
A GPU-based solution to fast calculation of
betweenness centrality on large weighted networks
(#19760)

1

First submission

Please read the Important notes below, the Review guidance on page 2 and our Standout reviewing
tips on page 3. When ready submit online. The manuscript starts on page 4.

Important notes

Editor and deadline
John Owens / 3 Sep 2017

Files 4 Figure file(s)
1 Latex file(s)
Please visit the overview page to download and review the files
not included in this review PDF.

Declarations No notable declarations are present

For assistance email peer.review@peerj.com

https://peerj.com/submissions/19760/reviews/214472/
https://peerj.com/submissions/19760/
mailto:peer.review@peerj.com

Review
guidelines

2

Please read in full before you begin

How to review

When ready submit your review online. The review form is divided into 5 sections. Please consider
these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.

Intro & background to show context.
Literature well referenced & relevant.

Structure conforms to PeerJ standards,
discipline norm, or improved for clarity.

Figures are relevant, high quality, well
labelled & described.

Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.

Research question well defined, relevant
& meaningful. It is stated how the
research fills an identified knowledge gap.

Rigorous investigation performed to a
high technical & ethical standard.

Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.

Data is robust, statistically sound, &
controlled.

Conclusions are well stated, linked to
original research question & limited to
supporting results.

Speculation is welcome, but should be
identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-
criteria/

https://peerj.com/submissions/19760/reviews/214472/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/editorial-criteria/
https://peerj.com/about/editorial-criteria/

7 Standout
reviewing tips

3

The best reviewers use these techniques

Tip Example

Support criticisms with
evidence from the text or from
other sources

Smith et al (J of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Give specific suggestions on
how to improve the manuscript

Your introduction needs more detail. I suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

Comment on language and
grammar issues

The English language should be improved to ensure that
your international audience can clearly understand your
text. I suggest that you have a native English speaking
colleague review your manuscript. Some examples where
the language could be improved include lines 23, 77, 121,
128 – the current phrasing makes comprehension difficult.

Organize by importance of the
issues, and number your points

1. Your most important issue
2. The next most important item
3. …
4. The least important points

Give specific suggestions on
how to improve the manuscript

Line 56: Note that experimental data on sprawling animals
needs to be updated. Line 66: Please consider exchanging
“modern” with “cursorial”.

Please provide constructive
criticism, and avoid personal
opinions

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

Comment on strengths (as well
as weaknesses) of the
manuscript

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as I have noted above) which should be
improved upon before Acceptance.

A GPU-based solution to fast calculation of betweenness

centrality on large weighted networks

Rui Fan 1 , Ke Xu 1 , Jichang Zhao Corresp. 2

1 State Key Laboratory of Software Development Environment, Beihang University, Beijing, P. R. China

2 School of Economics and Management, Beihang University, Beijing, P. R. China

Corresponding Author: Jichang Zhao

Email address: jichang@buaa.edu.cn

Recent decades have witnessed the tremendous development of network science, which

indeed brings a new and insightful language to model real systems of different domains.

Betweenness, a widely employed centrality in network science, is a decent proxy in

investigating network loads and rankings. However, the extremely high computational cost

greatly prevents its applicability on large networks. Though several parallel algorithms

have been presented to reduce its calculation cost on unweighted networks, a fast solution

for weighted networks, which are in fact more ubiquitous than unweighted ones in reality,

is still missing. In this study, we develop an efficient parallel GPU-based approach to boost

the calculation of betweenness centrality on quite large and weighted networks.

Comprehensive and systematic evaluations on both synthetic and real-world networks

demonstrate that our solution can arrive the performance of 3.5x to 6.5x speedup over the

parallel CPU implementation by integrating the work-efficient and warp-centric strategies.

Our algorithm is completely open-sourced and free to the community and it is public

available through https://dx.doi.org/10.6084/m9.figshare.4542405. Considering the

pervasive deployment and declining price of GPU on personal computers and servers, our

solution will indeed offer unprecedented opportunities for exploring the betweenness

related problems and spark followup works in network science.

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

https://dx.doi.org/10.6084/m9.figshare.4542405

A GPU-based solution to fast calculation of1

betweenness centrality on large weighted2

networks3

Rui Fan1, Ke Xu1, and Jichang Zhao2
4

1State Key Laboratory of Software Development Environment, Beihang University,5

Beijing, P. R. China6

2School of Economics and Management, Beihang University, Beijing, P. R. China7

Corresponding author:8

Jichang Zhao2
9

Email address: jichang@buaa.edu.cn10

ABSTRACT11

Recent decades have witnessed the tremendous development of network science, which indeed brings

a new and insightful language to model real systems of different domains. Betweenness, a widely

employed centrality in network science, is a decent proxy in investigating network loads and rankings.

However, the extremely high computational cost greatly prevents its applicability on large networks.

Though several parallel algorithms have been presented to reduce its calculation cost on unweighted

networks, a fast solution for weighted networks, which are in fact more ubiquitous than unweighted ones

in reality, is still missing. In this study, we develop an efficient parallel GPU-based approach to boost

the calculation of betweenness centrality on quite large and weighted networks. Comprehensive and

systematic evaluations on both synthetic and real-world networks demonstrate that our solution can

arrive the performance of 3.5x to 6.5x speedup over the parallel CPU implementation by integrating

the work-efficient and warp-centric strategies. Our algorithm is completely open-sourced and free to

the community and it is public available through https://dx.doi.org/10.6084/m9.figshare.

4542405. Considering the pervasive deployment and declining price of GPU on personal computers

and servers, our solution will indeed offer unprecedented opportunities for exploring the betweenness

related problems and spark followup works in network science.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

INTRODUCTION27

Being an emergent and multidisciplinary research area, the network science has attracted much efforts28

denoted from researchers of different backgrounds such as computer science, biology and physics in29

recent decades. In these contributions, betweenness centrality (BC) is always applied as a critical metric30

to measure nodes’ or edges’ significance (Ma and Sayama, 2015; Freeman, 1977; Barthelemy, 2004;31

Abedi and Gheisari, 2015; Goh et al., 2003). For example, Girvan and Newman developed a community32

detection algorithm based on edge betweenness centrality (Girvan and Newman, 2002), Leydesdorff ap-33

plied centrality as an indicator of the interdisciplinarity of scientific journals (Leydesdorff, 2007) and34

Motter and Lai established a model of cascading failures with node load being its betweenness (Motter35

and Lai, 2002). However, the extremely high time and space complexity of calculating betweenness cen-36

trality greatly limits its applicability on large networks. Before the landmark work of Brandes (Brandes,37

2001), the algorithm for computing betweenness centrality requires O(n3) time and O(n2) space. While38

Brandes reduced the complexity to O(n+m) on space and O(nm) and O(nm+n2 logn) on time for un-39

weighted and weighted networks, respectively, where n is the number of vertices and m is the number40

of edges (Brandes, 2001). However, this improved algorithm still can not satisfy scientific computa-41

tion requirements in the present information explosion era as more and more unexpected large networks42

emerge, such as online social networks, gene networks and collaboration networks. For example, Twitter43

possesses hundreds of millions active users which construct a huge online social network. However, a44

weighted network with one million nodes may take about one year to calculate its betweenness centrality45

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

https://dx.doi.org/10.6084/m9.figshare.4542405
https://dx.doi.org/10.6084/m9.figshare.4542405
yzh
删划线

yzh
删划线

yzh
插入号
is

yzh
删划线

yzh
删划线

yzh
在文本上注释
Please reorganize this sentence.

using Brandes’ algorithm, which is an unbearable cost. Existing parallel CPU algorithms may reduce46

the time to several days, which is still too expensive. Because of this, there is a pressing need to develop47

faster BC algorithm for explorations of diverse domains.48

General Purpose GPU (GPGPU) computing, which provides excellent parallelization, achieves higher49

performance compared to traditional CPU sequential algorithms in many issues including network sci-50

ence (Mitchell and Frank, 2017; Merrill et al., 2015; Wang et al., 2015; Harish and Narayanan, 2007;51

Cong and Bader, 2005). CUDA is the most popular GPU-computing framework developed by NVIDIA52

corporation and some researchers have even parallelized Brandes’s algorithm by using it (Shi and Zhang,53

2011; Sariyüce et al., 2013; McLaughlin and Bader, 2014). However, previous works concentrated on54

unweighted networks for simplification, but to our best knowledge, most realistic networks are weighted55

ones. The most significant difference of BC algorithm on unweighted and weighted networks is the56

shortest path segment. In weighted networks, Dijkstra algorithm should be used to solve the single57

source shortest path (SSSP) problem rather than Breadth First Search (BFS) algorithm. Many efforts in58

previous work have been devoted to the GPU version of SSSP problem using the well-known Dijkstra59

algorithm (Martı́n et al., 2009; Ortega-Arranz et al., 2013; Delling et al., 2011; Davidson et al., 2014).60

Although these algorithms have been presented and developed, establishing a parallel version of between-61

ness centrality algorithm on weighted networks is nontrivial because the original SSSP algorithm have62

to be modified in many critical points for this task and to our best knowledge, a proper and fast solution63

is still missing. Aiming at filling this vital gap, we propose a fast solution using CUDA to calculate BC64

on large weighted networks based on previous GPU BC algorithms and SSSP algorithms.65

To make our algorithm more efficient, we make efforts to optimize it by employing several novel66

techniques to conquer the influence of irregular network structures. Real-world networks have many67

characters which could deteriorate the performance of GPU parallelization algorithms. For example, the68

frontier set of nodes is always small compared to the total number of vertices, especially for networks69

with great diameters. In the meantime, the majority of nodes do not need to be inspected in each step,70

hence processing all vertices simultaneously in traditional algorithms is wasteful. McLaughlin and Bader71

proposed a work-efficient strategy to overcome this problem (McLaughlin and Bader, 2014). Another72

well-known issue is that the power-law degree distribution in realistic networks brings about serious load-73

imbalance. Several methods were proposed in previous study to conquer this problem, e.g., Merrill et al.74

employed edge parallel strategy to avoid load-imbalance (Merrill et al., 2015) and Hong et al. dealt with75

this problem by using warp technique (Hong et al., 2011). In this paper, we systematically investigate76

the advantages and drawbacks of these previous methods and implement them in our algorithm to solve77

the above two problems. Experiments on both real-world and synthetic networks demonstrate that our78

algorithm outperforms the baseline GPU algorithm significantly. Our main contributions are listed as79

follows:80

• Based on previous GPU parallel SSSP and betweenness centrality algorithms, we propose an effi-81

cient algorithm to calculate betweenness centrality on weighted networks, which achieves 3.5x to82

6.5x speedup over the parallel CPU algorithm on realistic networks.83

• We compare the traditional node-parallel method to the work-efficient version and the warp-centric84

method. Experiments on realistic networks and synthetic networks demonstrate that the combina-85

tion of the two strategies works better than others, which achieves 2.55x average speedup over the86

baseline method on realistic networks.87

• We package our algorithm to a useful tool which can be used to calculate both node and edge88

betweenness centrality on weighted networks. Researchers could apply this tool to conveniently89

calculate BC on weighted networks fast, especially on large networks. The source code is publicly90

available through https://dx.doi.org/10.6084/m9.figshare.4542405.91

BACKGROUND92

First we briefly introduce the well-know Brandes’s algorithm and Dijkstra algorithm based on the pre-93

liminary definitions of network and betweenness centrality.94

Brandes’s algorithm95

A graph can be defined as G(V,E), where V is the set of vertices, and E is the set of edges. An edge96

is a node pair (u,v,w), which means that there is a link connecting nodes u and v, and its weight is97

2/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

https://dx.doi.org/10.6084/m9.figshare.4542405
yzh
在文本上注释
Than other methods or each individual strategy?

yzh
删划线

yzh
插入号
well-known

yzh
在文本上注释
To be accurate, this is not a pair. Please find a better way to describe a weighted edge.

w. If the edge (u,v) exists, it can be traversed from u to v and from v to u because we only focus on98

undirected graphs in this paper. However, our algorithm can be expanded to directed graph version easily.99

A path P = (s, ..., t) is defined as a sequence of vertices connected by edges, where s is the starting node100

and t is the end node. The length of P is the sum of the weights of the edges involved in P. d(s, t) is101

the distance between s and t, which represents the minimum length of all paths connecting s and t. σst102

denotes the number of shortest paths from s to t. According to the definition, we have d(s,s) = 0, σss = 1,103

d(s, t) = d(t,s) and σst = σts for undirected graph. σst(v) denotes the number of shortest paths from s to104

t where v lies on. Based on these definitions, the betweenness centrality can be defined as105

CB(v) = ∑
s ̸=v̸=t∈V

σst(v)

σst

. (1)

From the above definitions, the calculation of betweenness centrality can be naturally separated into the106

following two steps:107

1. Compute d(s, t) and σst for all node pairs (s, t),108

2. Sum all pair-dependencies,109

in which pair-dependency is defined as δst(v) =
σst (v)

σst
. The first step consumes O(mn) and O(mn +110

n2 logn) time for unweighted and weighted graph respectively, therefore the bottleneck of this algorithm111

is the second step, which requires O(n3) time. Brandes developed a more efficient BC algorithm which112

requires O(mn) time for unweighted graph, and O(mn+ n2 logn) time for weighted graph. The critical113

point is that the dependency of a node v when the source node is s is δs(v) = ∑u:v∈Ps(u)
σsv
σsu

(1+ δs(u)).114

Applying this equation, we can accumulate the dependencies after computing the distance and number115

of shortest paths from a source vertex s to all other vertices, rather than after computing all pair shortest116

paths.117

We can develop a parallel version based on Brandes’s algorithm for unweighted graph because the118

graph is always traversed as a tree by using BFS algorithm. Given a source node s, the root of the tree119

is s and the tree produced by BFS method in the first step. In the second step, dependencies related to120

source node s are calculated from the bottom to the root of the tree and the nodes at the same level are121

isolated and have no influence to each other. As a result, the parallel version can explore nodes at the122

same level simultaneously in both of the two steps, which will essentially boost the calculation.123

Dijkstra algorithm124

Dijkstra algorithm (Dijkstra, 1959) and Floyd-Warshall algorithm (Floyd, 1962) are commonly em-125

ployed to solve shortest path problems. While Dijkstra algorithm is more adaptable to betweenness126

centrality problem because Brandes’s algorithm accumulates dependencies after computing single source127

shortest paths (SSSP), rather than finding and storing all pair shortest paths. Dijkstra algorithm applies128

greedy strategy to solve SSSP. In this algorithm, the source node is s and if the shortest path from s and129

another node u is achieved, u will be settled. According to be settled or not, all nodes in graph G could130

be separated into two sets, which are settled vertices S and unsettled vertices U . An array D is used to131

store tentative distances from s to all nodes. At first, D(s) = 0 and D(u) = ∞ for all other nodes. And132

the source node s is settled and considered as the frontier node to be explored. In the second step, for133

every node u ∈ U and the adjacent frontier node f , if D[f] +w(f ,u) < D[u], D[u] will be updated to134

D[f]+w(f ,u). Then the node v ∈U that has the smallest distance value will be settled and considered135

as the new frontier node and then the procedure goes back to the second step. The algorithm finishes136

when all nodes are settled. From the above description, Dijkstra algorithm has no parallel character as it137

picks one frontier node in each iteration. But this restriction can be loosed that several frontier vertices138

can be explored simultaneously which is similar to BFS parallel approach.139

GPU-BASED ALGORITHM140

Parallel betweenness centrality algorithm141

In this section, we introduce the details of our GPU version BC algorithm on weighted graph. Firstly,142

we apply Compressed Sparse Row (CSR) format, which is widely used in graph algorithms, to store the143

3/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

yzh
删划线

yzh
插入号
expresses the parallelism and thus increases the performance

yzh
删划线

yzh
删划线

input graph (Bell and Garland, 2009; Davidson et al., 2014). It is space efficient that both of the vertex144

and edge consume one entry, and it is convenient to perform the traversal task on GPU. Moreover, edges145

related to the same vertex store consecutively in memory which makes warp-centric technique more146

efficient. For storing weighted graphs, another array that stores the weights of all edges is accordingly147

required.148

We apply both coarse-grained (that one block processes one root vertex s) and fine-grained parallel149

(that threads within the block compute shortest paths and dependencies that related to s) strategies. The150

pseudo-code in this paper describes the parallel procedure of threads within a block. Algorithm 1 shows151

the initialization of required variables. U and F represent unsettled set and frontier set, respectively. v is152

unsettled if U [v] = 1 and is frontier node if F [v] = 1. d represents the tentative distance and σ [v] is the153

number of shortest paths from s to v. δ [v] stores the dependencies of v. lock stores locks for all nodes154

to avoid race condition. If the lock[v] = 1, changing the shortest path is not permited(see next section155

for detail). Vertices in the same level are recorded in S continuously and the start (or end) point in S of156

each level is stored in ends. In other words, S and ends record the levels of traversal as CSR format and157

they are used in the dependency accumulation step. As can be seen in Algorithm 3, in the dependency158

accumulation part, we get nodes at the same level from S and ends and accumulate dependencies of159

these nodes simultaneously. Note that in Algorithm 3 we only assign threads for nodes that need to be160

inspected rather than assign for all nodes, which enhances the efficiency by avoiding redundant threads.161

We update the dependency of edges at Line 12 in Algorithm 3 if edge betweenness is required.162

Algorithm 1 Betweenness Centrality: Variable Initialization

1: for v ∈V do in parallel

2: U [v]← 1

3: F [v]← 0

4: d[v]← ∞

5: σ [v]← 0

6: δ [v]← 0

7: lock[v]← 0

8: ends[v]← 0

9: S[v]← 0

10: end for

11: d[s]← 0

12: σ [s]← 1

13: U [s]← 0

14: F [s]← 1

15: S[0]← s;Slen← 1

16: ends[0]← 0;ends[1]← 1;endslen← 2

17: ∆← 0

Parallel Dijkstra algorithm163

The parallel version of BFS procedure, which is applied in BC algorithm for unweighted network, could164

be modified naturally from its sequential version because vertices located at the same level of the BFS165

tree can be inspected simultaneously. And in the dependency accumulation step (step two), dependencies166

are calculated from low level vertices (nodes with largest depth in the tree) to the high level nodes167

(nodes that close to the source node) and nodes in the same level are calculated simultaneously. In168

the weighted version, the multi-level structure is also necessary in the dependency accumulation step to169

acquire parallelization. As can be seen in Fig 1(a), this structure should satisfy the condition ∀u∈Pv, lu <170

lv, where li means the level of node i in the multi-level structure and Pi represents the set of predecessors171

of vertex i. Previous high performance parallel SSSP algorithms such as ∆-stepping algorithm (Meyer172

and Sanders, 2003) only calculate the shortest path values, neglecting the number of shortest paths and173

the level relationships, which makes it inappropriate for our betweenness algorithm on weighted graphs.174

In this paper, we propose a variant of parallel Dijkstra algorithm, producing the number of shortest paths175

and the multi-level structure to fit our betweenness algorithm.176

In the sequential Dijkstra algorithm, picking one frontier node each time makes its parallelization a177

4/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

yzh
在文本上注释
them

Algorithm 2 Betweenness Centrality: Shortest Path Calculation by Dijkstra Algorithm

1: while ∆ < ∞ do

2: for v ∈V and F [v] = 1 do in parallel

3: for w ∈ neighbors(v) do

4: needlock← true

5: while needlock do

6: if 0 = atomicCAS(lock[w],0,1) then

7: if U [w] = 1 and d[v]+weightvw < d[w] then

8: d[w]← d[v]+weightvw

9: σ [w]← 0

10: end if

11: if d[w] = d[v]+weightvw then

12: σ [w]← σ [w]+σ [v]
13: end if

14: end if

15: atomicExch(lock+w,0)
16: needlock← f alse

17: end while

18: end for

19: end for

20: ∆← ∞

21: for v ∈V do in parallel

22: if U [v] = 1 and d[v]< ∞ then

23: atomicMin(∆,d[v]+∆node v)
24: end if

25: end for

26: cnt← 0

27: for v ∈V do in parallel

28: F [v]← 0

29: if U [v] = 1 and d[v]< ∆ then

30: U [v]← 0

31: F [v]← 1

32: t← atomicAdd(Slen,1)
33: S[t]← v

34: atomicAdd(cnt,1)
35: end if

36: end for

37: if cnt > 0 then

38: ends[endslen]← ends[endslen−1]+ cnt

39: endslen← endslen +1

40: end if

41: end while

5/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

yzh
在文本上注释
Why cannot we use atomicMin directly to avoid the use of lock? Is there any performance concern?

Algorithm 3 Betweenness Centrality: Dependency Accumulation

1: depth← endslen−1

2: while depth > 0 do

3: start← ends[depth−1]
4: end← ends[depth]−1

5: for 0≤ i≤ end− start do in parallel

6: w← S[start + i]
7: dsw← 0

8: for v ∈ neighbors(w) do

9: if d[v] = d[w]+weightwv then

10: c← σ [w]/σ [v]∗ (1+δ [v])
11: dsw← dsw+ c

12: atomicAdd(edgeBC[w],c)
13: end if

14: end for

15: δ [w]← dsw

16: if w ̸= s then

17: atomicAdd(BC[w],δ [w])
18: end if

19: end for

20: depth← depth−1

21: end while

difficult task. However, this restriction can be relaxed, which means that several nodes could be settled178

becoming frontier set and be inspected simultaneously in the next step. Moreover, these settled nodes179

satisfy the level-condition and because of this, they form a new level and will be inspected simultaneously180

in the dependency accumulation step. In this paper, we apply the method described in (Ortega-Arranz181

et al., 2013). In this method, ∆node v = min(w(v,u) : (v,u) ∈ E) is precomputed. Then we define ∆i as182

∆i = min{(D(u)+∆node u) : u ∈Ui}, (2)

where D(u) is the tentative distance of node u, Ui is the unsettled nodes set in iteration i. All nodes that183

satisfy the following condition184

D(v)≤ ∆i (3)

are settled and become frontier nodes. When applying Dijkstra algorithm in betweenness centrality cal-

culation, the number of shortest paths should be counted and predecessor relationship between vertices

in the same level is not permitted, otherwise the parallel algorithm will result in incorrect dependencies.

To achieve this goal, the above condition should be modified to

D(v)< ∆i. (4)

Fig. 1(b) demonstrates an example, in which vertex v0 is the source node. If applying Eq. 3, v1 and185

v2 will be frontier nodes after inspecting v0 in the first iteration, and the number of shortest paths will be186

1 for both v1 and v2. Then v1 and v2 will be inspected simultaneously in next step. If processing v2 first,187

the number of shortest paths for v3 will be set to 1, while the correct value of shortest paths’ number188

for v3 should be 2. This mistake comes from the overambitious condition and v2 should not be settled189

after the first iteration. Although the distance will be correct for all nodes using Eq. 3, but the number190

of shortest paths will be wrong. However, Eq. 4 will lead to correct shortest paths number for v3 by only191

settling v1 after first iteration. This condition could be found at Line 29 in Algorithm 2.192

By performing Eq. 4 in SSSP step, we achieve correct shortest paths’ number and we construct the193

multi-level structure by setting frontier nodes as a new level.194

6/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

Algorithm 2 depicts our parallel Dijkstra algorithm in detail. The tentative distance and number of195

shortest paths are calculated which can be seen from Line 2 to Line 19. In this part, there will be a196

subtle parallel problem that several nodes in the frontier set may connect to the same node, as can be197

seen in Fig. 1(c). In this example, both v1 and v2 are in frontier set and connect to w, which results in the198

classical race condition problem. To avoid this situation, we define a lock for each node. The first thread199

focus on w will achieve the lock and other threads will not be permitted to change d[w] and σ [w]. Note200

that other threads must not wait because in CUDA framework, a group of threads in a warp performs as201

a SIMD (Single Instruction Multiple Data) unit. Therefore, if w is not locked, current thread will achieve202

the lock and run the relax procedure. Otherwise it will run the circulation until another thread releases203

the lock. After computing d and σ for all nodes, we can achieve ∆i based on the above analysis, as can204

be seen from Line 20 to Line 25. In the end, U , F , S and ends are updated for next iteration.205

!

" #$

%& '

() *

+,-,+."

+,-,+.!

+,-,+.#

+,-,+.$

✭❛✮

!

!

!

"

#
" # $

✭❜✮

✦� ✦✁

$

✭❝✮

Figure 1. (a) An example of the multi-level structure. It is built in the SSSP step and will be used in

the dependency accumulation step. Nodes in the same level are inspected simultaneously in both of the

two steps. (b) An example of choosing frontier nodes, in which using Eq. 3 will make the number of

shortest paths of v3 incorrect. (c) An example of race condition. v1 and v2 are frontier nodes in one

iteration, and both of which are connected with w.

Work-efficient method206

As can be seen on Line 2 in Algorithm 2, threads will be assigned to all nodes but only nodes that in the207

frontier set will perform the calculation job, which may be inefficient. McLaughlin et al. figured out an208

excellent work-efficient technique to solve this problem (McLaughlin and Bader, 2014). In this paper,209

we develop our work-efficient version by absorbing this idea. F will be changed to a queue that stores all210

frontier nodes and a variable Flen is defined to recode the length of F , as can be seen in Algorithm 4. Then211

on Line 2 in Algorithm 5, threads can be assigned to F [0] ∼ F [Flen− 1], which may be much smaller212

than the total number of nodes. At the same time, the method of updating F should also be changed,213

which can be seen in Algorithm 5.214

Algorithm 4 Work-efficient betweenness Centrality: Variable Initialization

1: for v ∈V do in parallel

2: // initialize other variables except F

3: end for

4: F [0]← s

5: Flen = 1

6: // initialize other variables

Warp-centric method215

Many real-world networks have scale-free feature, which means their degree distributions follow power216

law. When implementing parallel graph algorithms through node parallel strategy, this feature brings217

about serious load-imbalance problem. Most nodes have low degrees while some nodes have extremely218

high degrees. Threads that assigned to high degree nodes will run slowly and other threads have to wait.219

Edge parallel strategy can solve this problem (Jia et al., 2011) but bring about other under-utilizations220

7/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

yzh
在文本上注释
do you mean race condition?

Algorithm 5 Work-efficient betweenness Centrality: Shortest Path Calculation by Dijkstra Algorithm

1: while ∆ < ∞ do

2: for 0≤ i < Flen do in parallel

3: v← F [i]
4: // inspect v

5: end for

6: // calculate ∆

7: Flen← 0

8: for v ∈V do in parallel

9: if U [v] = 1 and d[v]< ∆ then

10: U [v]← 0

11: t← atomicAdd(Flen,1)
12: F [t]← v

13: end if

14: end for

15: if Flen > 0 then

16: ends[endslen]← ends[endslen−1]+Flen

17: endslen← endslen +1

18: for 0≤ i < Flen do in parallel

19: S[Slen + i]← F [i]
20: end for

21: Slen← Slen +Flen

22: end if

23: end while

at the same time. In this paper, we apply the novel warp-centric method (Hong et al., 2011), which221

allocates a warp rather than a thread to one node. Then threads within a warp focus on part of edges222

connected the specific node. As a result, each thread does less job for high degree nodes and the waiting223

time will be sharply decreased. Moreover, memory access patterns can be more coalesced than the224

conventional thread-level task allocation and because of this, the efficiency of memory access can be225

essentially improved.226

Nevertheless, the warp-centric method also has some drawbacks. Firstly, node degree may be smaller227

than the warp size, which is always 32 in modern GPU. To solve this problem, Hong et al. proposed228

virtual warps (Hong et al., 2011). Secondly, the number of required threads will be raised as each229

node needs WARP SIZE threads rather than one thread in this situation. But the number of threads in230

one block is fixed, hence each thread will be assigned to more nodes iteratively, which may result in231

low performance. We find that work-efficient method can relieve this problem because it requires less232

threads compared to the conventional node-parallel method, as can be seen in Fig. 2. In this paper, we233

apply the warp-centric method for both node-parallel and work-efficient method. As a result, we get four234

algorithms (see Tab. 2) that using different threads allocation strategies and we compare them on both235

real-world and synthetic networks.236

EXPERIMENTS237

Networks and settings238

We collect seven weighted real-world networks from the Internet, which have broad types including239

collaboration networks, biological networks and social networks. They are publicly available in the240

Internet and have been analyzed extensively by previous literatures (Rossi and Ahmed, 2015; Bansal241

et al., 2007; Palla et al., 2008; Barabási and Albert, 1999; Leskovec and Krevl, 2014; De Domenico et al.,242

2013). The details of these networks are listed in Table 1. We develop a parallel CPU algorithm based on243

Graph-tool (Peixoto, 2014), which is an efficient network analysis tool whose core data and algorithms244

are implemented in C++ and supports parallel betweenness algorithm on weighted networks. We run our245

four GPU implementations on Geforce GTX 1080 using CUDA 8.0 Toolkit. The GeForce GTX 1080 is246

a compute capability 6.1 GPU designed under the Pascal architecture that has 20 multiprocessors, 8 GB247

of device memory, and a clock frequency of 1772 MHz. The CPU is Intel Core i7-7700K processor. The248

8/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

yzh
在文本上注释
This macro is not explained.

(a) (b)

Figure 2. An example of threads allocation in node parallel method (a) and work-efficient method (b).

Red nodes are frontier nodes that should be processed and an arrow represents a warp that be assigned

to the corresponding node. Warp-centric method will waste more threads on nodes that do not need to

be inspected. But combining warp-centric and work-efficient method can solve this problem, as shown

in (b).

Core i7-7700K has a frequency of 4.2 GHz, 8 MB cache and eight physical processor cores. We use 4249

threads since hyperthreading doesn’t improve performance and we also run a sequential version because250

it is still widely applied by network researchers.251

To further understand the effect of network structures to algorithms’ performance, we generate two252

types of networks, which are Erdős-Rényi (ER) random graphs (Erdős and A., 1959) and Kronecker253

graphs (Leskovec et al., 2010). The degree distribution of ER random graph is Poisson, indicating its254

nodes’ degrees are relatively balanced. While Kronecker graph possesses scale-free and small-world255

characters, which make it more similar to the realistic network. We uniformly assign random edge256

weights ranging from 1 to 10 as previous literature did (Martı́n et al., 2009; Ortega-Arranz et al., 2013).257

Table 1. Details of networks from public dataset

Network Vertices Edges Max degree Average degree Description

bio-human-gene1 (Rossi and Ahmed, 2015; Bansal et al., 2007) 22283 12345963 7940 1108.11 Human gene regulatory network

bio-human-gene2 (Rossi and Ahmed, 2015; Bansal et al., 2007) 14340 9041364 7230 1261.00 Human gene regulatory network

bio-mouse-gene (Rossi and Ahmed, 2015; Bansal et al., 2007) 45101 14506196 8033 643.28 Mouse gene regulatory network

ca-MathSciNet-dir (Rossi and Ahmed, 2015; Palla et al., 2008) 391529 873775 496 4.46 Co-authorship network

actors (Barabási and Albert, 1999) 382219 15038094 3956 78.69 Actors collaboration network

rt-higgs (Leskovec and Krevl, 2014; De Domenico et al., 2013) 425008 732827 31558 3.45 Twitter retweeting network

mt-higgs (Leskovec and Krevl, 2014; De Domenico et al., 2013) 116408 145774 11957 2.50 Twitter mention network

Results258

From Tab. 2, we can see that all the GPU programs achieve better performance than both the sequential259

and parallel CPU version on all the seven real-world networks. The algorithm that applies work-efficient260

coupled with warp-centric technique is the best one for achieving 3.5x to 6.5x speedup compared to the261

parallel CPU method and 10x to 20x speedup compared to the sequential CPU algorithm respectively,262

and its performance could be essentially improved by assigning appropriate WARP SIZE. Work-efficient263

method is more efficient than node-parallel in all networks, while warp-centric method performs better264

on large degree networks, such as the three biological networks. However, combining warp-centric265

method and work-efficient method always achieves better or approximately equal performance compared266

to work-efficient method alone because it needs less threads in each step, which accordingly relieves the267

influence of the second drawback of warp-centric method. For networks with low average degrees such268

as ca-MathSciNet-dir, rt-higgs and mt-higgs, applying warp-centric method with actual WARP SIZE is269

always inefficient because nodes’ degrees are always smaller than WARP SIZE. Using smaller virtual270

WARP SIZE performs better on these networks as shown in Tab. 2 and we will further demonstrate this271

later. By adjusting WARP SIZE for low degree networks, the best performance program achieves 5x272

average speed-up compared to the parallel CPU implementation and 2.55x average speed-up compared273

to the baseline node-parallel strategy.274

To deeply mining the relationship of the network structure and the performance of the four GPU275

implementations, we further run them on two types of synthetic graphs, as can be seen in Fig. 3. From276

Fig. 3(a), (b), (c) and (d), we find that work-efficient algorithm works better than node-parallel algorithm277

in all networks since it always reduces the required number of threads. As can be seen in Fig. 3(a)278

9/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

yzh
在文本上注释
This illustration is very confusing. Consider redo it.

Table 2. Benchmark results of the BC algorithms on weighted graphs, including a sequential CPU algorithm, a four

threads CPU algorithm, NP (node-paralle), WE (work-efficient) and warp (warpx means the WARP SIZE is x). Times

are in seconds. The result of CPU sequential algorithm on actors network can not be provided because this program

consumes too much time (more than one day).

Algorithm bio-human-gene1 bio-human-gene2 bio-mouse-gene ca-MathSciNet-dir actors rt-higgs mt-higgs

CPU (sequential) 7494.09 3505.49 18300.83 49184.05 – 54717.96 1829.63

CPU (4 threads) 2245.61 1023.48 5460.26 21169.81 89196.19 21522.20 746.84

NP 1585.69 697.51 4407.42 6154.18 44137.50 4681.37 222.60

WE 1398.47 612.14 3742.69 4796.71 37803.60 4197.30 197.24

NP+warp32 511.73 196.67 1497.56 13883.50 32567.60 6205.65 337.89

WE+warp32 403.51 159.68 1214.86 4969.10 25382.20 4757.07 215.46

WE+warp4 784.86 327.93 1901.29 4593.97 28315.70 3574.16 166.88

WE+warp8 562.48 229.53 1365.80 4579.23 25469.50 3641.77 169.14

WE+warp16 439.58 174.51 1170.26 4706.05 24715.40 4008.30 184.45

best speed-up (over sequential CPU) 18.57 21.95 15.64 10.74 - 15.31 10.96

best speed-up (over parallel CPU) 5.57 6.41 4.67 4.62 3.61 6.02 4.48

and (b), warp-centric method works well on networks with large degrees, which is consistent with the279

conclusion in realistic networks. Note that for Kronecker graphs, warp-centric method works better than280

that for random graphs since Kronecker graphs have serious load-imbalance problem and warp-centric281

technique appropriately solves it. While for ER random graphs in Fig. 3(a), the advantage of warp-282

centric method is only the efficient memory access. For low degree graphs, warp-centric method works283

even worse than node-parallel strategy because the degrees are always smaller than WARP SIZE, as can284

be seen in Fig. 3(c) and (d). For random graphs, the performance of warp-centric method is extremely285

poor when the average degree is smaller than 8 and Fig. 3(e) explains the reason. The small average286

degree brings about large average depth, which means that the average size of the frontier sets is small.287

In this case, warp-centric method assigns more useless threads to nodes that do not need inspections.288

On the contrary, as the degree grows, it is closer to WARP SIZE and the depths drop down sharply,289

which make the warp-centric method performs much better. While low-degree Kronecker graphs have290

power-law degree distributions and small average depths, which make warp-centric method works not291

as bad as on random graphs. However, the combination of the two methods always runs faster than292

applying work-efficient method alone because it avoids the second drawback of warp-centric method,293

which is discussed in the previous section. In conclusion, work-efficient method always achieves better294

performance while the performance of warp-centric method relies on networks’ structures but the joint295

version always achieves the best performance.296

From the above analysis, applying smaller WARP SIZE may accelerate the two implementations297

which using warp-centric method when the networks’ average degree is small. And this hypothesis298

can be verified in Fig. 4. We apply smaller WARP SIZE on rt-higgs network, mt-higgs network and299

other two synthetic graphs whose average degrees are both four. From Fig. 4(a) and (b), we find that300

implementations with smaller WARP SIZE do perform better than both of the baseline node-parallel301

algorithms and the large WARP SIZE algorithm on both of the low-degree realistic networks. And when302

coupled with work-efficient method, algorithms with smaller WARP SIZE also perform better than both303

of the work-efficient strategy alone and the combination of work-efficient and large WARP SIZE. The304

reason is that small WARP SIZE reduces the required number of threads and then eliminates the waste305

of assigning more threads to a node than its degree. The implementations which have small WARP SIZE306

and coupled with work-efficient method achieve the best performance because they avoid both drawbacks307

of warp-centric method but utilize the advantages of this technique. The results on low-degree Kronecker308

graph is similar as on realistic networks since Kronecker graph is similar with real-world network. For309

ER random graphs, the algorithm with small WARP SIZE does not achieve better performance compared310

to node-parallel version because the large average depth, which is analyzed in previous section. However,311

when coupled with work-efficient method, the implementations with small WARP SIZE perform slightly312

better than the work-efficient algorithm, which further proves the excellence and stability of the joint313

algorithm. In summary, the joint algorithm are most efficient and insensitive to network structure. And314

if we choose an appropriate WARP SIZE, its performance could be even better.315

10/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

yzh
删划线

yzh
在文本上注释
What is this WARP_SIZE and did you show this in Fig. 4?

0

2500

5000

7500

10000

14 15 16 17 18

scale : log2(number of nodes)

ti
m

e
(s

)

a

0

2000

4000

6000

14 15 16 17 18

scale : log2(number of nodes)

ti
m

e
(s

)

b

20

40

60

2 6 10 14 18 22 26 30 34 38

average degree

ti
m

e
(s

)
c

0

50

100

2 6 10 14 18 22 26 30 34 38

average degree

ti
m

e
(s

)

d

node−parallel work−efficient warp−centric work−efficient+warp−centric

20

40

60

2 6 10 14 18 22 26 30 34 38

average degree

a
ve

ra
g
e
 d

e
p
th

Kronecker

random

e

Figure 3. Performance of the four implementations on ER random and Kronecker graphs. The

WARP SIZE is fixed to 32 in the two warp-centric methods. (a) and (b) tune the number of nodes from

214 to 218 for ER random and Kronecker graphs, respectively. And the average degrees are fixed to 32

for both of the two types of networks. (c) and (d) separately tune the average degrees for random and

Kronecker networks, in which the random networks have 20,000 vertices and the Kronecker networks

have 215 nodes. (e) illustrates the average depths of search trees for random graphs used in (c) and

Kronecker graphs used in (d). Networks with larger depths have smaller average frontier sets,

indicating the poor performance with parallelism.

CONCLUSION316

Existing GPU version of betweenness centrality algorithms only concentrate on unweighted networks for317

simplification. Our work that computing betweenness centrality on large weighted networks bridges this318

gap and achieves prominent efficiency enhancement compared to the CPU implementation. Moreover,319

we apply two excellent techniques which are work-efficient and warp-centric methods in our algorithm.320

Work-efficient method allocates threads more efficiently and warp-centric method solves the load im-321

balance problem and simultaneously optimizes the memory access. We compare these implementations322

with sequential and parallel CPU algorithm in realistic networks. The results show that GPU parallel323

algorithms perform much better than the CPU algorithms and the algorithm which integrates the two324

techniques is the best, achieving 3.5x to 6.5x speedup over the parallel CPU version and 10x to 20x325

speedup over the sequential CPU version respectively. Results on synthetic random graphs and Kro-326

necher graphs further justify the outperformance of our solution.327

For future work, we will consider implementing GPU algorithm to process dynamic networks. When328

networks changes a little (like few new nodes come in or several links vanish), calculating betweenness329

11/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

0

2000

4000

6000

A B C D E F G H I J
ti
m

e
(s

)

a

0

100

200

300

A B C D E F G H I J

ti
m

e
(s

)

b

0

500

1000

A B C D E F G H I J

ti
m

e
(s

)
c

0

50

100

150

200

250

A B C D E F G H I J

ti
m

e
(s

)

d

Figure 4. Applying other WARP SIZE on several low-degree networks. A-J represent node-parallel,

warp4, warp8, warp16, warp32, work-efficient, work-efficient+warp4, work-efficient+warp8,

work-efficient+warp16, work-efficient+warp32, respectively. (a) and (b) are rt-higgs network and

mt-higgs network, respectively, on which smaller warp size achieves better performance than both

node-parallel method and the algorithm with large WARP SIZE. (c) is a random graph with 217 nodes

whose average degree is four. Warp-centric method can not accelerate the speed when combining

node-parallel strategy. But when combining small WARP SIZE with work-efficient method, the

performance will be slightly better than applying work-efficient method alone. (d) is Kronecker graph

with 217 nodes and the average degree is four, on which smaller WARP SIZE achieves better

performance.

centrality for all nodes is unnecessary because betweenness centrality of most nodes and edges will not330

be changed. Some previous works have explored the sequential algorithm on this issue (Lee et al., 2016;331

Singh et al., 2015; Nasre et al., 2014). We plan to develop GPU version of these algorithms to achieve332

better performance.333

ACKNOWLEDGMENTS334

This work was supported by NSFC (Grant No. 71501005) and the fund of the State Key Lab of Software335

Development Environment (Grant Nos. SKLSDE-2015ZX-05 and SKLSDE-2015ZX-28). R. F. also336

thanks the Innovation Foundation of BUAA for PhD Graduates.337

REFERENCES338

Abedi, M. and Gheisari, Y. (2015). Nodes with high centrality in protein interaction networks are re-339

sponsible for driving signaling pathways in diabetic nephropathy. PeerJ, 3:e1284.340

Bansal, M., Belcastro, V., Ambesi-Impiombato, A., and Di Bernardo, D. (2007). How to infer gene341

networks from expression profiles. Molecular systems biology, 3(1).342

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science,343

286(5439):509–512.344

Barthelemy, M. (2004). Betweenness centrality in large complex networks. The European Physical345

Journal B-Condensed Matter and Complex Systems, 38(2):163–168.346

Bell, N. and Garland, M. (2009). Implementing sparse matrix-vector multiplication on throughput-347

oriented processors. In Proceedings of the Conference on High Performance Computing Networking,348

Storage and Analysis, pages 18:1–18:11.349

12/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociol-350

ogy, 25(2):163–177.351

Cong, G. and Bader, D. A. (2005). An experimental study of parallel biconnected components algo-352

rithms on symmetric multiprocessors (smps). In Proceedings of the 19th IEEE International Parallel353

and Distributed Processing Symposium, IPDPS ’05, pages 45b–45b, Washington, DC, USA. IEEE354

Computer Society.355

Davidson, A., Baxter, S., Garland, M., and Owens, J. D. (2014). Work-efficient parallel gpu methods356

for single-source shortest paths. In Proceedings of the 2014 IEEE 28th International Parallel and357

Distributed Processing Symposium, pages 349–359. IEEE Computer Society.358

De Domenico, M., Lima, A., Mougel, P., and Musolesi, M. (2013). The anatomy of a scientific rumor.359

Scientific reports, 3.360

Delling, D., Goldberg, A. V., Nowatzyk, A., and Werneck, R. F. (2011). Phast: Hardware-accelerated361

shortest path trees. In Proceedings of the 2011 IEEE International Parallel & Distributed Processing362

Symposium, pages 921–931. IEEE Computer Society.363

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numer. Math., 1(1):269–271.364

Erdős, P. and A., R. (1959). On random graphs. Publicationes Mathematicae, 6:290–297.365

Floyd, R. W. (1962). Algorithm 97: Shortest path. Commun. ACM, 5(6).366

Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41.367

Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological networks.368

Proceedings of the National Academy of Sciences, 99(12):7821–7826.369

Goh, K.-I., Oh, E., Kahng, B., and Kim, D. (2003). Betweenness centrality correlation in social networks.370

Phys. Rev. E, 67:017101.371

Harish, P. and Narayanan, P. J. (2007). Accelerating large graph algorithms on the gpu using cuda. In372

Proceedings of the 14th International Conference on High Performance Computing, HiPC’07, pages373

197–208, Berlin, Heidelberg. Springer-Verlag.374

Hong, S., Kim, S. K., Oguntebi, T., and Olukotun, K. (2011). Accelerating cuda graph algorithms at375

maximum warp. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel376

Programming, pages 267–276.377

Jia, Y., Lu, V., Hoberock, J., Garland, M., and Hart, J. C. (2011). Edge v. node parallelism for graph378

centrality metrics. GPU Computing Gems, 2:15–30.379

Lee, M.-J., Choi, S., and Chung, C.-W. (2016). Efficient algorithms for updating betweenness centrality380

in fully dynamic graphs. Inf. Sci., 326(C):278–296.381

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., and Ghahramani, Z. (2010). Kronecker382

graphs: An approach to modeling networks. Journal of Machine Learning Research, 11:985–1042.383

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection. http:384

//snap.stanford.edu/data.385

Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific386

journals. Journal of the American Society for Information Science and Technology, 58(9):1303–1319.387

Ma, X. and Sayama, H. (2015). Mental disorder recovery correlated with centralities and interactions on388

an online social network. PeerJ, 3:e1163.389

Martı́n, P. J., Torres, R., and Gavilanes, A. (2009). Cuda solutions for the sssp problem. In Proceedings390

of the 9th International Conference on Computational Science, pages 904–913. Springer-Verlag.391

McLaughlin, A. and Bader, D. A. (2014). Scalable and high performance betweenness centrality on the392

gpu. In Proceedings of the International Conference for High Performance Computing, Networking,393

Storage and Analysis, pages 572–583.394

Merrill, D., Garland, M., and Grimshaw, A. (2015). High-performance and scalable gpu graph traversal.395

ACM Trans. Parallel Comput., 1(2).396

Meyer, U. and Sanders, P. (2003). ∆-stepping: a parallelizable shortest path algorithm. Journal of397

Algorithms, 49(1):114 – 152. 1998 European Symposium on Algorithms.398

Mitchell, R. and Frank, E. (2017). Accelerating the xgboost algorithm using gpu computing. PeerJ399

Computer Science, 3:e127.400

Motter, A. E. and Lai, Y.-C. (2002). Cascade-based attacks on complex networks. Phys. Rev. E,401

66:065102.402

Nasre, M., Pontecorvi, M., and Ramachandran, V. (2014). Betweenness centrality–incremental and403

faster. In International Symposium on Mathematical Foundations of Computer Science, pages 577–404

13/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data

588. Springer.405

Ortega-Arranz, H., Torres, Y., Llanos, D. R., and Gonzalez-Escribano, A. (2013). A new gpu-based406

approach to the shortest path problem. In High Performance Computing and Simulation, pages 505–407

511.408

Palla, G., Farkas, I. J., Pollner, P., Derényi, I., and Vicsek, T. (2008). Fundamental statistical features409

and self-similar properties of tagged networks. New Journal of Physics, 10(12):123026.410

Peixoto, T. P. (2014). The graph-tool python library. figshare.411

Rossi, R. A. and Ahmed, N. K. (2015). The network data repository with interactive graph analytics and412

visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.413

Sariyüce, A. E., Kaya, K., Saule, E., and Çatalyürek, Ü. V. (2013). Betweenness centrality on gpus414

and heterogeneous architectures. In Proceedings of the 6th Workshop on General Purpose Processor415

Using Graphics Processing Units, pages 76–85.416

Shi, Z. and Zhang, B. (2011). Fast network centrality analysis using gpus. BMC Bioinformatics, 12:149.417

Singh, R. R., Goel, K., Iyengar, S., and Gupta, S. (2015). A faster algorithm to update betweenness418

centrality after node alteration. Internet Mathematics, 11(4-5):403–420.419

Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., and Owens, J. D. (2015). Gunrock: A high-420

performance graph processing library on the gpu. In Proceedings of the 20th ACM SIGPLAN Sympo-421

sium on Principles and Practice of Parallel Programming, PPoPP 2015, pages 265–266, New York,422

NY, USA. ACM.423

14/14

PeerJ Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Manuscript to be reviewedComputer Science

