currently commonly used in the722

literature. The evaluation has shown that the BTU-based approach results in a more cost-efficient manner723

due to the better usage of the leased VMs and less reconfigurations to the SPE while still maintaining724

a higher QoS most of the time compared to the threshold-based approach. Furthermore, as a result of725

the evaluation, we have also identified one potential evolution for our BTU-based approach, namely the726

addition of a more sophisticated predictive component. So far we only consider the trend for upscaling727

operator instances, but we do not consider historical information nor other monitoring information, e.g.,728

as suggested by Copil et al. (2016), for downscaling purposes, which could yield even better results in the729

2-level approach. In our future work, we plan to apply our BTU-based approach to hybrid clouds. This730

requires an extension of the optimization model regarding the network capabilities among these clouds.731

Furthermore, we plan to investigate the actual topology in more detail, e.g., to identify critical paths or732

high volume operators, such as the operators O2 and O6 in our topology. These details are a promising733

source to apply different scaling priorities, especially for downscaling to avoid oscillating effects.734

ACKNOWLEDGMENTS735

This paper is supported by TU Wien research funds and by the Commission of the European Union within736

the CREMA H2020-RIA project (Grant agreement no. 637066).737

REFERENCES738

Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H., Lindner, W.,739

Maskey, A., Rasin, A., and Ryvkina, E. (2005). The Design of the Borealis Stream Processing Engine.740

In Conference on Innovative Data Systems Research, pages 277–289.741

Andonov, R., Poirriez, V., and Rajopadhye, S. (2000). Unbounded knapsack problem: Dynamic program-742

ming revisited. European Journal of Operational Research, 123(2):394–407.743

Aniello, L., Baldoni, R., and Querzoni, L. (2013). Adaptive online scheduling in Storm. In 7th Interna-744

tional Conference on Distributed Event-based Systems (DEBS), pages 207–218. ACM.745

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin,746

A., Stoica, I., and Zaharia, M. (2010). A view of cloud computing. Communications of the ACM,747

53(4):50–58.748

Babcock, B., Datar, M., and Motwani, R. (2004). Load shedding for aggregation queries over data streams.749

In 20th International Conference on Data Engineering, pages 350–361. IEEE.750

Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Galvez, E.,751

Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., and Zdonik, S. (2004). Retrospective on aurora.752

Proceedings of the VLDB Endowment, 13(4):370–383.753

Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and Tzoumas, K. (2015). Apache FlinkTM:754

Stream and Batch Processing in a Single Engine. Data Engineering Bulletin, 38(4):28–38.755

Cardellini, V., Grassi, V., Lo Presti, F., and Nardelli, M. (2015). Distributed qos-aware scheduling in756

storm. In 9th International Conference on Distributed Event-Based Systems (DEBS), pages 344–347.757

ACM.758

Castro Fernandez, R., Migliavacca, M., Kalyvianaki, E., and Pietzuch, P. (2013). Integrating scale out759

and fault tolerance in stream processing using operator state management. In International Conference760

on Management of Data (SIGMOD), pages 725–736.761

Copil, G., Moldovan, D., Truong, H.-L., and Dustdar, S. (2016). rSYBL: A Framework for Specifying762

and Controlling Cloud Services Elasticity. ACM Transactions on Internet Technology (TOIT), 16(3):18.763

De Matteis, T. and Mencagli, G. (2016). Keep calm and react with foresight: strategies for low-latency764

and energy-efficient elastic data stream processing. In 21st ACM SIGPLAN Symposium on Principles765

and Practice of Parallel Programming, pages 1–12. ACM.766

Gedik, B., Andrade, H., Wu, K.-L., Yu, P. S., and Doo, M. (2008). SPADE: The System S Declarative767

Stream Processing Engine. In International Conference on Management of Data (SIGMOD), pages768

1123–1134. ACM.769

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

Gedik, B., Schneider, S., Hirzel, M., and Wu, K.-L. (2014). Elastic scaling for data stream processing.770

Transactions on Parallel and Distributed Systems, 25(6):1447–1463.771

Genaud, S. and Gossa, J. (2011). Cost-wait trade-offs in client-side resource provisioning with elastic772

clouds. In International Conference on Cloud computing (CLOUD), pages 1–8. IEEE.773

Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., and Valduriez, P. (2012). Streamcloud:774

An elastic and scalable data streaming system. IEEE Trans. on Parallel and Distributed Systems,775

23(12):2351–2365.776

Hanna, F., Marchal, L., Nicod, J.-M., Philippe, L., Rehn-Sonigo, V., and Sabbah, H. (2016). Minimizing777

rental cost for multiple recipe applications in the cloud. In International Parallel and Distributed778

Processing Symposium Workshops (IPDPSW), pages 28–37. IEEE.779

Heinze, T., Roediger, L., Meister, A., Ji, Y., Jerzak, Z., and Fetzer, C. (2015). Online parameter780

optimization for elastic data stream processing. In 6th ACM Symposium on Cloud Computing, pages781

276–287. ACM.782

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R. H., Shenker, S., and Stoica,783

I. (2011). Mesos: A platform for fine-grained resource sharing in the data center. In 8th USENIX784

Conference on Networked Systems Design and Implementation (NSDI), volume 11, pages 22–22.785

Hochreiner, C. (2017). VISP Testbed – A Toolkit for Modeling and Evaluating Resource Provisioning786

Algorithms for Stream Processing Applications. In 9th ZEUS Workshop (ZEUS 2017), pages 37–43.787

CEUR-WS.788

Hochreiner, C., Schulte, S., Dustdar, S., and Lecue, F. (2015). Elastic Stream Processing for Distributed789

Environments. IEEE Internet Computing, 19(6):54–59.790

Hochreiner, C., Vögler, M., Schulte, S., and Dustdar, S. (2016a). Elastic Stream Processing for the791

Internet of Things. In 9th International Conference on Cloud Computing (CLOUD), pages 100–107.792

IEEE.793

Hochreiner, C., Vögler, M., Waibel, P., and Dustdar, S. (2016b). VISP: An Ecosystem for Elastic Data794

Stream Processing for the Internet of Things. In 20th International Enterprise Distributed Object795

Computing Conference (EDOC), pages 19–29. IEEE.796

Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel, J. M., Ramasamy, K.,797

and Taneja, S. (2015). Twitter heron: Stream processing at scale. In International Conference on798

Management of Data (SIGMOD), pages 239–250. ACM.799

Lohrmann, B., Janacik, P., and Kao, O. (2015). Elastic stream processing with latency guarantees. In 35th
800

International Conference on Distributed Computing Systems (ICDCS), pages 399–410. IEEE.801

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D., and Barton, D. (2012). Big data. The802

management revolution. Harvard Business Review, 90(10):61–67.803

Nakajima, S. (1988). Introduction to tpm: Total productive maintenance. Productivity Press, Inc.804

Satzger, B., Hummer, W., Leitner, P., and Dustdar, S. (2011). Esc: Towards an elastic stream computing805

platform for the cloud. In International Conference on Cloud Computing (CLOUD), pages 348–355.806

Schneider, S., Andrade, H., Gedik, B., Biem, A., and Wu, K.-L. (2009). Elastic scaling of data parallel807

operators in stream processing. In International Symposium on Parallel & Distributed Processing808

(IPDPS), pages 1–12.809

Schulte, S., Hoenisch, P., Hochreiner, C., Dustdar, S., Klusch, M., and Schuller, D. (2014). Towards810

process support for cloud manufacturing. In 18th International Enterprise Distributed Object Computing811

Conference (EDOC), pages 142–149. IEEE.812

Tatbul, N., Çetintemel, U., and Zdonik, S. (2007). Staying fit: Efficient load shedding techniques for813

distributed stream processing. In Proceedings of the VLDB Endowment, pages 159–170. VLDB814

Endowment.815

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S., Jackson, J., Gade, K.,816

Fu, M., Donham, J., Bhagat, N., Mittal, S., and Ryaboy, D. (2014). Storm@twitter. In International817

Conference on Management of Data (SIGMOD), pages 147–156.818

Xu, J., Chen, Z., Tang, J., and Su, S. (2014). T-storm: traffic-aware online scheduling in storm. In 34th
819

International Conference on Distributed Computing Systems (ICDCS), pages 535–544. IEEE.820

Xu, L., Peng, B., and Gupta, I. (2016). Stela: Enabling stream processing systems to scale-in and scale-out821

on-demand. In International Conference on Cloud Engineering (IC2E). IEEE.822

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark: Cluster computing823

with working sets. HotCloud, 10:10–17.824

PeerJ Comput. Sci. reviewing PDF | (CS-2016:10:13865:0:0:NEW 14 Jun 2017)

Manuscript to be reviewedComputer Science

