A GPU-based solution to fast calculation of

betweenness centrality on large weighted networks
(#19760)

First submission

Please read the Important notes below, the Review guidance on page 2 and our Standout reviewing
tips on page 3. When ready submit online. The manuscript starts on page 4.

Important notes

Editor and deadline
John Owens / 3 Sep 2017

Files 4 Figure file(s)
1 Latex file(s)

Please visit the overview page to download and review the files
not included in this review PDF.

Declarations No notable declarations are present

For assistance email peer.review@peerj.com

https://peerj.com/submissions/19760/reviews/214472/
https://peerj.com/submissions/19760/
mailto:peer.review@peerj.com

Review 2
guidelines

Please read in full before you begin

How to review

When ready submit your review online. The review form is divided into 5 sections. Please consider
these when composing your review:
1. BASIC REPORTING

2. EXPERIMENTAL DESIGN

3. VALIDITY OF THE FINDINGS
4. General comments

5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING EXPERIMENTAL DESIGN
Clear, unambiguous, professional English Original primary research within Scope of
language used throughout. the journal.
Intro & background to show context. Research question well defined, relevant
Literature well referenced & relevant. & meaningful. It is stated how the

research fills an identified knowledge gap.
Structure conforms to Peer] standards,

discipline norm, or improved for clarity. Rigorous investigation performed to a
high technical & ethical standard.

Figures are relevant, high quality, well
labelled & described. Methods described with sufficient detail &

.] information to replicate.
Raw data supplied (see Peer] policy).

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Conclusions are well stated, linked to
Negative/inconclusive results accepted. original research question & limited to
Meaningful replication encouraged where supporting results.

rationale & benefit to literature is clearly

stated. .Specgllatlon is welcome, but should be
identified as such.
Data is robust, statistically sound, &

controlled.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-
criteria/

https://peerj.com/submissions/19760/reviews/214472/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/editorial-criteria/
https://peerj.com/about/editorial-criteria/

7 Standout
reviewing tips

The best reviewers use these techniques
Tip

Support criticisms with
evidence from the text or from
other sources

Give specific suggestions on
how to improve the manuscript

Comment on language and
grammar issues

Organize by importance of the
issues, and number your points

Give specific suggestions on
how to improve the manuscript

Please provide constructive
criticism, and avoid personal
opinions

Comment on strengths (as well
as weaknesses) of the
manuscript

Example

Smith et al (] of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Your introduction needs more detail. | suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

The English language should be improved to ensure that
your international audience can clearly understand your
text. | suggest that you have a native English speaking
colleague review your manuscript. Some examples where
the language could be improved include lines 23, 77, 121,
128 - the current phrasing makes comprehension difficult.

1. Your most important issue

2. The next most important item
3.

4. The least important points

Line 56: Note that experimental data on sprawling animals
needs to be updated. Line 66: Please consider exchanging
“modern” with “cursorial”.

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

| commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as | have noted above) which should be
improved upon before Acceptance.

Peer]

A GPU-based solution to fast calculation of betweenness
centrality on large weighted networks

Rui Fan ' , Ke Xu ', Jichang Zhao ¢ *

1 State Key Laboratory of Software Development Environment, Beihang University, Beijing, P. R. China

2 School of Economics and Management, Beihang University, Beijing, P. R. China

Corresponding Author: Jichang Zhao
Email address: jichang@buaa.edu.cn

Recent decades have witnessed the tremendous development of network science, which
indeed brings a new and insightful language to model real systems of different domains.
Betweenness, a widely employed centrality in network science, is a decent proxy in
investigating network loads and rankings. However, the extremely high computational cost
greatly prevents its applicability on large networks. Though several parallel algorithms
have been presented to reduce its calculation cost on unweighted networks, a fast solution
for weighted networks, which are in fact more ubiquitous than unweighted ones in reality,
is still missing. In this study, we develop an efficient parallel GPU-based approach to boost
the calculation of betweenness centrality on quite large and weighted networks.
Comprehensive and systematic evaluations on both synthetic and real-world networks
demonstrate that our solution can arrive the performance of 3.5x to 6.5x speedup over the
parallel CPU implementation by integrating the work-efficient and warp-centric strategies.
Our algorithm is completely open-sourced and free to the community and it is public
available through https://dx.doi.org/10.6084/m9.figshare.4542405. Considering the
pervasive deployment and declining price of GPU on personal computers and servers, our
solution will indeed offer unprecedented opportunities for exploring the betweenness
related problems and spark followup works in network science.

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

https://dx.doi.org/10.6084/m9.figshare.4542405

Peer]

27

28
29
30
31
32
33

34

36
37
38
39
40
4
42
43
44

45

A GPU-based solution to fast calculation of
betweenness centrality on large weighted
networks

Rui Fan!, Ke Xu', and Jichang Zhao?

IState Key Laboratory of Software Development Environment, Beihang University,
Beijing, P. R. China
2School of Economics and Management, Beihang University, Beijing, P. R. China

Corresponding author:
Jichang Zhao?

Email address: jichang@buaa.edu.cn

ABSTRACT

Recent decades have witnessed the tremendous development of network science, which indeed brings
a new and insightful language to model real systems of different domains. Betweenness, a widely
employed centrality in network science, is a decent proxy in investigating network loads and rankings.
However, the extremely high computational cost greatly prevents its applicability on large networks.
Though several parallel algorithms have been presented to reduce its calculation cost on unweighted
networks, a fast solution for weighted networks, which are-in-faet more ubiquitous than unweighted ones
in reality, is still missing. In this study, we develop an efficient parallel GPU-based approach to boost
the calculation of betweenness centrality on quite large and weighted networks. Comprehensive and
systematic evaluations on both synthetic and real-world networks demonstrate that our solution can
arrive the performance of 3.5x to 6.5x speedup over the parallel CPU implementation by integrating
the work-efficient and warp-centric strategies. Our algorithm is completely open-sourced and free to
the community and it is public available through https://dx.doi.org/10.6084/mY.figshare.
as47405. Considering the pervasive deployment and declining price of GPU on personal computers
and servers, our solution will indeed offer unprecedented opportunities for exploring the betweenness
related problems and spark followup works in network science.

INTRODUCTION

Being an emergent and multidisciplinary research area, the network science has attracted much efforts
denoted from researchers of different backgrounds such as computer science, biology and physics in
recent decades. In these contributions, betweenness centrality (BC) is always applied as a critical metric
to measure nodes’ or edges’ significance (Ma and Sayama, PZ0TS; Freeman, [977; Barthelemy], 2004,
Abediand Gheisari, POTS; Goh'ef all, P003). For example, Girvan and Newman developed a community
detection algorithm based on edge betweenness centrality (Girvan-and Newman, 2007), Leydesdorff ap-
plied centrality as an indicator of the interdisciplinarity of scientific journals (Ceydesdortf, P007) and
Motter and Lai established a model of cascading failures with node load being its betweenness (Moftex
and ai, P007). However, the extremely high time and space complexity of calculating betweenness cen-
trality greatly limits its applicability on large networks. Before the landmark work of Brandes (Brandes,
D00T), the algorithm for computing betweenness centrality requires O(n?) time and O(n?) space. While
Brandes reduced the complexity to O(n 4 m) on space and O(nm) and O(nm -+ n?logn) on time for un-
weighted and weighted networks, respectively, where n is the number of vertices and m is the number
of edges (Branded, POOT). However, this improved algorithm still can not satisfy scientific computa-
tion requirements in the present information explosion era as more and more unexpected large networks
emerge, such as online social networks, gene networks and collaboration networks. For example, Twitter
possesses hundreds of millions active users which construct a huge online social network. However, a
weighted network with one million nodes may take about one year to calculate its betweenness centrality

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

https://dx.doi.org/10.6084/m9.figshare.4542405
https://dx.doi.org/10.6084/m9.figshare.4542405
yzh
删划线

yzh
删划线

yzh
插入号
is

yzh
删划线

yzh
删划线

yzh
在文本上注释
Please reorganize this sentence.

Peer]

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79

80

81
82

83

84
85
86

87

88
89
90

91

92

93

94

95
96

97

using Brandes’ algorithm, which is an unbearable cost. Existing parallel CPU algorithms may reduce
the time to several days, which is still too expensive. Because of this, there is a pressing need to develop
faster BC algorithm for explorations of diverse domains.

General Purpose GPU (GPGPU) computing, which provides excellent parallelization, achieves higher
performance compared to traditional CPU sequential algorithms in many issues including network sci-
ence (Mifchell"and Frank, POT7; Merrillef all, ZOTY; Wang et all, PZOT5; Harish and Narayanar, 2007,
Cong and Badei, P0005). CUDA is the most popular GPU-computing framework developed by NVIDIA
corporation and some researchers have even parallelized Brandes’s algorithm by using it (Sht and Zhang,
POT1; Sariylice et all, P0T3; McLaughlin and Badei, 2014). However, previous works concentrated on
unweighted networks for simplification, but to our best knowledge, most realistic networks are weighted
ones. The most significant difference of BC algorithm on unweighted and weighted networks is the
shortest path segment. In weighted networks, Dijkstra algorithm should be used to solve the single
source shortest path (SSSP) problem rather than Breadth First Search (BFS) algorithm. Many efforts in
previous work have been devoted to the GPU version of SSSP problem using the well-known Dijkstra
algorithm (Marfin_ef-all, P009; Ortega-Arranz et all, 20T3; Delling et all, PO1T; Davidson_ef all, P0T4)).
Although these algorithms have been presented and developed, establishing a parallel version of between-
ness centrality algorithm on weighted networks is nontrivial because the original SSSP algorithm have
to be modified in many critical points for this task and to our best knowledge, a proper and fast solution
is still missing. Aiming at filling this vital gap, we propose a fast solution using CUDA to calculate BC
on large weighted networks based on previous GPU BC algorithms and SSSP algorithms.

To make our algorithm more efficient, we make efforts to optimize it by employing several novel
techniques to conquer the influence of irregular network structures. Real-world networks have many
characters which could deteriorate the performance of GPU parallelization algorithms. For example, the
frontier set of nodes is always small compared to the total number of vertices, especially for networks
with great diameters. In the meantime, the majority of nodes do not need to be inspected in each step,
hence processing all vertices simultaneously in traditional algorithms is wasteful. McLaughlin and Bader
proposed a work-efficient strategy to overcome this problem (McLaughlin and Badet, 2014). Another
well-known issue is that the power-law degree distribution in realistic networks brings about serious load-
imbalance. Several methods were proposed in previous study to conquer this problem, e.g., Merrill et al.
employed edge parallel strategy to avoid load-imbalance (Merrillef all, P(0T9) and Hong et al. dealt with
this problem by using warp technique (Hong et al], PZOTT). In this paper, we systematically investigate
the advantages and drawbacks of these previous methods and implement them in our algorithm to solve
the above two problems. Experiments on both real-world and synthetic networks demonstrate that our
algorithm outperforms the baseline GPU algorithm significantly. Our main contributions are listed as
follows:

e Based on previous GPU parallel SSSP and betweenness centrality algorithms, we propose an effi-
cient algorithm to calculate betweenness centrality on weighted networks, which achieves 3.5x to
6.5x speedup over the parallel CPU algorithm on realistic networks.

e We compare the traditional node-parallel method to the work-efficient version and the warp-centric
method. Experiments on realistic networks and synthetic networks demonstrate that the combina-
tion of the two strategies works better than others, which achieves 2.55x average speedup over the
baseline method on realistic networks.

e We package our algorithm to a useful tool which can be used to calculate both node and edge
betweenness centrality on weighted networks. Researchers could apply this tool to conveniently
calculate BC on weighted networks fast, especially on large networks. The source code is publicly
available through https://dx.doi.org/10.6084/m9.figshare.45424085.

BACKGROUND

First we briefly introduce the well-knew Brandes’s algorithm and Dijkstra algorithm based on the pre-
liminary definitions of network and betweenness centrality.

Brandes’s algorithm
A graph can be defined as G(V,E), where V is the set of vertices, and E is the set of edges. An edge
is a node pair (u,v,w), which means that there is a link connecting nodes u and v, and its weight is

2/ia

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

https://dx.doi.org/10.6084/m9.figshare.4542405
yzh
在文本上注释
Than other methods or each individual strategy?

yzh
删划线

yzh
插入号
well-known

yzh
在文本上注释
To be accurate, this is not a pair. Please find a better way to describe a weighted edge.

Peer]

98

99
100
101
102
103
104

105

106

107
108

109

110

111
112
113
114
115
116
117
118
119
120
121
122

128

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139

140

141
142

143

w. If the edge (u,v) exists, it can be traversed from u to v and from v to u because we only focus on
undirected graphs in this paper. However, our algorithm can be expanded to directed graph version easily.
A path P = (s,...,1) is defined as a sequence of vertices connected by edges, where s is the starting node
and 7 is the end node. The length of P is the sum of the weights of the edges involved in P. d(s,f) is
the distance between s and ¢, which represents the minimum length of all paths connecting s and ¢. ©
denotes the number of shortest paths from s to . According to the definition, we have d(s,s) =0, o5, =1,
d(s,t) =d(t,s) and oy = 0y, for undirected graph. oy (v) denotes the number of shortest paths from s to
t where v lies on. Based on these definitions, the betweenness centrality can be defined as

=y = ()

s#vELEV Ost

From the above definitions, the calculation of betweenness centrality can be naturally separated into the
following two steps:

1. Compute d(s,t) and oy for all node pairs (s,7),

2. Sum all pair-dependencies,

in which pair-dependency is defined as 8y (v) = 6;’—5:) The first step consumes O(mn) and O(mn +

n*logn) time for unweighted and weighted graph respectively, therefore the bottleneck of this algorithm
is the second step, which requires O(n?) time. Brandes developed a more efficient BC algorithm which
requires O(mn) time for unweighted graph, and O(mn + n*logn) time for weighted graph. The critical
point is that the dependency of a node v when the source node is s is 3(v) = Lyvep, (u) %(1 + 6(u)).
Applying this equation, we can accumulate the dependencies after computing the distance and number
of shortest paths from a source vertex s to all other vertices, rather than after computing all pair shortest
paths.

We can develop a parallel version based on Brandes’s algorithm for unweighted graph because the
graph is always traversed as a tree by using BFS algorithm. Given a source node s, the root of the tree
is s and the tree produced by BFS method in the first step. In the second step, dependencies related to
source node s are calculated from the bottom to the root of the tree and the nodes at the same level are
isolated and have no influence to each other. As a result, the parallel version can explore nodes at the

same level simultaneously in both of the two steps, which willessentially boost the-calculation,

Dijkstra algorithm

Dijkstra algorithm (Dijkstra, T95Y) and Floyd-Warshall algorithm (Floyd, T967) are commonly em-
ployed to solve shortest path problems. While Dijkstra algorithm is more adaptable to betweenness
centrality problem because Brandes’s algorithm accumulates dependencies after computing single source
shortest paths (SSSP), rather than finding and storing all pair shortest paths. Dijkstra algorithm applies
greedy strategy to solve SSSP. In this algorithm, the source node is s and if the shortest path from s and
another node u is achieved, u will be settled. According to-besettled-ornet; all nodes in graph G could
be separated into two sets, which are settled vertices S and unsettled vertices U. An array D is used to
store tentative distances from s to all nodes. At first, D(s) = 0 and D(u) = oo for all other nodes. And
the source node s is settled and considered as the frontier node to be explored. In the second step, for
every node u € U and the adjacent frontier node f, if D[f] +w(f,u) < D[u], D[u] will be updated to
D[f]+w(f,u). Then the node v € U that has the smallest distance value will be settled and considered
as the new frontier node and then the procedure goes back to the second step. The algorithm finishes
when all nodes are settled. From the above description, Dijkstra algorithm has no parallel character as it
picks one frontier node in each iteration. But this restriction can be loosed that several frontier vertices
can be explored simultaneously which is similar to BFS parallel approach.

GPU-BASED ALGORITHM

Parallel betweenness centrality algorithm
In this section, we introduce the details of our GPU version BC algorithm on weighted graph. Firstly,
we apply Compressed Sparse Row (CSR) format, which is widely used in graph algorithms, to store the

3/0a

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

yzh
删划线

yzh
插入号
expresses the parallelism and thus increases the performance

yzh
删划线

yzh
删划线

Peer]

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162

163
164
165
166
167
168
169
170

171

173
174
175
176

177

input graph (Bellland Garland, 200Y9; Davidsonef all, 20T4). It is space efficient that both of the vertex
and edge consume one entry, and it is convenient to perform the traversal task on GPU. Moreover, edges
related to the same vertex store consecutively in memory which makes warp-centric technique more
efficient. For storing weighted graphs, another array that stores the weights of all edges is accordingly
required.

We apply both coarse-grained (that one block processes one root vertex s) and fine-grained parallel
(that threads within the block compute shortest paths and dependencies that related to s) strategies. The
pseudo-code in this paper describes the parallel procedure of threads within a block. Algorithm 0 shows
the initialization of required variables. U and F represent unsettled set and frontier set, respectively. v is
unsettled if U[v] = 1 and is frontier node if F[v] = 1. d represents the tentative distance and o[v] is the
number of shortest paths from s to v. &[v] stores the dependencies of v. lock stores locks for all nodes
to avoid race condition. If the lock[v] = 1, changing the shortest path is not permited(see next section
for detail). Vertices in the same level are recorded in S continuously and the start (or end) point in S of
each level is stored in ends. In other words, S and ends record the levels of traversal as CSR format and
they are used in the dependency accumulation step. As can be seen in Algorithm B, in the dependency
accumulation part, we get nodes at the same level from S and ends and accumulate dependencies of
these nodes simultaneously. Note that in Algorithm B we only assign threads for nodes that need to be
inspected rather than assign for all nodes, which enhances the efficiency by avoiding redundant threads.
We update the dependency of edges at Line 12 in Algorithm B if edge betweenness is required.

Algorithm 1 Betweenness Centrality: Variable Initialization

1: for v € V do in parallel
2 U« 1

33 F]«0

4 dy] oo

5 op]«0

6 O] «0

7. lock[v] <0
8: ends[v] 0
9: Spv]«+0

10: end for

11: d[s] <0

12: o[s] « 1

13: Uls] <0

14: Fls] « 1

15: S[0] < 55Sien < 1
16: ends[0] < 0;ends[1] < 1;endsje, < 2
17: A«+0

Parallel Dijkstra algorithm
The parallel version of BES procedure, which is applied in BC algorithm for unweighted network, could
be modified naturally from its sequential version because vertices located at the same level of the BFS
tree can be inspected simultaneously. And in the dependency accumulation step (step two), dependencies
are calculated from low level vertices (nodes with largest depth in the tree) to the high level nodes
(nodes that close to the source node) and nodes in the same level are calculated simultaneously. In
the weighted version, the multi-level structure is also necessary in the dependency accumulation step to
acquire parallelization. As can be seen in Fig [(a), this structure should satisfy the condition Vu € P,,[, <
l,, where [; means the level of node 7 in the multi-level structure and P; represents the set of predecessors
of vertex i. Previous high performance parallel SSSP algorithms such as A-stepping algorithm (Meyer
and Sanders, P003) only calculate the shortest path values, neglecting the number of shortest paths and
the level relationships, which makes it inappropriate for our betweenness algorithm on weighted graphs.
In this paper, we propose a variant of parallel Dijkstra algorithm, producing the number of shortest paths
and the multi-level structure to fit our betweenness algorithm.

In the sequential Dijkstra algorithm, picking one frontier node each time makes its parallelization a

4/i3

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

yzh
在文本上注释
them

Peer]

Algorithm 2 Betweenness Centrality: Shortest Path Calculation by Dijkstra Algorithm

1: while A <o do

2. forv eV and F[v] =1 do in parallel

3 for w € neighbors(v) do

4: needlock < true

5: while needlock do

6 if 0 = atomicCAS(lock[w],0,1) then

7 if Ulw] = 1 and d[v] + weight,,, < d[w] then
8 dw] < d[v] + weight,,,

9

: ow]+0
10: end if
1 if d[w] = d[v] + weight,,, then
12: o[w] < o[w]+o[v]
13: end if
14: end if
15: atomicExch(lock +w,0)
16: needlock < false
17: end while
18: end for
19: end for
20: A4 o
21: for v € V do in parallel
22: if U[v] =1 and d[v] < oo then
23: atomicMin(A,d[v] + Anode v)
24: end if

25: end for
26: cnt <0
27. for v € V do in parallel

28: Fv]«0

29: if U[v] =1 and d[v] < A then
30: Ulv]+0

31: Flv]+ 1

32: t + atomicAdd(Sjen, 1)

33: NERY

34: atomicAdd(cnt, 1)

35: end if

36: end for
37: if cnt > 0 then

38: ends|ends;,| < ends|ends;e, — 1]+ cnt
39: endsje, < endsj., + 1
40: end if

41: end while

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

5/04

yzh
在文本上注释
Why cannot we use atomicMin directly to avoid the use of lock? Is there any performance concern?

Peer]

178
179

180

182

183

184

185
186
187
188
189
190
191
192
193

194

Algorithm 3 Betweenness Centrality: Dependency Accumulation

1: depth < endsj,, — 1
2: while depth > 0 do
3: start < ends[depth — 1]

4. end + ends|depth] — 1

5 for 0 <i < end — start do in parallel
6: w < S[start + i

7 dsw <0

8 for v € neighbors(w) do

9: if d[v] = d[w] + weight,,, then
10: c+ow]/ov]x(1+8]v])
11: dsw < dsw+c

12: atomicAdd(edgeBC|w],¢)
13: end if

14: end for

15: O[w] «+ dsw

16: if w # s then

17: atomicAdd(BCw], 8[w])

18: end if

19: end for

20: depth < depth—1
21: end while

difficult task. However, this restriction can be relaxed, which means that several nodes could be settled
becoming frontier set and be inspected simultaneously in the next step. Moreover, these settled nodes
satisfy the level-condition and because of this, they form a new level and will be inspected simultaneously
in the dependency accumulation step. In this paper, we apply the method described in (Ortega-Arranz
efall, POT3). In this method, Ag. » = min(w(v,u) : (v,u) € E) is precomputed. Then we define A; as

A; = min{(D(u) + Anode u) : u € Ui}, 2)

where D(u) is the tentative distance of node u, U; is the unsettled nodes set in iteration i. All nodes that
satisfy the following condition

D(v) <A; 3

are settled and become frontier nodes. When applying Dijkstra algorithm in betweenness centrality cal-
culation, the number of shortest paths should be counted and predecessor relationship between vertices
in the same level is not permitted, otherwise the parallel algorithm will result in incorrect dependencies.
To achieve this goal, the above condition should be modified to

D(v) < A)

Fig. M(b) demonstrates an example, in which vertex vy is the source node. If applying Eq. B, v; and
v, will be frontier nodes after inspecting v in the first iteration, and the number of shortest paths will be
1 for both v; and v,. Then v and v, will be inspected simultaneously in next step. If processing v, first,
the number of shortest paths for v3 will be set to 1, while the correct value of shortest paths’ number
for v3 should be 2. This mistake comes from the overambitious condition and v, should not be settled
after the first iteration. Although the distance will be correct for all nodes using Eq. B, but the number
of shortest paths will be wrong. However, Eq. B will lead to correct shortest paths number for v3 by only
settling vy after first iteration. This condition could be found at Line 29 in Algorithm D.

By performing Eq. B in SSSP step, we achieve correct shortest paths’ number and we construct the
multi-level structure by setting frontier nodes as a new level.

6/04

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Peer]

195
196
197
198
199
200
201
202
203
204

205

206
207
208
209
210
211
212
213

214

215
216
217
218
219

220

Algorithm D depicts our parallel Dijkstra algorithm in detail. The tentative distance and number of
shortest paths are calculated which can be seen from Line 2 to Line 19. In this part, there will be a
subtle parallel problem that several nodes in the frontier set may connect to the same node, as can be
seen in Fig. 0(c). In this example, both v; and v; are in frontier set and connect to w, which results in the
classical race condition problem. To avoid this situation, we define a lock for each node. The first thread
focus on w will achieve the lock and other threads will not be permitted to change d[w] and o[w]. Note
that other threads must not wait because in CUDA framework, a group of threads in a warp performs as
a SIMD (Single Instruction Multiple Data) unit. Therefore, if w is not locked, current thread will achieve
the lock and run the relax procedure. Otherwise it will run the circulation until another thread releases
the lock. After computing d and ¢ for all nodes, we can achieve A; based on the above analysis, as can
be seen from Line 20 to Line 25. In the end, U, F, S and ends are updated for next iteration.

level 0
level 1

level 2

3
level 3 ;

(a) (b) (c)

Figure 1. (a) An example of the multi-level structure. It is built in the SSSP step and will be used in
the dependency accumulation step. Nodes in the same level are inspected simultaneously in both of the
two steps. (b) An example of choosing frontier nodes, in which using Eq. B will make the number of
shortest paths of v3 incorrect. (c) An example of race condition. v; and v, are frontier nodes in one
iteration, and both of which are connected with w.

Work-efficient method

As can be seen on Line 2 in Algorithm [, threads will be assigned to all nodes but only nodes that in the
frontier set will perform the calculation job, which may be inefficient. McLaughlin et al. figured out an
excellent work-efficient technique to solve this problem (McLaughlin and Bader, 2014). In this paper,
we develop our work-efficient version by absorbing this idea. F will be changed to a queue that stores all
frontier nodes and a variable Fy,, is defined to recode the length of F, as can be seen in Algorithm B. Then
on Line 2 in Algorithm B, threads can be assigned to F[0] ~ F[Fj,, — 1], which may be much smaller
than the total number of nodes. At the same time, the method of updating F' should also be changed,
which can be seen in Algorithm B.

Algorithm 4 Work-efficient betweenness Centrality: Variable Initialization

for v € V do in parallel
// initialize other variables except F
end for
F[0] + s
Flen =1
// initialize other variables

AN O A e

Warp-centric method

Many real-world networks have scale-free feature, which means their degree distributions follow power
law. When implementing parallel graph algorithms through node parallel strategy, this feature brings
about serious load-imbalance problem. Most nodes have low degrees while some nodes have extremely
high degrees. Threads that assigned to high degree nodes will run slowly and other threads have to wait.
Edge parallel strategy can solve this problem ([lia_ef-all, ZOTT) but bring about other under-utilizations

7/04

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

yzh
在文本上注释
do you mean race condition?

Peer]

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

236

237

Algorithm 5 Work-efficient betweenness Centrality: Shortest Path Calculation by Dijkstra Algorithm

1: while A < « do

2 for 0 <i < Fj,, do in parallel

3 v+ Fli

4 /I inspect v

5. end for

6: // calculate A

7 Fien 0

8: for v €V do in parallel

9: if U[v] =1 and d[v] < A then
10: Ulv]+0

11: t < atomicAdd(Fjen, 1)

12: Flt] v

13: end if

14: end for

15. if Fy,, > 0 then

16: ends|ends;y,| < ends|endsien — 1] + Fiep,
17: endsje, < endsj., + 1

18: for 0 <i < F,, do in parallel
19: S[Sien +1] < Fli]

20: end for

21 Sten < Sten + Flen

22: end if

23: end while

at the same time. In this paper, we apply the novel warp-centric method (Hong et al], ZOTT), which
allocates a warp rather than a thread to one node. Then threads within a warp focus on part of edges
connected the specific node. As a result, each thread does less job for high degree nodes and the waiting
time will be sharply decreased. Moreover, memory access patterns can be more coalesced than the
conventional thread-level task allocation and because of this, the efficiency of memory access can be
essentially improved.

Nevertheless, the warp-centric method also has some drawbacks. Firstly, node degree may be smaller
than the warp size, which is always 32 in modern GPU. To solve this problem, Hong et al. proposed
virtual warps (Hong et al], POTT). Secondly, the number of required threads will be raised as each
node needs WARP_SIZE threads rather than one thread in this situation. But the number of threads in
one block is fixed, hence each thread will be assigned to more nodes iteratively, which may result in
low performance. We find that work-efficient method can relieve this problem because it requires less
threads compared to the conventional node-parallel method, as can be seen in Fig. D. In this paper, we
apply the warp-centric method for both node-parallel and work-efficient method. As a result, we get four
algorithms (see Tab. D) that using different threads allocation strategies and we compare them on both
real-world and synthetic networks.

EXPERIMENTS

Networks and settings

We collect seven weighted real-world networks from the Internet, which have broad types including
collaboration networks, biological networks and social networks. They are publicly available in the
Internet and have been analyzed extensively by previous literatures (Rossi-and_Ahmed, 20T5; Bansal
et all, 200/, Palla et all, PO0Y; Barabasi and Albert, [199Y; Leskovec and Krevl, 20 14; De Domenico et all,
20713). The details of these networks are listed in Table [l. We develop a parallel CPU algorithm based on
Graph-tool (Peixofd, 20T4), which is an efficient network analysis tool whose core data and algorithms
are implemented in C++ and supports parallel betweenness algorithm on weighted networks. We run our
four GPU implementations on Geforce GTX 1080 using CUDA 8.0 Toolkit. The GeForce GTX 1080 is
a compute capability 6.1 GPU designed under the Pascal architecture that has 20 multiprocessors, 8 GB
of device memory, and a clock frequency of 1772 MHz. The CPU is Intel Core i7-7700K processor. The

8/ia

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

yzh
在文本上注释
This macro is not explained.

Peer]

249

251
252
253

254

256

257

1TTENET 1900

(@)

Figure 2. An example of threads allocation in node parallel method (a) and work-efficient method (b).
Red nodes are frontier nodes that should be processed and an arrow represents a warp that be assigned
to the corresponding node. Warp-centric method will waste more threads on nodes that do not need to
be inspected. But combining warp-centric and work-efficient method can solve this problem, as shown
in (b).

Core i7-7700K has a frequency of 4.2 GHz, 8 MB cache and eight physical processor cores. We use 4
threads since hyperthreading doesn’t improve performance and we also run a sequential version because
it is still widely applied by network researchers.

To further understand the effect of network structures to algorithms’ performance, we generate two
types of networks, which are Erd6s-Rényi (ER) random graphs (Erdds—and"A], 1959) and Kronecker
graphs (Leskovec et all, POT0). The degree distribution of ER random graph is Poisson, indicating its
nodes’ degrees are relatively balanced. While Kronecker graph possesses scale-free and small-world
characters, which make it more similar to the realistic network. We uniformly assign random edge
weights ranging from 1 to 10 as previous literature did (Marfin_ef all, 200Y; Ortega-Arranz et all, POT3).

Table 1. Details of networks from public dataset

Network Vertices | Edges Max degree | Average degree | Description

bio-human-genel (Rossiand Ahmed, ZO1Y; Ransalefall, PO7) 22283 12345963 | 7940 1108.11 Human gene regulatory network
bio-human-gene2 (Rossiand Ahmed, ZOTY; Ransalefall, ZO07) 14340 9041364 7230 1261.00 Human gene regulatory network
bio-mouse-gene (Rassiand Ahmed, POTS; Bansalefall, ZO07) 45101 14506196 | 8033 643.28 Mouse gene regulatory network
ca-MathSciNet-dir (Rossiand-Ahmed, POTY; Palla_ef-all, ZOOX) 391529 873775 496 4.46 Co-authorship network

actors (Barabasrand Alberi, T999) 382219 15038094 3956 78.69 Actors collaboration network
rt-higgs (Ceskovecand Krevl, Z0T4; DeDomenica efall, ZOT3) 425008 732827 31558 3.45 Twitter retweeting network
mt-higgs (Ceskavecand Krevl, P14; DeDomenicoefall, ZT3) 116408 145774 11957 2.50 Twitter mention network

258

259

260

261

262

263

264

265

266

267

268

269

270

271

273

274

275

276

277

278

Results

From Tab. [, we can see that all the GPU programs achieve better performance than both the sequential
and parallel CPU version on all the seven real-world networks. The algorithm that applies work-efficient
coupled with warp-centric technique is the best one for achieving 3.5x to 6.5x speedup compared to the
parallel CPU method and 10x to 20x speedup compared to the sequential CPU algorithm respectively,
and its performance could be essentially improved by assigning appropriate WARP_SIZE. Work-efficient
method is more efficient than node-parallel in all networks, while warp-centric method performs better
on large degree networks, such as the three biological networks. However, combining warp-centric
method and work-efficient method always achieves better or approximately equal performance compared
to work-efficient method alone because it needs less threads in each step, which accordingly relieves the
influence of the second drawback of warp-centric method. For networks with low average degrees such
as ca-MathSciNet-dir, rt-higgs and mt-higgs, applying warp-centric method with actual WARP_SIZE is
always inefficient because nodes’ degrees are always smaller than WARP_SIZE. Using smaller virtual
WARP _SIZE performs better on these networks as shown in Tab. @ and we will further demonstrate this
later. By adjusting WARP_SIZE for low degree networks, the best performance program achieves 5x
average speed-up compared to the parallel CPU implementation and 2.55x average speed-up compared
to the baseline node-parallel strategy.

To deeply mining the relationship of the network structure and the performance of the four GPU
implementations, we further run them on two types of synthetic graphs, as can be seen in Fig. B. From
Fig. B(a), (b), (c) and (d), we find that work-efficient algorithm works better than node-parallel algorithm
in all networks since it always reduces the required number of threads. As can be seen in Fig. B(a)

9o/ia

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

yzh
在文本上注释
This illustration is very confusing. Consider redo it.

Peer]

Table 2. Benchmark results of the BC algorithms on weighted graphs, including a sequential CPU algorithm, a four
threads CPU algorithm, NP (node-paralle), WE (work-efficient) and warp (warpx means the WARP_SIZE is x). Times
are in seconds. The result of CPU sequential algorithm on actors network can not be provided because this program
consumes too much time (more than one day).

Algorithm bio-human-genel bio-human-gene2 | bio-mouse-gene | ca-MathSciNet-dir | actors rt-higgs mt-higgs
CPU (sequential) 7494.09 3505.49 18300.83 49184.05 — 54717.96 1829.63
CPU (4 threads) 2245.61 1023.48 5460.26 21169.81 89196.19 21522.20 746.84
NP 1585.69 697.51 4407.42 6154.18 44137.50 | 4681.37 222.60
WE 1398.47 612.14 3742.69 4796.71 37803.60 | 4197.30 197.24
NP+warp32 511.73 196.67 1497.56 13883.50 32567.60 | 6205.65 337.89
WE+warp32 403.51 159.68 1214.86 4969.10 2538220 | 4757.07 215.46
WE+warp4 784.86 327.93 1901.29 4593.97 2831570 | 3574.16 166.88
WE+warp8 562.48 229.53 1365.80 4579.23 25469.50 | 3641.77 169.14
WE+warpl16 439.58 174.51 1170.26 4706.05 2471540 | 4008.30 184.45
best speed-up (over sequential CPU) 18.57 21.95 15.64 10.74 - 15.31 10.96
best speed-up (over parallel CPU) 5.57 6.41 4.67 4.62 3.61 6.02 4.48

279

280

281

282

283

284

285

286

287

289

290

291

292

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

and (b), warp-centric method works well on networks with large degrees, which is consistent with the
conclusion in realistic networks. Note that for Kronecker graphs, warp-centric method works better than
that for random graphs since Kronecker graphs have serious load-imbalance problem and warp-centric
technique appropriately solves it. While for ER random graphs in Fig. B(a), the advantage of warp-
centric method is only the efficient memory access. For low degree graphs, warp-centric method works
even worse than node-parallel strategy because the degrees are always smaller than WARP _SIZE, as can
be seen in Fig. B(c) and (d). For random graphs, the performance of warp-centric method is extremely
poor when the average degree is smaller than 8 and Fig. B(e) explains the reason. The small average
degree brings about large average depth, which means that the average size of the frontier sets is small.
In this case, warp-centric method assigns more useless threads to nodes that do not need inspections.
On the contrary, as the degree grows, it is closer to WARP_SIZE and the depths drop down sharply,
which make the warp-centric method performs much better. While low-degree Kronecker graphs have
power-law degree distributions and small average depths, which make warp-centric method works not
as bad as on random graphs. However, the combination of the two methods always runs faster than
applying work-efficient method alone because it avoids the second drawback of warp-centric method,
which is discussed in the previous section. In conclusion, work-efficient method always achieves better
performance while the performance of warp-centric method relies on networks’ structures but the joint
version always achieves the best performance.

From the above analysis, applying smaller WARP_SIZE may accelerate the two implementations
which using warp-centric method when the networks’ average degree is small. And this hypothesis
can be verified in Fig. B. We apply smaller WARP_SIZE on rt-higgs network, mt-higgs network and
other two synthetic graphs whose average degrees are both four. From Fig. B(a) and (b), we find that
implementations with smaller WARP_SIZE de perform better than both of the baseline node-parallel
algorithms and the large WARP_SIZE algorithm on both of the low-degree realistic networks. And when
coupled with work-efficient method, algorithms with smaller WARP_SIZE also perform better than both
of the work-efficient strategy alone and the combination of work-efficient and large WARP_SIZE. The
reason is that small WARP_SIZE reduces the required number of threads and then eliminates the waste
of assigning more threads to a node than its degree. The implementations which have small WARP_SIZE
and coupled with work-efficient method achieve the best performance because they avoid both drawbacks
of warp-centric method but utilize the advantages of this technique. The results on low-degree Kronecker
graph is similar as on realistic networks since Kronecker graph is similar with real-world network. For
ER random graphs, the algorithm with small WARP_SIZE does not achieve better performance compared
to node-parallel version because the large average depth, which is analyzed in previous section. However,
when coupled with work-efficient method, the implementations with small WARP_SIZE perform slightly
better than the work-efficient algorithm, which further proves the excellence and stability of the joint
algorithm. In summary, the joint algorithm are most efficient and insensitive to network structure. And
if we choose an appropriate WARP _SIZE, its performance could be even better.

10/04

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

yzh
删划线

yzh
在文本上注释
What is this WARP_SIZE and did you show this in Fig. 4?

Peer]

316

317
318
319
320
321
322
323
324
325
326

327

328

329

a 10000- b
6000-
7500~ .
wn n
o £L.4000-
@ 5000- 9]
1= =
' 2500- *= 20001
0- ¢ : , , , 0- £ : : , ,
14 15 16 17 18 14 15 16 17 18
scale : logx(number of nodes) scale : logo(number of nodes)
d
__100-
@
(0]
=
=

2 6 10 14 18 22 26 30 34 38 2 6 10 14 18 22 26 30 34 38
average degree average degree

node—parallel <+ work—efficient <> warp—centric 7 work-efficient+warp-centric

[e2]
o

- Kronecker
<+ random

average depth °
SR

2 6 10 14 18 22 26 30 34 38
average degree

Figure 3. Performance of the four implementations on ER random and Kronecker graphs. The
WARP_SIZE is fixed to 32 in the two warp-centric methods. (a) and (b) tune the number of nodes from
214 to 218 for ER random and Kronecker graphs, respectively. And the average degrees are fixed to 32
for both of the two types of networks. (c) and (d) separately tune the average degrees for random and
Kronecker networks, in which the random networks have 20,000 vertices and the Kronecker networks
have 23 nodes. (e) illustrates the average depths of search trees for random graphs used in (c) and
Kronecker graphs used in (d). Networks with larger depths have smaller average frontier sets,
indicating the poor performance with parallelism.

CONCLUSION

Existing GPU version of betweenness centrality algorithms only concentrate on unweighted networks for
simplification. Our work that computing betweenness centrality on large weighted networks bridges this
gap and achieves prominent efficiency enhancement compared to the CPU implementation. Moreover,
we apply two excellent techniques which are work-efficient and warp-centric methods in our algorithm.
Work-efficient method allocates threads more efficiently and warp-centric method solves the load im-
balance problem and simultaneously optimizes the memory access. We compare these implementations
with sequential and parallel CPU algorithm in realistic networks. The results show that GPU parallel
algorithms perform much better than the CPU algorithms and the algorithm which integrates the two
techniques is the best, achieving 3.5x to 6.5x speedup over the parallel CPU version and 10x to 20x
speedup over the sequential CPU version respectively. Results on synthetic random graphs and Kro-
necher graphs further justify the outperformance of our solution.

For future work, we will consider implementing GPU algorithm to process dynamic networks. When
networks changes a little (like few new nodes come in or several links vanish), calculating betweenness

11/04

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

PeerJ Computer Science

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Manuscript to be reviewed

2 6000- b
300-
B4000- B200-
(] (0]
£ S
+2000- "_'100
g 0- -
ABCDETFGHIIJ A B D EFGH I J
c d 250
1000~ 200-
w w150-
(] (0]
£ s00- Eo0-
0 g
A B CDEF HoioJ A B CDETFGH I

Figure 4. Applying other WARP_SIZE on several low-degree networks. A-J represent node-parallel,
warp4, warp8, warp16, warp32, work-efficient, work-efficient+warp4, work-efficient+warp8,
work-efficient+warp 16, work-efficient+warp32, respectively. (a) and (b) are rt-higgs network and
mt-higgs network, respectively, on which smaller warp size achieves better performance than both
node-parallel method and the algorithm with large WARP_SIZE. (c) is a random graph with 2!7 nodes
whose average degree is four. Warp-centric method can not accelerate the speed when combining
node-parallel strategy. But when combining small WARP_SIZE with work-efficient method, the
performance will be slightly better than applying work-efficient method alone. (d) is Kronecker graph
with 2!7 nodes and the average degree is four, on which smaller WARP_SIZE achieves better
performance.

centrality for all nodes is unnecessary because betweenness centrality of most nodes and edges will not
be changed. Some previous works have explored the sequential algorithm on this issue (Lee_ef all, OT#;
Singh et all, 20T5; Nasre ef all, P0T4). We plan to develop GPU version of these algorithms to achieve
better performance.

ACKNOWLEDGMENTS

This work was supported by NSFC (Grant No. 71501005) and the fund of the State Key Lab of Software
Development Environment (Grant Nos. SKLSDE-2015ZX-05 and SKLSDE-2015ZX-28). R. F. also
thanks the Innovation Foundation of BUAA for PhD Graduates.

REFERENCES

Abedi, M. and Gheisari, Y. (2015). Nodes with high centrality in protein interaction networks are re-
sponsible for driving signaling pathways in diabetic nephropathy. PeerJ, 3:¢1284.

Bansal, M., Belcastro, V., Ambesi-Impiombato, A., and Di Bernardo, D. (2007). How to infer gene
networks from expression profiles. Molecular systems biology, 3(1).

Barabasi, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science,
286(5439):509-512.

Barthelemy, M. (2004). Betweenness centrality in large complex networks. The European Physical
Journal B-Condensed Matter and Complex Systems, 38(2):163—168.

Bell, N. and Garland, M. (2009). Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, pages 18:1-18:11.

12/04

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

Peer]

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

383

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

404

Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociol-
ogy, 25(2):163-177.

Cong, G. and Bader, D. A. (2005). An experimental study of parallel biconnected components algo-
rithms on symmetric multiprocessors (smps). In Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’05, pages 45b—45b, Washington, DC, USA. IEEE
Computer Society.

Davidson, A., Baxter, S., Garland, M., and Owens, J. D. (2014). Work-efficient parallel gpu methods
for single-source shortest paths. In Proceedings of the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pages 349-359. IEEE Computer Society.

De Domenico, M., Lima, A., Mougel, P., and Musolesi, M. (2013). The anatomy of a scientific rumor.
Scientific reports, 3.

Delling, D., Goldberg, A. V., Nowatzyk, A., and Werneck, R. F. (2011). Phast: Hardware-accelerated
shortest path trees. In Proceedings of the 2011 IEEE International Parallel & Distributed Processing
Symposium, pages 921-931. IEEE Computer Society.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numer. Math., 1(1):269-271.

Erdés, P. and A., R. (1959). On random graphs. Publicationes Mathematicae, 6:290-297.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Commun. ACM, 5(6).

Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1):35-41.

Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821-7826.

Goh, K.-I., Oh, E., Kahng, B., and Kim, D. (2003). Betweenness centrality correlation in social networks.
Phys. Rev. E, 67:017101.

Harish, P. and Narayanan, P. J. (2007). Accelerating large graph algorithms on the gpu using cuda. In
Proceedings of the 14th International Conference on High Performance Computing, HiPC’07, pages
197-208, Berlin, Heidelberg. Springer-Verlag.

Hong, S., Kim, S. K., Oguntebi, T., and Olukotun, K. (2011). Accelerating cuda graph algorithms at
maximum warp. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming, pages 267-276.

Jia, Y., Lu, V., Hoberock, J., Garland, M., and Hart, J. C. (2011). Edge v. node parallelism for graph
centrality metrics. GPU Computing Gems, 2:15-30.

Lee, M.-J., Choi, S., and Chung, C.-W. (2016). Efficient algorithms for updating betweenness centrality
in fully dynamic graphs. Inf. Sci., 326(C):278-296.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., and Ghahramani, Z. (2010). Kronecker
graphs: An approach to modeling networks. Journal of Machine Learning Research, 11:985-1042.
Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection. http:

//snap.stantord.edu/datal.

Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific
journals. Journal of the American Society for Information Science and Technology, 58(9):1303—-1319.

Ma, X. and Sayama, H. (2015). Mental disorder recovery correlated with centralities and interactions on
an online social network. Peer/, 3:¢1163.

Martin, P. J., Torres, R., and Gavilanes, A. (2009). Cuda solutions for the sssp problem. In Proceedings
of the 9th International Conference on Computational Science, pages 904-913. Springer-Verlag.

McLaughlin, A. and Bader, D. A. (2014). Scalable and high performance betweenness centrality on the
gpu. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 572-583.

Merrill, D., Garland, M., and Grimshaw, A. (2015). High-performance and scalable gpu graph traversal.
ACM Trans. Parallel Comput., 1(2).

Meyer, U. and Sanders, P. (2003). A-stepping: a parallelizable shortest path algorithm. Journal of
Algorithms, 49(1):114 — 152. 1998 European Symposium on Algorithms.

Mitchell, R. and Frank, E. (2017). Accelerating the xgboost algorithm using gpu computing. PeerJ
Computer Science, 3:e127.

Motter, A. E. and Lai, Y.-C. (2002). Cascade-based attacks on complex networks. Phys. Rev. E,
66:065102.

Nasre, M., Pontecorvi, M., and Ramachandran, V. (2014). Betweenness centrality—incremental and
faster. In International Symposium on Mathematical Foundations of Computer Science, pages 577—

13/04

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data

Peer]

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

423

588. Springer.

Ortega-Arranz, H., Torres, Y., Llanos, D. R., and Gonzalez-Escribano, A. (2013). A new gpu-based
approach to the shortest path problem. In High Performance Computing and Simulation, pages 505—
511.

Palla, G., Farkas, I. J., Pollner, P., Derényi, 1., and Vicsek, T. (2008). Fundamental statistical features
and self-similar properties of tagged networks. New Journal of Physics, 10(12):123026.

Peixoto, T. P. (2014). The graph-tool python library. figshare.

Rossi, R. A. and Ahmed, N. K. (2015). The network data repository with interactive graph analytics and
visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.

Sariyiice, A. E., Kaya, K., Saule, E., and Catalytirek, U. V. (2013). Betweenness centrality on gpus
and heterogeneous architectures. In Proceedings of the 6th Workshop on General Purpose Processor
Using Graphics Processing Units, pages 76-85.

Shi, Z. and Zhang, B. (2011). Fast network centrality analysis using gpus. BMC Bioinformatics, 12:149.

Singh, R. R., Goel, K., Iyengar, S., and Gupta, S. (2015). A faster algorithm to update betweenness
centrality after node alteration. Internet Mathematics, 11(4-5):403-420.

Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., and Owens, J. D. (2015). Gunrock: A high-
performance graph processing library on the gpu. In Proceedings of the 20th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP 2015, pages 265-266, New York,
NY, USA. ACM.

14/04

Peer] Comput. Sci. reviewing PDF | (CS-2017:08:19760:0:0:NEW 9 Aug 2017)

