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ABSTRACT
The continuous increase of unbound streaming data poses several challenges to

established data stream processing engines. One of the most important challenges is

the cost-efficient enactment of stream processing topologies under changing data

volume. These data volume pose different loads to stream processing systems whose

resource provisioning needs to be continuously updated at runtime. First

approaches already allow for resource provisioning on the level of virtual machines

(VMs), but this only allows for coarse resource provisioning strategies. Based on

current advances and benefits for containerized software systems, we have designed a

cost-efficient resource provisioning approach and integrated it into the runtime

of the Vienna ecosystem for elastic stream processing. Our resource provisioning

approach aims to maximize the resource usage for VMs obtained from cloud

providers. This strategy only releases processing capabilities at the end of the VMs

minimal leasing duration instead of releasing them eagerly as soon as possible as it

is the case for threshold-based approaches. This strategy allows us to improve the

service level agreement compliance by up to 25% and a reduction for the operational

cost of up to 36%.

Subjects Adaptive and Self-Organizing Systems, Distributed and Parallel Computing

Keywords Data stream processing, Cloud computing, Resource elasticity, Resource optimization

INTRODUCTION
Due to the transition toward a data-centric society, today’s stream processing engines (SPEs)

need to deal with a continuous increase of unbound streaming data regarding volume,

variety, and velocity (McAfee et al., 2012). Currently, this growth in data is mainly driven by

the rise of the internet of things (IoT) (http://www.gartner.com/newsroom/id/3165317).

Sensors, which represent a vital part of the IoT, emit a huge volume of streaming data that

needs to be processed to provide additional value to users or to trigger actions for IoT

devices or other services, e.g., to handle user notifications. Furthermore, many scenarios call

for data processing in near real-time, which requires the application of SPEs like System S

(Gedik et al., 2008), Apache Storm (Toshniwal et al., 2014), Heron (Kulkarni et al., 2015), or

Apache Spark (Zaharia et al., 2010). State-of-the-art SPEs provide the user with an extensive

set of APIs to design and enact stream processing topologies. These topologies represent a

composition of different stream processing operators, like filters, transformations, or other

operations, which are required to process data (Gedik et al., 2008).

Although SPEs are highly efficient regarding data processing, they struggle with varying

volumes of data over time (Hochreiner et al., 2015). Because most SPEs operate on a fixed
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amount of computational resources, e.g., on clusters, they cannot adapt to changes of the

data volume at runtime (Hochreiner et al., 2016a). One solution for this issue is the over-

provisioning of computational resources so that the SPE can process any amount of

incoming data while complying with given service level agreements (SLAs). While this

approach ensures a high level of SLA compliance, it is not cost-efficient because the

provisioned computational resources are not used most of the time. The more

economically feasible approach to this challenge is under-provisioning, where an SPE is

equipped with computational resources to cover most of the incoming data scenarios.

However, in the case of under-provisioning, the SPE may cover most scenarios, but it may

also violate SLAs in some high load scenarios, due to a delay in the data processing.

Based on the Cloud Computing paradigm (Armbrust et al., 2010), a more promising

provisioning approach, namely elastic provisioning for stream processing systems,

emerged in recent years (Satzger et al., 2011; Gedik et al., 2014; Heinze et al., 2015;

Lohrmann, Janacik & Kao, 2015; Xu, Peng & Gupta, 2016). This approach allows the SPE to

lease computational resources on-demand whenever they are required. Resources can

be released again as soon as they are not needed anymore. This approach allows for the

cost-efficient enactment of stream processing topologies while maintaining high SLA

compliance (Hochreiner et al., 2016a). Up to now, most elastic provisioning approaches

only consider virtual machines (VMs) as the smallest entity for leasing and releasing of

computational resources. This approach is perfect applicable for private clouds, where the

only objective of resource provisioning algorithms is resource-efficiency, and there is no

need to consider any billing aspects or billing time units (BTUs). A BTU defines the

minimum leasing duration for computational resources, e.g., VMs, and often amounts to

1 h like on Amazon EC2 (https://aws.amazon.com/ec2/pricing/). The concept of the BTU

means that the user has to pay for each started hour, regardless of how many minutes the

VM is used. Because of the BTU, the repeated leasing and releasing of VMs may result in

even higher cost than an over-provisioning scenario (Genaud & Gossa, 2011), because

releasing a VM before the end of the BTU results in a waste of resources.

To address this shortcoming, this paper considers an additional resource abstraction

layer on top of the VMs, to allow for more fine-grained elastic provisioning strategies with

the goal to ensure the most cost-efficient usage of the leased resources while respecting

given SLAs. This additional layer is realized by applying the recent trend toward

containerized software components, i.e., containerized stream processing operators. The

containerization provides several advantages regarding deployment and management of

computational resources. Besides the smaller granularity compared to VMs, containerized

stream processing operators also allow for a faster adaption of the stream processing

topology on already running computational resources. An additional layer of

containers also enables reusing already paid computational resources, i.e., resources can

be utilized for the full BTU. Today, frameworks like Apache Mesos (Hindman et al., 2011),

Apache YARN (Vavilapalli et al., 2013), Kubenetes (https://kubernetes.io) or Docker

Swarm (https://docs.docker.com/swarm/) provide the functionality to deploy

containerized applications on computational resources. These frameworks rely on simple

principles like random deployment, bin-packing, or equal distribution to deploy
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containers across multiple hosts. Although these approaches work well for most use cases,

the resource usage efficiency for the underlying VMs in terms of their BTUs can be

improved as we are going to show in our work.

In this paper, we propose an elastic resource provisioning approach which ensures an

SLA-compliant enactment of stream processing topologies while maximizing the resource

usage of computational resources and thus minimizing the operational cost, i.e., cost

for computational resources and penalty cost for delayed processing, for the topology

enactment. The results of our evaluation show that our approach achieves a cost reduction

of about 12% compared to already existing approaches while maintaining the same

level of quality of service. The main contributions of our work are the following:

� We propose a BTU-based resource provisioning approach, which only performs scaling

activities when they are required to cope with the data volumes or when a downscaling

operation can achieve a resource cost reduction while maintaining the same SLA

compliance level.

� We extend the VISP Runtime (Hochreiner et al., 2016b) to support our BTU-based

resource provisioning approach. The VISP Runtime is designed to serve as a test

environment for resource provisioning mechanism and for this work we have not only

implemented the BTU-based approach, but also refined the monitoring infrastructure

to collect the information required for our approach.

� We implement a real-world scenario from the manufacturing domain and evaluate the

BTU-based approach against a threshold-based baseline.

The remainder of this paper is structured as follows: first, we provide a motivational

scenario, discuss the system architecture and present the derived requirements in

“Motivation.” Based on these requirements we then provide the problem definition for

the optimization problem in “Problem Definition,” which leads to our optimization

approach presented in “Optimization Approach.” In “Evaluation,” we describe our

evaluation setup and in “Results and Discussion,” we present the evaluation results and

their discussion. “Related Work” provides an overview on the related work, before we

conclude the paper in “Conclusion.”

MOTIVATION
Motivational scenario
In the following paragraphs, we describe a data stream processing scenario from our EU

H2020 project Cloud-based Rapid Elastic Manufacturing (CREMA) (Schulte et al., 2014).

Figure 1 shows a stream processing topology, which is composed of nine different stream

processing operator types (O1–O9) that process the data originating from three different

sources (S1, S2, S3). Each of the operator types performs a dedicated operation to

transform the raw data from manufacturing machines into value-added and human-

readable information. The information from the data sources is used to monitor three

different aspects, like the availability of the manufacturing machines or the machine

temperature to avoid overheating of the machines and assess their overall equipment
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effectiveness (OEE). In this scenario, we have two different types of data sources. The first

type of data source are sensors, i.e., S1 and S3, which emit machine-readable data and

can be directly accessed via an API. The second type of data, e.g., S2, is a video feed,

which scans a display of the manufacturing machines because some information is not

directly accessible via an API. This information needs additional preprocessing to

transform the data into machine-readable data.

The Availability Sensor (S1) emits the current status, i.e., available, defect or planned

downtime, of the manufacturing machine every 2 s. This information is then filtered by

the Filter Availability (O2) operator, which generates warnings for each new downtime

incident of a specific manufacturing machine. The warning is then forwarded to the

Inform User (O8) operator, which informs a human supervisor of the machines.

The second data source is the Production Data (S2), which is obtained by a video

stream, i.e., an image taken every 10 s. This image contains different production-related

information, such as the amount of produced goods and needs further processing, e.g.,

by optical character recognition (OCR), to extract machine-readable information. The

Parse and Distribute Data (O1) operator distributes the information to the three operators

O3, O4, O5 that calculate the different components of the OEE value. These individual

components are then united by the Calculate OEE (O7) operator and afterwards

forwarded to the Generate Report (O9) operator, which generates a PDF-report every

minute. This report aggregates the information of all monitored machines and is

forwarded once every minute to the Inform User (O8) operator.

The Temperature Sensor (S3) emits the temperature twice every second. This

information is processed by the Monitor Temperature (O6) operator, which triggers a

warning whenever the temperature exceeds a predefined threshold. This warning is then

also forwarded to the Inform User (O8) operator to inform the human supervisor.

Due to the different levels of complexity of the operations, each of these operator types

has different computational resource requirements, e.g., CPU or memory. Some of the

operators, e.g., the Parse and Distribute Data operator type, require more resources

Manufacturing Machine
Manufacturing Machine

Manufacturing Machine

Calculate Performance (O3) Calculate Availability (O4) Calculate Quality (O5) Monitor Temperature (O6)

Calculate OEE (O7)

Filter Availability (O2)

Generate Report (O9)Inform User (O8)

Parse and Distribute Data (O1)

Availability Sensor (S1) Produc�on Data (S2) Temperature Sensor (S3)

Figure 1 Stream processing topology from the manufacturing domain.

Full-size DOI: 10.7717/peerj-cs.141/fig-1
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for processing one data item than others, like the Filter Availability. Besides the

computational requirements, each operator type is also assigned with specific service level

objectives (SLOs), like the maximal processing duration of one single data item. These

SLOs are monitored, and whenever one operator type threatens to violate the imposed

SLA, the system needs to provide more computational resources for data processing.

System architecture
To enact the stream processing topology from the motivational scenario, it is required

to instantiate it on an SPE. For our work at hand, we are extending the VISP ecosystem,

which was introduced in our previous work (Hochreiner et al., 2016b). VISP represents

an SPE, which is capable of provisioning computational resources on demand to adapt to

the incoming load from data sources. VISP is composed of different components to cover

the whole lifecycle of the stream processing topology enactment. Figure 2 shows a subset

of these components, which are relevant for enacting the topology. For a detailed

description of the components, please refer to our previous work (Hochreiner et al.,

2016b) or to the online documentation of the VISP Ecosystem (https://visp-streaming.

github.io), which is available under the Apache 2.0 License.

The primary task of the SPE, i.e., VISP Runtime, is to process data originating from

data sources (on the left side of the figure) to obtain value-added data for users (on

the right side of the figure) based on the Topology Definition. The actual data processing

is conducted by Operators, which are deployed on computational resources, e.g.,

VMs, provided by an infrastructure as a service environment. Each operator type is

instantiated from dedicated operator images hosted on an external operator repository. To

instantiate a specific operator instance on any host for the first time, the operator image

needs to be downloaded from the registry, which takes a certain amount of time,

depending on the size of the operator image. After the first instantiation of the operator

VISP Run�me

Topology Definition

              Computa�onal Resources

Virtual Machine 1

Operator 1

Operator N

Virtual Machine N

Operator X

Operator Z

Messaging Infrastructure

Resource Optimization

Resource Provisioning

Resource Monitor

Data Source N

Data Source 1
R

R

Operator Image N

Operator Image 1

Operator Repository

Shared State

Figure 2 VISP stream architecture. Full-size DOI: 10.7717/peerj-cs.141/fig-2
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type, the operator image is cached locally on the host to speed up the instantiation of

future instances. Each operator type is also assigned with individual SLAs whereas

each SLA consists of different SLOs. The first SLO is the maximum processing duration

for one data item and ensures the near real-time processing capabilities of the stream

processing topology. The second SLO describes the minimal resource requirements that

are needed to instantiate the stream processing operator. These requirements are

represented by the minimum amount of memory, i.e., Memory in MegaByte (MB), and

the number of CPU shares.

For the enactment of a stream processing topology, each Operator from the topology

is represented by at least one, but up to arbitrarily many Operators. These Operators

fetch the data from the Messaging Infrastructure according to the Topology Definition,

process it and push it back for further processing steps. The remaining components of the

VISP Runtime are in charge of monitoring the load on the Messaging Infrastructure as

well as on the Operators. This monitoring information is then used by the Resource

Optimization component to evaluate whether operator types need to be replicated to deal

with the incoming load. Finally, the Resource Provisioning component is in charge of

deploying and un-deploying Operators on computational resources.

Enactment scenario
During the enactment, the stream processing operators need to deal with streaming

data from a varying amount of manufacturing machines, as shown in Fig. 3 at the bottom.

This varying data volume requires the SPE to adapt its processing capabilities, i.e., the

number of operator instances for specific operator types, which are hosted on an

arbitrary amount of hosts, e.g., H1–H4 in Fig. 3, on demand to comply with the SLAs.

Nevertheless, the SPE aims at minimizing the needed number of hosts, since each host

amounts for additional cost, by using an optimal deployment.

The enactment of our motivational scenario is partitioned into different stages, with a

varying number of running manufacturing machines in each stage. At the beginning of

stage 1, each operator is deployed once across the two hosts H1–H2. Since the volume
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Figure 3 Deployment stages. Full-size DOI: 10.7717/peerj-cs.141/fig-3
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of streaming data increases after some time, the SPE needs to adapt the processing

capabilities by deploying replicas of the operator types O1, O2 and O6 in stage 2. These

operator instances are hosted on a new host H3 because the two already existing hosts

cannot cope with the additional operator instances. Because the amount of data increases

again in stage 3, the SPE needs to replicate further operators to comply with the SLAs.

Although the second replication of the operator type O1 is feasible on the currently

available resources, the SPE is required to lease a new host for the additional operator

instances of types O3, O4, O5, and O9.

At the end of stage 3, H1–H2 meet the end of their BTU. Therefore, the SPE evaluates

whether some of the replicated operators can be removed again without violating the

SLAs. Because the amount of data is decreasing after stage 3, the system can remove

(O1, O3, O4, and O5) or migrate (O2) some of the operator instances to other hosts.

This leads to the situation that no operator instances are running on host H1 at the end of

its BTU and the SPE can accordingly release H1, while host H2 needs to be leased for

another BTU.

Requirements
Based on our motivational scenario, we have identified several requirements which need

to be addressed by the optimization approach.

SLA compliance
The first requirement is SLA compliance in terms of maximum processing duration, for

data that is processed by the stream processing topology. This compliance is the overall

goal that needs to be met, regardless of the actual incoming data rate.

Cost efficiency
The second requirement is the cost efficiency for the enactment. This requirement asks for

a high system usage of leased resources and an efficient usage of cloud resources, especially

regarding their BTU.

Optimization efficiency
The optimization efficiency requirement can be split into two different aspects. The first

aspect is the solution of the optimization problem presented in “Problem Definition.”

Because this optimization problem is NP-hard (see Optimization Problem), it is required

to devise heuristics to achieve a time- and resource-efficient optimization approach.

The second aspect is that the optimization needs to minimize the number of

reconfigurations, e.g., scaling operations, for the stream processing topology because each

reconfiguration activity has a negative performance impact on the data processing

capabilities.

PROBLEM DEFINITION
System model and notation
The system model is used to describe the system state of the individual operator types that

form the stream processing topology as well as the used computational resources. The
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individual operator types are represented by O ¼ f1; . . . ; o#g, where o ∈ O represents a

specific operator type. Each operator type o is assigned with minimal resource

requirements ocpu and omemory which need to be met to instantiate an operator on any

host. At runtime, each operator type is represented by at least one, but up to arbitrary

many operator instances, which are described by the set I ¼ f1; . . . ; i#g, whereas each
itype is assigned to a particular operator type o ∈ O.

This set of operator instances I is running on arbitrarily many hosts that are represented

by the set H ¼ f1; . . . ; h#g, whereas each host hosts a subset of I. Each of these hosts is

furthermore assigned with a set of attributes. The attributes hcpu and hmemory represent the

overall computational resources of the host, and the attributes hcpu� and hmemory�

represent the remaining computational resources at runtime. The attributes hcpu� and

hmemory� are decreased for every operator instance i on the specific host h and can be

used to determine if it is possible to deploy an additional operator instance on this

particular host h. The attribute hcost represents the cost for the host, which needs to be

paid for each BTU. The attribute hBTU� represents the remaining, already paid, BTU time.

To represent the different startup times between cached and non-cached operator images,

each host furthermore denotes a set of images himg. This set contains all operator images

o ∈ O, which are cached on this particular host. Each operator type is assigned a

specific image, whose identifier is identical to the name of the operator type.

Besides the fundamental operator type attributes for instantiating operators, there is

also a set of attributes, which is used to ensure the SLA compliance for data processing.

Each operator type is assigned with an estimated data processing duration oslo, that

represents the time to process one data item and pass it on to the following operator type

according to the stream processing topology. The oslo value is recorded in an optimal

processing scenario, where no data item needs to be queued for data processing. Since the

SLO oslo only presents the expected processing duration, we also denote the actual

processing duration for each operator od and the amount of data items oqueue that are

queued for a particular operator type for processing.

In addition to the current od, the system model also considers previous processing

durations. Here we consider for each operator type o, the last N processing durations od

denoted as od1 to odN, whereas each of the values gets updated after a new recording of the

od, i.e., od1 obtains the value of od and od2 obtains the value of od1, etc. If the actual

processing duration od takes longer than the SLO oslo, penalty cost P accrue to compensate

for the violated SLAs each time a violation v ∈ V occurs.

Furthermore, we denote two operational attributes for each operator type. The

attribute o# represents all current instances, i.e., the sum of all instances of the operator

type o, and the attribute os represents all already executed scaling operations, both

upscaling and downscaling, for a specific operator type. Last, we also denote the current

incoming amount of data items as DR.

Optimization problem
Based on the identified requirements in “Requirements,” we can formulate an

optimization problem as shown in Eq. (1). The goal of this optimization problem is
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to minimize the cost for the topology enactment while maintaining given SLOs. This

equation is composed of four different terms, which are designed to cover the

different requirements. The first term represents the cost for all currently leased hosts

by multiplying the number of all currently leased hosts with the cost for a single host.

The second and third term are designed to maximize the resource usage on all

currently leased hosts regarding the CPU and memory. The last term ensures the

SLA compliance of the deployment, due to the penalty cost, which accrue for each

SLO violation.

Although the solution of this optimization problem provides an optimal solution for a

cost-efficient deployment, it is not feasible to rely on the solution of this problem due to

its complexity. To define the complex nature of this problem, we are going to provide a

reduction to an unbounded knapsack problem (Andonov, Poirriez & Rajopadhye, 2000),

which is known to be NP-hard.

Min h# � hcost

þ
P

h2H hcpu �
P

i2I\itype¼o ocpuP
h2H hcpu

þ
P

h2H hmemory �
P

i2I\itype¼o hmemoryP
h2H hmemory

þ
X
v2V

v � P

(1)

Definition of knapsack problem
The unbounded knapsack problem assumes a knapsack, whose weight capacity is

bounded by a maximum capacity of C and a set of artifacts A. Each of these artifacts a is

assigned with a specific weight aw > 0 as well as a specific value av > 0 and can be placed an

arbitrary amount of times in the knapsack. The goal is to find a set A1 of items, whereP
a2A aw � C and

P
a2A av is maximized.

NP-hardness of the optimization problem
For our reduction, we assume a specific instance of our optimization problem. For this

specific instance, we assume that the number of hosts is fixed and that each of the

operators has the same memory requirements omemory. Furthermore, we define the value

of a specific operator by the amount of data items oqueue that are queued for a specific

operator type, i.e., the more items need to be processed, the higher is the value for

instantiating a specific operator.

Based on this specific instance of the optimization problem, we can build an instance of

the unbounded knapsack problem, where the maximum capacity C is defined by the

maximum amount of CPU resources on all available hosts
P

h2H hcpu, the weight aw

of the artifacts a is defined by the CPU requirements ocpu of one operator and the value av

of the artifact is defined by the number of items waiting on the operator type-specific

queue oqueue.
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Because a specific instance of our optimization problem can be formulated as a

knapsack problem, we can conclude that our optimization problem is also NP-hard. This

concludes that there is no known solution which can obtain an optimal solution in

polynomial time. Since this conclusion conflicts with the third requirement given in

“Requirements,” we decided to realize a heuristic-based optimization approach, which can

be solved in polynomial time.

OPTIMIZATION APPROACH
The overall goal our optimization approach is to minimize the cost for computational

resources and maximize the usage of already leased VMs while maintaining the required

QoS levels. Therefore, we apply an on-demand approach to reduce the deployment and

configuration overhead, i.e., instantiating and removing additional operator instances,

and minimize the computational resources required for finding an optimal deployment

configuration. Due to our emphasis on the BTUs of VMs, we call our approach BTU-

based approach in the remainder of this paper.

Ensure sufficient processing capabilities
To avoid penalty cost, our approach continuously evaluates the SLA compliance of the

stream processing topology. Whenever the individual processing duration od of a

particular operator type o exceeds or threatens to exceed the maximum allowed

processing duration oslo according to the Upscaling Algorithm as shown in Algorithm 1,

the upscaling procedure for the specific operator type is triggered.

This upscaling procedure consists of several steps, as depicted in Fig. 4. The first task is

to evaluate if any of the currently running hosts offers enough computational resources to

host the additional instance of the specific operator. Therefore, we apply theHost Selection

Algorithm, as described in Algorithm 2, for every currently running host to obtain a utility

value for the host. Assuming that there is at least one host with a positive utility value, the

host with the best utility value is selected to deploy the new operator instance, and the

upscaling procedure is finished.

When no host with a positive utility value is available, i.e., no hosts offers enough

computational resources to instantiate a new instance for the required operator type,

there are two possibilities to obtain the required computational resources. The first

possibility is to scale down existing operators when they are not required anymore. We

therefore apply the Operator Selection Algorithm, as described in Algorithm 3 and

discussed in “Algorithms.” If there is any operator type that can be scaled down, an

operator instance of this operator type will be scaled down to free resources for the

upscaling operation. When there are no operator types which can be scaled down, i.e., all

operators are needed for SLA-compliant data stream processing, the second possibility is

applied where the SPE leases a new host.

As soon as the resources are either provided by scaling down another operator type or

the new host is running, the SPE deploys the required operator instance and finishes the

upscaling procedure.
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Optimize resource usage
To minimize the cost of computational resources, the optimization approach aims at

using the leased resources as efficient as possible. This means that the SPE uses all paid

resources until the end of their BTUs and evaluates shortly before, i.e., within the last 5%

of the BTU, whether a host needs to be leased for another BTU, i.e., the resources are still

required, or if the host can be released again.

To release hosts, as shown in Fig. 5, all operator instances running on the designated

host which is targeted to be shut down, need to be either released or migrated to other

hosts. This releasing procedure consists of three phases. The first phase is a simulation

phase, where the optimization approach creates a downscaling plan to evaluate whether

the downscaling and migration is actually feasible. Hereby, the optimization approach

applies the Operator Selection Algorithm for all operator types, which have running

instances on this host and obtain their utility value. If any of the operator types has a

positive utility value, all operator instances (up to 20% of all operator instances for the

specific type) running on this host are marked to be released. The 20%-threshold for the

operator instances is in place to avoid any major reconfigurations for a single operator

type, since it may be the case that all operator instances for the operator type are running

on this host and after the downscaling there would be not sufficient operator instances left

Algorithm 1 Upscaling Algorithm

1: function UPTRIGGER(o,N)

2: if od > oslo then

3: upscaling = 1

4: end if

5: observationMean ¼ 1
N
�PN

i¼1 i

6: durationMean ¼ 1
N
�PN

i¼1 odi

7:
� ¼

PN
i¼1ði � observationMeanÞ � ðodi � durationMeanÞPN

i¼1 ði � observationMeanÞ2
8: a = durationMean - b * observationMean

9: predictedDuration = a + b * (N + 1)

10: if predictedDuration > oslo then

11: upscaling = 1

12: end if

13: if upscaling = 0 then

14: return 0

15: end if

16: if oqueue > scalingThreshold then

17: return 1

18: end if

19: return 0

20: end function
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which would trigger again the upscaling procedure. For those operator instances which

cannot be shut down, the procedure simulates whether they can be migrated to other

hosts. This simulation uses the upscaling procedure for operator types, as described in

“Ensure Sufficient Processing Capabilities.” The only difference is that the host which is

targeted to be shut down, is omitted as a suitable host.

If the simulation renders no feasible downscaling plan, the host is leased for another

BTU and the downscaling procedure is finished. In case there is a downscaling plan, the

operators are released in phase two and if any migration is required, the upscaling

procedure for operator types is triggered based on the simulation in phase three. When all

operator instances are successfully removed (scaled down or migrated), the shutdown of

the host is initialized. In the unlikely event that the downscaling plan could not be

executed, i.e., the operator instance migrations fail, the host also needs to be leased for

another BTU.

Best host
selected

Sufficient processing
capabili�es for

specific operator type
Add instance for

specific operator type

Not enough
resources
available

Not enough
resources
available

Try scaledown for
other operator types

Scaledown successful

Scaledown not
successful

Enough resources
availableLease another

host 

Add instance for 
specific operator type

Upscaling for a
specific operator

type triggered
Assess u�lity

of hosts

Enough resources
available Select best host

Figure 4 Upscaling procedure for a specific operator type. Full-size DOI: 10.7717/peerj-cs.141/fig-4

Algorithm 2 Host Selection Algorithm

1: function UP(h,o)

2: feasibilityThreshold = min((hcpu*/ocpu), (hmemory
*/omemory))

3: if feasibilityThreshold < 1 then

4: return -1

5: end if

6: remainingCPU = hcpu* - ocpu

7: remainingMemory = hmemory
* - omemory

8:
difference ¼j remainingCPU

hcpu
� remainingMemory

hmemory

j

9:
suitability ¼ difference

feasibilityThreshold

10: if s ∈ himg then

11: suitability = suitability * CF

12: end if

13: return suitability

14: end function
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Algorithms
To realize our BTU-based provisioning approach, we have devised three algorithms, which

are discussed in detail in this section. These three algorithms realize individual tasks for

the upscaling and downscaling procedures as shown in Figs. 4 and 5. Algorithm 1 ensures

the SLA compliance of the individual operator types on a regular basis by interpreting the

monitoring information of the VISP Runtime. The other two algorithms are only

triggered if a new operator instance needs to be started or when there is a shortage of free

computational resources. These two algorithms analyze the SLA compliance and resource

Algorithm 3 Operator Selection Algorithm

1: function DOWN(o)

2: if o# < 2 then

3: return -1

4: end if

5:
instances ¼ o# �minðo# 2 OÞ

maxðo# 2 OÞ �minðo# 2 OÞ
6: delay ¼ od

oslo
� 1þ Pð Þ

7: scalings ¼ osP
os2O os

8: if oqueue < 1 then

9: queueLoad = QL

10: else

11: queueLoad = 0

12: end if

13: return 1 + W1 * instances + W2 * queueLoad - W3 * delay - W4 * scalings

14: end function

BTU of host ends

No running operator
instances

Try scaledown of all
operator instances 

Scaledown successful

Scaledown
not successful

S�ll running operator
instances

Try migra�on of all
operator instances 

Migra�on
successful 

Migra�on is not
successful

S�ll running operator
instances

Host leased for
another BTU

Prolong leasing

Host released

Release host

Downscaling plan
exists

Simulate 
operator 

downscaling
and migra�on

Simula�on 
not successful

Simula�on
succesful

Figure 5 Downscaling procedure for a host. Full-size DOI: 10.7717/peerj-cs.141/fig-5

Hochreiner et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.141 13/36

http://dx.doi.org/10.7717/peerj-cs.141/fig-5
http://dx.doi.org/10.7717/peerj-cs.141
https://peerj.com/computer-science/


usage on demand at specific points in time and identify the most suitable host for

upscaling (Algorithm 2) or potential operator types, which can be scaled down

(Algorithm 3). Although these algorithms do not represent the core functionality of the

resource provisioning approach, they are still essential to identify required upscaling

operations and choose the optimal degree of parallelism per operator whereas the overall

cost-reduction and reconfiguration is represented by the downscaling procedure shown in

Fig. 5. The remainder of this section discusses the structure and rationale of these three

algorithms in detail.

The Upscaling Algorithm as listed in Algorithm 1 is used to evaluate whether any

operator needs to be scaled up. This algorithm is executed on a regular basis for each

operator type o and either returns 0, if the current stream processing capabilities are

enough to comply with the SLAs, or 1 if the operator type needs to be scaled up.

Therefore, this algorithm considers, on the one hand, the current processing duration of

the operator (Line 2) and, on the other hand, the trend of the previous processing

durations. For the trend prediction, we apply a simple linear regression for the last N

observations, based on the linear least squares estimator (Lines 5–9). If the current

duration od or the predicted duration is higher than the SLO oslo, we consider the operator

type to be scaled up (Line 10). Before we trigger the upscaling operation, we apply an

additional check if the upscaling operation is required.

The stream processing topology may retrieve short-term data volume peaks,

e.g., due to short network disruptions. These peaks would not require any additional

computational resources, because they would be dealt with after a short time with the

already available processing capabilities. Nevertheless, the upscaling algorithm would

trigger the upscaling procedure, because it would detect the processing delay. Therefore,

the algorithm also considers the current load of data items oqueue before scaling up by

checking whether the amount of queued items for processing exceeds a scalingThreshold

(Lines 13–16).

Algorithm 2, i.e., the Host Selection Algorithm, is used to rank all currently leased

hosts according to their suitability to host a new operator instance of a particular operator

type. Therefore, the algorithm evaluates for each host h whether a new instance of the

required operator type o could be hosted on that specific host at all. Here, the algorithm

considers both, the CPU andmemory requirements, and derives the maximum amount of

instances that can be hosted. If this value is less than 1, i.e., there are no resources left for a

single additional operator instance, the function returns a negative value. The first check

evaluates the feasibility of deploying a new operator instance on the host (Lines 2–5). In a

second stage, this algorithm evaluates the suitability of this host. Here the algorithm

simulates the resource usage of the host, assuming the operator instance would be

deployed on the host. The overall goal is an equal distribution of CPU and memory usage

across all hosts, to avoid situations where hosts maximize their CPU usage, but hardly use

any memory and vice versa. Therefore, the algorithm calculates the difference between the

normalized CPU usage and memory usage, whereas a lower value represents a better ratio

between CPU and memory and therefore a better fit (Lines 6–9). Besides the equal

distribution of memory and CPU on the individual hosts, we also want to distribute
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the operators equally among all currently leased hosts. The assigned CPU ocpu and

memory omemory attributes only represent the resources which are guaranteed for the

operators. This allows operators to use currently unused resources of the hosts based

on a first come first service principle. To maximize the usage, we aim for an equal

distribution of the unassigned resources, i.e., hcpu� and hmemory�, which can be used by the

operators to cover short-term data volume peaks without any reconfigurations required.

This aspect is covered by dividing the difference value by the feasibility value to prefer those

hosts which are least used (Line 9). Last, we also consider the deployment time aspect for a

particular operator type. Here, we prefer those hosts, which have already the operator

image cached. While such operator images may be rather small for SPEs which operate on

a process or thread level, like Apache Storm, these images can reach up to 100 MB for

containerized operators. This requires some time to download the operator images from

an external repository. In order to distinguish hosts, which have a cached copy of the

operator image from those hosts that do not have a cached copy of the operator

image, we multiply the suitability with a constant factor CF to create two different

groups of hosts for the overall selection (Lines 10–12). For this constant factor, we

recommend to use the value 0.01 which was also used in the remainder of our work.

The value 0.01 was chosen to clearly distinguish these two groups, since the actual

suitability values are always in the range of 0–1 based on the structure of the algorithm.

Each of these group maintains their resource-based ordering, but we prioritize those hosts

that provide a faster startup time due to the cached image, i.e., the group with lower

values. The result of this algorithm is either a negative value for a host, i.e., the host can

run the new operator instance, or a positive value, whereas the lowest value among several

hosts shows the best suitability.

Algorithm 3, i.e., the Operator Selection Algorithm, is used to select operator types

which can be scaled down without violating the SLOs. Therefore, this algorithm considers

several static as well as runtime aspects of the operator types. The goal of the algorithm is

to obtain a value which describes the suitability of a particular operator type to be scaled

down. Whenever the value is negative, the operator type must not be scaled down, i.e., all

operator instances for this type are required to fulfill the SLO.

First, the algorithm ensures that there is at least one operator instance for the given

operator type (Lines 2–4). Second, the function considers the amount of all currently

running instances for the specific operator type and normalizes it to obtain a value

between 0 and 1 (Line 5). This normalization is carried out based on the maximal

respectively minimal amount of instances for all operator types. This value represents the

aspect that it is better to scale down an operator type with numerous operator instances

because the scale down operation removes a smaller percentage of processing power

compared to an operator type with fewer operator instances.

Furthermore, we consider the SLA compliance of the particular operator. Here, we

consider the actual compliance for the processing duration and multiply it with the

penalty cost as a weighting factor (Line 6). Since the penalty cost for the violation of a

single data item is typically lower than 1, we add 1 to the penalty cost P. Whenever the

processing duration od takes longer than the SLO oslo, the delay value will be less than 1,
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but when there is any delay, the delay value can become arbitrarily high. The next value

for consideration is the relative amount of scaling operations (both up and down)

in contrast to the entire scaling operations (Line 7). Here, we penalize previous

scaling operations because we want to avoid any oscillating effects, i.e., multiple up-

and down-scaling operations for a specific operator. The last factor is the queueLoad.

In the course of our evaluations, we have seen that the algorithm may take a long time

to recover after a load peak, i.e., release obsolete operator instances as soon as the

data is processed. This can be observed when the SPE is confronted with a massive data

spike followed by a small data volume for some time. For this scenario, the heuristic

discourages any downscaling operation due to the delay factor, which may be high due to

the delayed processing of the data spike. To resolve this shortcoming, we introduce the

queueLoad factor QL, which encourages the downscaling of an operator type, as soon as

no data items are waiting in the incoming queue oqueue (Lines 8–12). For QL we

recommend the use of the value 100 to clearly indicate that the operator type can be

scaled down, regardless of the other values which are in the range of 0–1 for the instances

and scalings value or significantly lower than 100 for the delay value. This value was

selected based on a number of preliminary experiments prior to the actual evaluation

where the data processing never took longer than 50 times of the intended processing

duration.

Finally, we join the distinct aspects to obtain the overall utility value. While the

number of instances and queueLoad represent a positive aspect to scale down an operator,

all other aspects discourage a scaling operation. The instances and scalings value are

normalized between 0 and 1 whereas the scalings value can exceed 1 if the data processing

is delayed. Therefore, we introduce optional weights W1, W2, W3, and W4 for the

different aspects, whereas the default value for each of these weights is 1 to treat all aspects

with the same emphasis. The result is the utility value, which describes the suitability of

the particular operator to be scaled down, whereas a higher value suggests a better

suitability (Line 13).

EVALUATION
Evaluation setup
For our evaluation, we revisit our motivational scenario (see Motivation) and discuss

the concrete implementation of this topology.

Sensor types

First, we are going to discuss the sensors which emit the data items for our topology.

In this topology, we consider three different sensor types, as listed in Table 1. Each of

these sensor types generates a data item, with a particular structure, which can be

only processed by a dedicated operator type, e.g., O1 for sensor type S2. Due to the

different structure, the size of the data items also differs. The first and the last sensor

type (S1 and S3) encode the information in plain text. This results in rather small data

items with a size of 90–95 Bytes. The second sensor type encodes the information with an

image and is therefore much larger, i.e., around 12,500 Bytes.
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Operator types
The second important implementation aspect for the topology are the operators. Each of

these operator types performs a specific task with specific resource requirements and

specific processing durations. Table 2 lists all operator types which are used in this

evaluation. Each operator is assigned a number of different performance as well as

resource metrics. The resource metrics represent mean values across several topology

enactments. The processing duration represents the average times which are required to

process one specific data item as well as the time the data item is processed within the

messaging infrastructure between the previous operator and the one in focus. The CPU

metric represents the amounts of shares which are required by the operator when executed

on a single core VM. The memory value represents the mean memory usage. This

memory value accumulates the actual used memory by the operator instances and the

currently used file cache, which results in a rather high value compared to the actual size of

the operator image. The CPU metric and the memory metric are determined based on

long-term recordings, whereas the stated value in the table is calculated by adding both the

absolute maximum and the average value of all observations for a specific operator and

dividing this value by 2. For the processing duration, we have conducted several

preliminary evaluations, where the SPE is processing constant data volumes in a fixed

over-provisioning scenario to avoid any waiting durations for the recordings.

For the storage operator, we have three different sizes. Because the majority of the

processing operators only implement processing logic, the size of the images is the same.

The only two exceptions are the Generate Report (O9) image, which also contains a PDF

Table 1 Sensor types.

Emission rate/min Size (Bytes)

Availability sensor (S1) 5 95

Production data (S2) 1 12,500

Temperature sensor (S3) 10 90

Table 2 Stream processing operator types.

Processing

duration (ms)

CPU

shares

Memory

(MB)

Storage

(MB)

State Outgoing

ratio

Parse and Distribute

Data (O1)

1,500 660 452 89 ✓ 1:3

Filter Availability (O2) 600 131 524 68 ✓ 50:1

Calculate Performance

(O3)

750 100 430 68 ✓ 1:1

Calculate Availability (O4) 750 83 502 68 ✓ 1:1

Calculate Quality (O5) 750 77 527 68 ✓ 1:1

Monitor Temperature (O6) 600 65 440 68 ✓ 100:1

Calculate OEE (O7) 700 46 464 68 ✓ 3:1

Inform User (O8) 500 74 466 68 ✓ 1:0

Generate Report (O9) 1,300 47 452 70 ✓ 300:1
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generation library and the Parse and Distribute Data (O1) operator image, which also

contains the tesseract binary, which is required to parse the images. Each of the stateful

operators, as indicated in the table, can store and retrieve data from the shared state to

synchronize the data among different data items and different instances of one operator

type. The outgoing ratio describes whether a particular operator type consumes more data

items than it emits, e.g., O7 combines three data items before it emits a combined one, or

whether it emits more data items than it receives, e.g., O1 distributes the production

information to three other operator types.

For our scenario, we have implemented nine different operators (https://github.com/

visp-streaming/processingNodes) as Spring Boot (https://projects.spring.io/spring-boot/)

applications, which are discussed in detail in the remainder of this section.

Parse and distribute data (O1)

The Parse and Distribute Data operator type is designed to receive an image with

encoded production data and parse this image to extract the information. For our

implementation, we use the tesseract OCR engine (https://github.com/tesseract-ocr/

tesseract) to parse the image and then the Spring Boot application forwards the machine-

readable production data to the downstream operator types.

Filter availability (O2)

Each manufacturing machine can have three different availability types: available, planned

downtime, and defect. While the first two types represent intended behavior, the last type

signals a defect and should be propagated to a human operator. This operator issues a

warning for each new defect notification and filters all other data items.

Calculate performance (O3)

The Calculate Performance operator type calculates the performance of the last reporting

cycle, i.e., the time between two production data emissions. The actual performance is

derived by the formula shown in Eq. (2) (Nakajima, 1988).

performance ¼ producedItems� idealProductionTime

reportingCycle
(2)

Calculate availability (O4)

The Calculate Availability operator type represents the overall availability of the

manufacturing machine from the beginning of the production cycle, e.g., the start of the

evaluation. The availability is defined by the formula shown in Eq. (3) (Nakajima, 1988).

availability ¼ totalTime� scheduledDowntime� unscheduledDowntime

totalTime
(3)

Calculate quality (O5)

The Calculate Quality operator type represents the ratio between all produced goods

against defect goods from the beginning of the production cycle. The quality is defined by

the formula shown in Eq. (4) (Nakajima, 1988).
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quality ¼ totalProducedGoods� totalDefectiveGoods

totalProducedGoods
(4)

Monitor temperature (O6)

The Monitor Temperature operator type filters all temperatures below a predefined

threshold and issues a notification to the human operator for each new temperature

violation.

Calculate OEE (O7)

The Calculate OEE operator synchronizes the upstream operations based on the

timestamp of the initial data item and calculates the overall OEE value according to the

formula in Eq. (5).

OEE ¼ availability � performance � quality (5)

Inform user (O8)

The Inform User operator type forwards the notifications to a human user. In our

evaluation scenario, this operator type only serves as a monitoring endpoint for the SLA

compliance and all incoming data items are discarded at this operator type.

Generate report (O9)

The Generate Report operator aggregates multiple OEE values and generates a PDF report

which aggregates a predefined amount of OEE values. This report is then forwarded to the

user for further manual inspection.

Evaluation deployment
For our evaluation, we make use of the VISP Testbed (Hochreiner, 2017), which is a toolkit

of different evaluation utilities that support repeatable evaluation runs. The most notable

component of this toolkit is the VISP Data Provider, which allows simulating an arbitrary

amount of data sources. Furthermore, the Data Provider also allows defining different

arrival patterns (see Data Arrival Pattern) to evaluate the adaptation possibilities of the

VISP Runtime, in particular of its scaling mechanisms.

The evaluation runs are carried out in a private cloud running OpenStack

(https://www.openstack.org), whereas the components are deployed on different VMs,

as depicted in Fig. 6. The most relevant VM for our evaluation is the Infrastructure

VM, which hosts the VISP Runtime as well as all other relevant services, like the

Message Infrastructure, i.e., RabbitMQ (https://www.rabbitmq.com), the Shared State,

i.e., Redis (http://redis.io) and the Data Storage, i.e., a MySQL (https://www.mysql.com)

database.

For the topology enactment, the VISP Runtime leases (and releases) an arbitrary

amount of VMs, i.e., Dockerhost VMs, on the private OpenStack-based cloud at runtime.

These Dockerhost VMs are used to run the Operator Instances, which take care of the

actual data processing as described in “System Architecture.” The Operator Images, which

are required to run the Operator Instances, are hosted on an external service, i.e.,
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Dockerhub (https://hub.docker.com). Finally, the Data Provider VM is in charge of

simulating the data stream from the sensors, as described in “Sensor Types.”

Evaluation configuration
For the scalingThreshold used in Algorithm 1, we use the value 50. This value was

selected to be high enough to allow for minimal hardware disturbances, e.g., moving

data from memory to the hard drive, but low enough to react to small changes of

the data volume. The concrete value was identified on a number of preliminary

experiments, evaluating different thresholds in the range of 10–1,000 items, whereas

the threshold 50 was identified as the most suitable value for our purpose. Regarding

the individual weights W1–W4 used in Algorithm 3, we use the default value of 1 to

evaluate the base design of our BTU-based provisioning approach without any specific

emphasis on either the number of instances, scaling operations, queue load or the

processing delay.

Besides the configuration aspects for Algorithms 1 and 3, there are also several

other configuration aspects for the VISP Runtime. We chose a monitoring timespan of

15 s, i.e., the queue load and resource usage of the system is recorded every 15 s. The

resource provisioning interval is set to 60 s. This interval has been selected to update

the resource configuration for the SPE in short time intervals while ensuring enough time

to download Operator Images from the external repository within one resource

provisioning interval.

Regarding the BTU, we use three different BTU durations. The first duration is 60 min

(BTU60), which used to be the predominant BTU of Amazon EC2 (https://aws.amazon.

com/emr/pricing/). The second duration is 10 min (BTU10), which represented the

minimal BTU for the Google Compute Engine (https://cloud.google.com/compute/

pricing) and the last duration is 30 min (BTU30), which has been selected to present

a middle ground between the other two BTUs. Furthermore, we assume a linear

pricing model for the BTUs, i.e., one leasing duration for the BTU10 model results in

1 cost, one leasing duration for the BTU30 model results in 3 cost and the leasing duration

for the BTU60 model results in 6 cost. For each data item, which is delayed, we accrue

0.0001 penalty cost, i.e., 10,000 delayed items render the same cost as leasing a VM for

10 min. These penalty cost have been chosen to impose little cost for delayed processing

compared to penalty cost in other domains, e.g., for business processes (Hoenisch et al.,

2016). However, preliminary experiments have shown that higher penalty cost,

OpenStack Cloud
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Data Provider

VISP Run�me

Message 
Infrastructure Shared State

Data Storage Operator
Instance

Operator
Instance

Docker Hub

Operator
Image

Operator
ImageData Provider VM Infrastructure VM Dockerhost VM

Figure 6 Deployment for the evaluation scenario. Full-size DOI: 10.7717/peerj-cs.141/fig-6
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e.g., 0.001 or 0.01, would render unreasonable high penalty cost compared to the actual

resource cost even for a high SLA compliance. Finally, each Dockerhost VM has the

same computational resources with four virtual CPU cores and 7 GB RAM.

Baseline
To evaluate our BTU-based provisioning approach, we have selected a threshold-based

baseline provisioning approach. The baseline implements a commonly used provisioning

approach which already achieves very good results in terms of cost reduction against an

over-provisioning scenario as shown in our previous work (Hochreiner et al., 2016a). The

approach considers the amount of data items waiting on the incoming queue for

processing as scaling trigger. As soon as the variable oqueue exceeds an upper threshold

according to Algorithm 1, the SPE triggers an upscaling operation for this operator and

as soon as oqueue falls below a lower threshold, i.e., 1, the SPE triggers one downscaling

action of an operator. Besides the single upscaling trigger, our threshold-based

approach triggers the upscaling operation twice, if oqueue surpasses a second upper

threshold of 250 data items waiting for processing. Regarding the leasing of VMs, we apply

an on-demand approach, where the SPE leases a new VM as soon as all currently used

VMs are fully utilized and releases a VM, as soon as the last operator instance on that

VM is terminated.

Data arrival pattern
For our evaluation, we have selected four different arrival patterns which simulate

different load scenarios for the SPE by submitting varying data volumes to the SPE.

The first arrival pattern has three different data volume levels, which are changed stepwise,

so that the resulting arrival pattern could be approximated to a sinus curve, as shown

in Fig. 7A. These three different volume levels simulate different amounts of

manufacturing machines ranging from two to eight machines that emit different

amounts of data items, as shown in Table 1. To speed up the evaluation, we simulate

the real time data emissions shown in Table 1 every 480 ms. This enables us on the

one hand to simulate 500 real-time minutes within only 4 min in the course of our

evaluation and therefore also increases the load on the SPE. This also results in a

volume level change every 4 min.

The second arrival pattern has only two levels, i.e., the lowest and the highest of the first

pattern, which confronts the SPE with more drastic volume changes, as shown in Fig. 7B.

Due to the fact that we only apply two different levels, the state changes are twice as long as

for the first pattern, i.e., 8 min.

The third and the fourth pattern represent randomwalks as defined by Eq. (6), whereas

R represents a random number between 0 and 1. This random walk is initialized with

machine = 4 and we have selected two random walk patterns which stay between one and

eight machines. The results of this random walk can be seen in in Fig. 7C for the first

random walk and in Fig. 7D for the second one. Due to the random characteristic of the

pattern generation, this pattern exhibits more changes of the data volume in short times

compared to the first two data arrival patterns.
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machinen ¼
machinen�1 � 1 R < 0:4
machinen�10:4 � R � 0:6
machinen�1 þ 1 R > 0:6

8<
: (6)

All four patterns are continuously generated by the VISP Data Provider (https://

github.com/visp-streaming/dataProvider) throughout the whole evaluation duration

of 120 min.

Metrics
To compare the evaluation results for both the BTU-based and the threshold-based

resource provisioning approaches, we have selected several metrics to describe both the

overall cost as well as SLA compliance metrics. After each evaluation run, these metrics are

extracted by the VISP Reporting Utility (https://github.com/visp-streaming/reporting).

The most important metric is Paid BTUs, which describes the total cost for data

processing. This value comprises all VM Upscaling and VM Prolonging operations, which

either lease new VMs or extend the leasing for another BTU for existing ones. The VM
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Figure 7 Data arrival patterns. (A) shows the stepwise data arrival pattern; (B) shows the 2-level data arrival pattern; (C) shows the data arrival

pattern based on the random walk 1; (D) shows the data arrival pattern based on the random walk 2.

Full-size DOI: 10.7717/peerj-cs.141/fig-7
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Downscaling sums up all downscaling operations, which are conducted before the end of

the BTU.

The next set of metrics describes the SLA compliance of the stream processing

application. Each stream processing operator is assigned a specific processing duration

which describes the processing duration in a constant over-provisioning scenario. Due to

the changing data volume in our evaluation scenarios, it is often the case that the system

suffers from under-provisioning for a short time, which results in longer processing

durations. To assess the overall compliance of the processing durations, we define three

different SLA compliance levels. The first compliance level requires real-time processing

capabilities, and states the share of data items that are produced within the given

processing duration. The second level applies near-real-time requirements, which is

defined by processing durations that take at most twice as long as the defined processing

duration, and the third level applies a relaxed strategy, which means that the data items

need to be processed within at most five times the stated processing duration. These SLA

metrics are obtained from the processing duration of the data items, which are recorded

by the operators. To reduce the overall monitoring overhead, we only measure the

processing duration of every 10th data item. Nevertheless, preliminary evaluations with

other intervals, e.g., every data item or every third data item have shown a similar metric

reliability. This similar reliability can be explained due to the fact that observing every

10th data item still yields about 20–40 performance readings/second (depending on

the data volume). Therefore it is save to assume that these metrics cover all scaling

decisions of the SPE because all other activities, e.g., spawning a new operator instance

takes 5–10 s or leasing a new VM takes about 30–60 s.

The Time to Adapt metric states the arithmetic mean duration, which is required until

the delayed processing for an operator type is back to real-time processing.

The last metrics describe the scaling operations of operator instances. Here we consider

Upscaling, Downscaling as well as Migration operations among different hosts.

RESULTS AND DISCUSSION
For our evaluation we consider four different provisioning approaches. The first approach

is the BTU-agnostic threshold-based approach while the other three approaches are BTU-

based approaches with three different BTU configurations as discussed in “Evaluation

Deployment.” To obtain reliable numbers, we have conducted three evaluation runs for

each provisioning approach and data arrival pattern, which results in 48 evaluation runs.

These evaluations have been executed over the time span of four weeks on a private

OpenStack cloud. The raw data of the evaluation runs is hosted on Github (https://github.

com/visp-streaming/PeerJ_rawData) and the concrete numbers can be reproduced by

means of the VISP Reporting tool (https://github.com/visp-streaming/reporting).

The discussion of our evaluation is divided in four subsections based on the four data

arrival patterns. Each subsection features a table which lists the average numbers of the

three evaluation runs alongside with their standard deviations. Additionally, we also

provide a figure which represents the resource configurations of the operator instances

and VMs over the course of the evaluation for each data arrival pattern.
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For the discussion we are going to analyze the differences between the BTU-based and

the threshold-based approach in detail only for the stepwise data arrival pattern because

this arrival pattern allows us to isolate specific aspects of the BTU-based approach.

Nevertheless, our evaluations shows that the overall trend regarding the SLA compliance

and total cost is the same for all four data arrival patterns. For the other arrival patterns we

only highlight specific aspects of the individual pattern and refer for all other effects to the

discussion of the stepwise data arrival pattern.

Stepwise data arrival pattern
For the stepwise pattern, we can see that the overall SLA compliance is higher for the BTU-

based approach for all three SLA compliance scenarios as shown in Table 3. This

compliance benefit ranges from 9% for the BTU10 configuration in the real-time

compliance scenario, up to 24% in the relaxed compliance scenario for the BTU60

configuration. The SLA compliance gain can be explained due to the downscaling

strategy of the BTU-based approach in contrast to the on-demand one for the threshold-

based approach. The threshold-based approach only considers the amount of data items

that are considered for processing based on each operator type for the scaling decisions,

which can be observed in Fig. 8D. This figure shows that the line for the operator instances

follows the data volume very closely with a short delay because the threshold-based

approach can only react based on the changes of the data volume. On closer inspection,

one can also identify smaller increases after the downscaling phase, e.g., around

minutes 40, 55 or 70. These smaller bumps indicate that the downscaling approach was

too eager and the SPE has to compensate it by scaling up again. Throughout this time

span, i.e., between the detection of a lack of processing capabilities and the successful

upscaling for the operator type, the SPE is very likely to violate the SLA compliance,

especially in the real-time scenario.

The BTU-based approach does not exhibit such a strongly coupled relationship

between the operator instances and the data volume. While the upscaling trigger is the

same for both scenarios, there are clear differences in the downscaling behavior. The BTU-

based approach only considers downscaling activities briefly before the end of a BTU, e.g.,

around minutes 20 or 40 for the BTU10 scenario, around minute 30 for the BTU30

scenario and around minute 60 for the BTU60 scenario in Figs. 8B and 8C. The result of

Table 3 Evaluation results for stepwise scenario.

BTU-based Threshold-based

BTU10 BTU30 BTU60 BTU10 BTU30 BTU60

Real-time compliance 49% (s = 1%) 52% (s = 1%) 53% (s = 1%) 40% (s = 1%)

Near real-time compliance 85% (s = 2%) 90% (s = 1%) 93% (s = 1%) 67% (s = 1%)

Relaxed compliance 89% (s = 1%) 93% (s = 1%) 95% (s = 1%) 71% (s = 1%)

Resource cost 72.33 (s = 3.79) 92.00 (s = 1.73) 98.00 (s = 3.84) 58.00 (s = 1.73) 79.00 (s = 4.58) 120.00 (s = 6.00)

Real-time total cost 158.91 (s = 0.82) 173.39 (s = 0.68) 174.69 (s = 4.25) 151.83 (s = 1.95) 172.83 (s = 4.93) 213.83 (s = 6.45)

Near real-time total cost 96.85 (s = 0.39) 108.24 (s = 0.50) 108.88 (s = 3.17) 109.59 (s = 1.77) 130.59 (s = 4.73) 171.59 (s = 6.35)

Relaxed total cost 90.96 (s = 1.84) 103.03 (s = 1.04) 105.41 (s = 2.91) 102.97 (s = 1.57) 123.97 (s = 4.49) 164.97 (s = 6.12)
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this lazy downscaling strategy is a decrease of scaling activities, especially for the BTU30

and BTU60 scenario. This decrease in scaling activities results in a better SLA compliance

since the SPE already maintains the processing capabilities for future data volume

peaks as this is the case for the stepwise data arrival pattern. This results in high SLA

compliance values of over 90% for the BTU30 and BTU60 scenario. It needs to be

noted that the lack of active downscaling activities does not increase the cost for

computational resources since these resources have already been paid at the beginning

of their BTU.

The BTU-based downscaling operations are often triggered at suitable times, e.g.,

around minutes 20 and 38 for the BTU10 configuration or minute 70 for the BTU30

configuration, where the downscaling activities do not impact the SLA compliance.

Nevertheless, there are also points in time, when the BTU of a VM coincides with a

peak of the data volume, e.g., at minute 30 for the BTU30 configuration. In these

situations, the BTU-based approach will initialize the downscaling procedure to release a

VM shortly before the end of its BTU. In this specific case around minute 30 for the

BTU30 scenario, the downscaling procedure is successful because monitoring does not

report any delays for processing based on Algorithm 3 and the VM is triggered to be shut
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Figure 8 Stepwise pattern. (A) shows the resource provisioning configuration using the BTU-based approach using a BTU of 10 min

for the stepwise data arrival pattern; (B) shows the resource provisioning configuration using the BTU-based approach using a BTU of 30 min for

the stepwise data arrival pattern; (C) shows the resource provisioning configuration using the BTU-based approach using a BTU of 60 min for the

stepwise data arrival pattern; (D) shows the resource provisioning configuration using the threshold-based approach for the 2-level data arrival

pattern. Full-size DOI: 10.7717/peerj-cs.141/fig-8
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down. But in the next reasoning cycle, the SPE realizes the lack of processing capabilities

and leases another VM to compensate the resource requirements. Although these

non-efficient scaling operations result in a measurable overhead as well as an SLA

compliance reduction, the BTU-based approach still achieves a better SLA compliance

than the threshold-based approach.

Furthermore, it can be seen that the amount of scaling activities for the operator

instances is inverse to the length of the BTU. For the BTU10 configuration, it can be

observed in Fig. 8A that the level of scaling activities is similar to those of the threshold-

based scenario. This results in a rather low SLA compliance, but for the BTU30 and

especially the BTU60 there are less downscaling events, i.e., BTU ends, which reduces the

need to scale up again to comply with future data volume peaks.

Besides the SLA compliance, we also consider the operational cost for data processing.

These cost are composed of the resource cost, i.e., the cost for leasing VMs and the

penalty cost, which accrue for delayed data processing. In Table 3, it can be seen that the

resource cost for the BTU10 and BTU30 configuration are higher than the ones for the

threshold-based ones. These higher cost can be explained due to the defensive approach of

releasing VMs for the BTU-based approach, which often results in leasing the VM for

another BTU based on Algorithm 3. For the BTU60 configuration, the resource cost

are around 19% lower than those for the threshold-based configuration. Although the

BTU60 configuration uses more computational resources, as shown in Fig. 8C, the

overall cost are lower, because the threshold-based approach releases the VMs often

prematurely before the end of their BTU, which results in a waste of already paid

resources.

When we consider only the resource cost, we can see that the BTU-based approach only

outperforms the threshold-based approach for the BTU60 configuration. Nevertheless,

this situation changes when we also consider the penalty cost, i.e., 1 cost for 10,000 delayed

items. After adding the penalty cost and analyzing the total cost for the different

compliance scenarios, we can see that only the real-time total cost for the BTU10

configuration is higher than the threshold-based approach. All other scenarios result in

slightly less cost for the BTU30 configuration in the real-time scenario and up to a 36%

cost-reduction for the near real-time one for the BTU60 configuration.

Two-level data arrival pattern
The two-level data arrival pattern exhibits the same trend for the SLA compliance and

cost for the stepwise data arrival pattern as shown in Table 4. When we analyze the

Figs. 9A–9D, we can also see a similar scaling behavior compared to the stepwise data

arrival pattern. Nevertheless, there is one notable effect for the BTU60 configuration in

Fig. 9C. The BTU-based provisioning approach tends to start more and more operator

instances throughout the evaluation run. We can see that after minute 20, when the SPE

has enough processing capabilities, the upscaling trigger requests new operator

instances from time to time to cope with the data volume. These upscaling operations

are most likely due to minor external events, e.g., short network delays due to other

applications running on the same physical hardware, which causes the SPE to obtain
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new processing capabilities. The result of this slow increase of operator instances over

time is that the SPE is likely to have more processing capabilities than it actually needs.

Nevertheless, at the end of the BTU of a VM, the necessity of these processing

capabilities is evaluated, and for example in the BTU60 configuration, the operator

instances are cut back around minute 60. After a short recalibration phase between
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Figure 9 Two-level pattern. (A) shows the resource provisioning configuration using the BTU-based approach using a BTU of 10 min for the

2-level data arrival pattern; (B) shows the resource provisioning configuration using the BTU-based approach using a BTU of 30 min for the 2-level

data arrival pattern; (C) shows the resource provisioning configuration using the BTU-based approach using a BTU of 60 min for the 2-level data

arrival pattern; (D) shows the resource provisioning configuration using the threshold-based approach for the 2-level data arrival pattern.

Full-size DOI: 10.7717/peerj-cs.141/fig-9

Table 4 Evaluation results for two-level scenario.

BTU-based Threshold-based

BTU10 BTU30 BTU60 BTU10 BTU30 BTU60

Real-time compliance 48% (s = 1%) 50% (s = 1%) 55% (s = 1%) 40% (s = 2%)

Near real-time compliance 84% (s = 2%) 88% (s = 0%) 93% (s = 2%) 68% (s = 2%)

Relaxed compliance 88% (s = 2%) 91% (s = 0%) 95% (s = 1%) 72% (s = 2%)

Resource cost 82.33 (s = 5.13) 96.00 (s = 7.94) 104.00 (s = 6.93) 66.00 (s = 0.00) 86.00 (s = 1.73 122.00 (s = 3.46)

Real-time total cost 169.17 (s = 6.83) 177.62 (s = 6.82) 175.90 (s = 4.77) 157.88 (s = 2.64) 177.88 (s = 4.17) 213.88 (s = 4.16)

Near real-time total cost 108.35 (s = 6.74) 155.43 (s = 8.18) 114.50 (s = 6.28) 114.62 (s = 3.21) 134.62 (s = 4.19) 170.62 (s = 2.94)

Relaxed total cost 102.37 (s = 6.74) 110.62 (s = 8.18) 111.73 (s = 6.28) 108.83 (s = 2.40) 128.83 (s = 3.37) 164.83 (s = 2.59)
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minutes 65 and 75, the SPE follows the same pattern again until the resources are cut

back again around minute 120. This mechanism allows the SPE to use the already leased

resources, i.e., no additional VMs are leased from minute 80 until 120, to achieve a high

resource utilization.

Random walk 1 data arrival pattern
Based on the numbers of Table 5, we can see that the random walk 1 data arrival

pattern follows the same trend for the SLA compliance as well as total cost as the

stepwise data arrival pattern. At closer inspection we can see that the SLA compliance

is very similar with a deviation of less than 3%. This aspect shows that both the baseline

as well as the BTU-based provisioning approach have similar characteristics for the

rather simple data arrival pattern, like the stepwise or two-level one, as well as

random ones.

Based on the Figs. 10A–10D, we can identify one notable difference between the

BTU-based and the threshold-based resource provisioning approach. While the operator

instance curve and the data volume curve are well aligned for the threshold-based and

the BTU10 configuration, we can identify a clear gap for the BTU30 in Fig. 10B and

especially for the BTU60 configuration (Fig. 10C). For the latter two configurations, the

operator instance curve remains high although the data volume decreases over time. This

behavior can be explained due to the optimal resource usage of the already paid resources,

which enables the BTU30 and BTU60 configuration to keep the running operator

instances without any additional cost. Although this behavior may seem to be a waste of

resources at first sight due to the deviation of the actual data volume and the operator

instances, it becomes beneficial for the SPE in terms of SLA compliance when the volume

rises again, e.g., around minutes 85 or 120.

Random walk 2 data arrival pattern
The numerical results in terms of the SLA compliance and total cost follow similar trends as

for the stepwise data arrival pattern scenario, based on the numbers in Table 6. For this data

arrival pattern also only the BTU10 configuration requires more cost than the threshold-

based baseline for the real-time scenario. All other configurations and scenarios result in

lower cost than the baseline. When we analyze the graphical representation of Figs. 11A–11D

Table 5 Evaluation results for random walk 1.

BTU-based Threshold-based

BTU10 BTU30 BTU60 BTU10 BTU30 BTU60

Real-time compliance 49% (s = 1%) 52% (s = 2%) 54% (s = 0%) 39% (s = 0%)

Near real-time compliance 85% (s = 2%) 90% (s = 3%) 93% (s = 0%) 66% (s = 1%)

Relaxed compliance 89% (s = 2%) 93% (s = 2%) 95% (s = 1%) 71% (s = 1%)

Resource cost 69.33 (s = 3.51) 95.00 (s = 1.73) 110.00 (s = 3.46) 61.33 (s = 1.53) 86.00 (s = 1.73 128.00 (s = 6.93)

Real-time total cost 158.19 (s = 4.99) 176.94 (s = 4.70) 185.95 (s = 3.40) 158.68 (s = 1.54) 183.35 (s = 1.40) 225.35 (s = 6.56)

Near real-time total cost 94.44 (s = 6.14) 111.43 (s = 5.65) 121.61 (s = 2.89) 115.55 (s = 1.14) 140.22 (s = 1.77) 182.22 (s = 6.88)

Relaxed total cost 88.11 (s = 5.86) 106.67 (s = 4.69) 117.91 (s = 3.16) 107.54 (s = 1.47) 132.21 (s = 2.14) 174.21 (s = 7.25)
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for the random walk 2 data arrival pattern, the most prominent difference in contrast to

the random walk 1 data arrival pattern is the even better alignment of the operator instance

and data volume curves. This is due to the fact that the data volume is rising for the second

part of the evaluation, i.e., after minute 40, and the already paid resources can be actively

used for data processing instead of only serving as free backup processing capabilities.
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(A) BTU–based (BTU10) (B) BTU–based (BTU30)

(C) BTU–based (BTU60) (D) Threshold–based

Figure 10 Random walk pattern 1. (A) shows the resource provisioning configuration using the BTU-based approach using a BTU of 10 min for

the random walk data arrival pattern 1; (B) shows the resource provisioning configuration using the BTU-based approach using a BTU of 30 min

for the random walk data arrival pattern 1; (C) shows the resource provisioning configuration using the BTU-based approach using a BTU of

60 min for the random walk data arrival pattern 1; (D) shows the resource provisioning configuration using the threshold-based approach for the

random walk data arrival pattern 1. Full-size DOI: 10.7717/peerj-cs.141/fig-10

Table 6 Evaluation results for random walk 2.

BTU-based Threshold-based

BTU10 BTU30 BTU60 BTU10 BTU30 BTU60

Real-time compliance 49% (s = 2%) 51% (s = 1%) 53% (s = 0%) 41% (s = 1%)

Near real-time compliance 87% (s = 2%) 90% (s = 1%) 92% (s = 1%) 70% (s = 1%)

Relaxed compliance 90% (s = 2%) 94% (s = 1%) 95% (s = 0%) 75% (s = 75%)

Resource cost 74.00 (s = 6.08) 90.00 (s = 0.00) 106.00 (s = 3.46) 59.67 (s = 4.04) 82.00 (s = 9.17 118.00 (s = 9.17)

Real-time total cost 172.67 (s = 5.35) 184.03 (s = 0.99) 195.73 (s = 3.33) 164.18 (s = 3.84) 187.41 (s = 9.88) 223.41 (s = 9.88)

Near real-time total cost 100.17 (s = 6.65) 108.91 (s = 2.47) 120.59 (s = 3.59) 113.41 (s = 3.47) 135.98 (s = 9.93) 171.98 (s = 9.93)

Relaxed total cost 92.67 (s = 7.15) 101.96 (s = 1.61) 115.67 (s = 3.48) 104.43 (s = 2.49) 127.19 (s = 8.29) 163.19 (s = 8.29)
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Furthermore, it can be seen that the BTU-based approach requires less scaling activities

between minute 60 and 120 in contrast to the threshold-based approach in Fig. 11D. This

is again due to the lazy release characteristics of the BTU-based approach, which result

in a higher SLA compliance in contrast to the threshold-based approach.

Evaluation conclusion
When we compare the evaluation results of the four different data arrival patterns, we can

see that they all share the same trend. Regarding the SLA compliance, we can see that the

BTU-based approach achieves a better SLA compliance for all configurations for all

compliance scenarios. Furthermore, the SLA values are roughly the same (with a

maximum deviation of 3%) across all data arrival patterns despite their different

characteristics.

For the total cost, we can also see that only the BTU10 configuration for the real-time

scenario results in higher cost in contrast to the baseline. All other configurations and

scenarios for the BTU-based approach exhibit a cost reduction. Additionally it must be

noted that the resource cost are always lower for the BTU60 configuration than for the

threshold-based approach.
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Figure 11 Random walk pattern 2. (A) shows the resource provisioning configuration using the BTU-based approach using a BTU of 10 min for

the random walk data arrival pattern 2; (B) shows the resource provisioning configuration using the BTU-based approach using a BTU of 30 min

for the random walk data arrival pattern 2; (C) shows the resource provisioning configuration using the BTU-based approach using a BTU of

60 min for the random walk data arrival pattern 2; (D) shows the resource provisioning configuration using the threshold-based approach for the

random walk data arrival pattern 2. Full-size DOI: 10.7717/peerj-cs.141/fig-11
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We can also observe that the compliance for real-time data processing on cloud

infrastructures is rather low, i.e., around 40% for the baseline and around 50–55% for the

BTU-based approach. This is mainly due to the fact that cloud environments are often

influenced by other applications running on the same physical hardware. This can result

in minor data transmission or processing delays that have a severe impact on the SLA

compliance. Nevertheless, we can see that for the near real-time and relaxed time

scenarios, the SLA compliance ranges from 84% to 95% for the BTU-based approach,

which meets the requirements of our motivational scenario discussed in “Motivation.”

Threats to applicability
Although the presented system model builds on top of real-world observations, it cannot

be guaranteed that all external aspects are adequately considered in our system model

which may result in a non-optimal performance in real-world deployments. Nevertheless,

we consider this risk as rather small, since we have already conducted our evaluations in a

cloud-based testbed, which already considers external influences by other applications

running on the same cloud environment. To consider such external effects for the

evaluation, we repeated each evaluation scenario and configuration three times on

different days (including the weekend) to cover different usage scenario on the

OpenStack-based cloud due to other stakeholders on the same physical hardware.

RELATED WORK
In the last couple of years, the landscape of SPEs has been constantly increasing. In

contrast to the rather basic SPEs, like Aurora (Balakrishnan et al., 2004) or Borealis

(Abadi et al., 2005), which have been designed more than a decade ago, today’s SPEs

incorporate technological advances like cloud computing and can process large volumes

of data in parallel. While some of these SPEs are rather focused on cluster-based

deployments, like System S (Gedik et al., 2008), most are designed to utilize

cloud-based deployments, like Apache Spark (Zaharia et al., 2010), Apache Flink

(Carbone et al., 2015), Apache Storm (Toshniwal et al., 2014) or its derivative Heron

(Kulkarni et al., 2015). Despite the focus on designing efficient SPEs, the resource elasticity

aspects of individual operator instances (or workers) have only been picked up recently,

e.g., for Apache Spark Streaming or the automatic reconfiguration for Apache Storm

based on hints for the number of workers. To the best of our knowledge there exists no

established SPEs which consider a two-level resource provisioning architecture, since

most SPEs outsource this functionality to other frameworks like Apache Mesos or

Kubernetes. However, there are a couple of prototypes and concepts in the literature,

which propose a mechanism for elastic stream processing.

Several research groups have picked up the challenge of replacing the previously

dominant strategy of data quality degradation, i.e., load shedding (Babcock, Datar &

Motwani, 2004; Tatbul, Çetintemel & Zdonik, 2007), with resource elasticity. Nevertheless,

most of the first publications focus on an optimal resource configuration only when

deploying a topology and do not consider any updates at runtime, e.g., Setty et al. (2014)

for pub/sub systems or Florescu & Kossmann (2009) for database systems. The next step
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toward resource elasticity was proposed by Lim, Han & Babu (2013), who proposed the

redeployment of complete applications for database management systems whenever the

resource requirements change. Although this approach already supports resource

elasticity, it was required to refine this approach to only consider operator instances

instead of complete applications. One of the first publications in the domain of data

stream processing was authored by Schneider et al. (2009), which proposed the

parallelization of stream processing operations with System S. Because this first approach

only considered stateless operators, the authors complemented their approach in a

succeeding publication to consider the replication of stateful operators (Gedik et al.,

2014). Besides the elasticity extension to System S, there are also several proposed

extensions to Apache Storm, which replace the default scheduler with custom

implementations to optimize the parallelization of operators as well as the placement

thereof on different computational resources. Two of these approaches have been presented

by Aniello, Baldoni & Querzoni (2013) and Xu et al. (2014). These two publications

present threshold-based custom schedulers, which can adopt the topology deployment at

runtime, depending on the incoming data volume and the actual load for Apache Storm.

Although any replication of a specific operator provides additional processing capabilities,

it needs to be noted that any reconfiguration of the topology enactment has a negative

impact on the processing performance. To minimize these reconfiguration aspects, Stela

(Xu, Peng & Gupta, 2016), introduces new performance indicators to focus on the actual

throughput of the SPE and to reduce any reconfiguration aspects.

To extend the rather static aspect of the threshold-based scaling approaches, Heinze

et al. (2015) propose a threshold-based resource optimization, whose thresholds are

adopted based on an online learning mechanism within a custom SPE. This allows

resource optimization to adapt the otherwise fixed thresholds, which are predefined

before the topology enactment, at runtime to improve the resource utilization based on

actual monitoring data. SEEP (Castro Fernandez et al., 2013), another custom SPE, also

proposes a simple threshold-based replication mechanism. In contrast to the other already

discussed approaches, SEEP focuses on stateful operators and employs a dedicated fault

tolerance mechanism.

Besides the basic replication approaches, there are also some works that optimize

specific aspects for the topology enactment. One of these aspects is the partitioning of data

to optimize the data flow among the operators, especially regarding stateful operators.

The Streamcloud (Gulisano et al., 2012) SPE proposes a mechanism to partition the

incoming data to distribute it efficiently among different replicas of one operator type.

Another approach for optimizing the overall efficiency of a topology enactment is

to optimize the placement of operators within a potential heterogeneous pool of

computational resources. Cardellini et al. (2015) propose an extension to Apache Storm,

which considers an optimal placement of operators in terms of SLA-based criteria on

different cloud resources. Furthermore, De Matteis & Mencagli (2016) present a predictive

approach to minimize the latency and improve the energy efficiency of the SPE. This

approach allows to reduce the reconfiguration of SPEs, which is also one of the objectives

in our approach. The last notable approach for optimizing the topology enactment on
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cloud resources is to optimize the deployment of operators according to their specific

processing tasks. Hanna et al. (2016) consider different types of VMs, e.g., with an

emphasis on CPU or GPU, and optimize the deployment based on the suitability of these

machines to conduct specific operations, e.g., matrix multiplications are significantly

faster when executed on the GPU.

Although the literature already provides different optimization approaches, to the

best of our knowledge, none of these approaches considers the BTU aspect of VMs

when optimizing processing resources as proposed in this paper. Also, most of

the discussed approaches only aim at optimizing the amount of replicas for

processing operators, but do ignore the reconfiguration overhead during the

topology enactment.

CONCLUSION
Within this paper, we have discussed the most important requirements for optimizing data

stream processing in volatile environments. Based on these requirements, we have

developed an extensive system model for which we have presented a BTU-based

optimization approach. This optimization approach has been evaluated with four different

data arrival pattern against a threshold-based approach, which already provides a significant

cost reduction based on our previous work (Hochreiner et al., 2016a). The evaluation

has shown that the BTU-based approach results in a better SLA compliance which also

achieves a better overall cost structure compared to the threshold-based approach.

Nevertheless, as a result of the evaluation, we have also identified a potential

extension possibility for our BTU-based approach, namely the addition of a more

sophisticated predictive component. So far we only consider the trend for upscaling

operator instances, but we do not consider historical information nor other monitoring

information, e.g., as suggested by Copil et al. (2016), for downscaling purposes, which could

yield even better results. In our future work, we plan to also apply our BTU-based approach

to hybrid clouds. This requires an extension of the optimization model regarding the

networking capabilities among these clouds. Furthermore, we plan to investigate the

structural properties of the topology in more detail, e.g., to identify critical paths or high

volume operators, such as the operators O2 and O6 in our topology. These insights may

help us to apply different scaling priorities, especially for downscaling operations to avoid

oscillating effects. In addition we also plan to evaluate the impact of using the individual

weights W1–W4 in Algorithm 3 within both private and hybrid clouds.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by TU Wien research funds and by the Commission of the

European Union within the CREMA H2020-RIA project (Grant agreement no. 637066).

There was no additional external funding received for this study. The funders had no role

in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Hochreiner et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.141 33/36

http://dx.doi.org/10.7717/peerj-cs.141
https://peerj.com/computer-science/


Grant Disclosures
The following grant information was disclosed by the authors:

TU Wien research funds and by the Commission of the European Union within the

CREMA H2020-RIA project: 637066.

Competing Interests
Schahram Dustdar and Stefan Schulte are Academic Editors for PeerJ.

Author Contributions
� Christoph Hochreiner conceived and designed the experiments, performed the

experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the

paper, prepared figures and/or tables, performed the computation work, reviewed drafts

of the paper.
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