Submitted 27 December 2022
Accepted 30 April 2023
Published 18 July 2023

Corresponding author
Fayez AlFayez, f.alfayez@mu.edu.sa

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj-cs.1408

© Copyright
2023 AlFayez

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Architecture and enhanced-algorithms to
manage servers-processes into network: a
management system

Fayez AlFayez

Computer Science and Information, College of Science in Zulfi, Majmaah University, Al-Majmaah,
Saudi Arabia

ABSTRACT

This work investigates minimizing the makespan of multiple servers in the case of
identical parallel processors. In the case of executing multiple tasks through several
servers and each server has a fixed number of processors. The processors are generally
composed of two processors (core duo) or four processors (quad). The meaningful
format of the number of processors is 2%, and k > 0. The problem is to find a schedule
that minimizes the makespan on 2 processors. This problem is identified as NP-
hard one. A new network architecture is proposed based on the addition of server
management. In addition, two novel algorithms are proposed to solve the addressed
scheduling problems. The proposed algorithms are based on the decomposition of the
main problem in several sub-problems that are applied to develop new heuristics. In
each level of the generated tree, some results are saved and used to decompose the set
of processes into subsets for the next level. The proposed methods are experimentally
examined showing that the running time of the proposed heuristics is remarkably better
than its best rival from the literature. The application of this method is devoted to the
network case when there are several servers to be exploited. The experimental results
show that in 87.9% of total instances, the most loaded and least loaded subset-sum
heuristic (MLS) reaches the best solution. The best-proposed heuristic reaches in 87.4%
of cases the optimal solution in an average time of 0.002 s compared with the best of
the literature which reaches a solution in an average time of 1.307 s.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Optimization Theory and Computation
Keywords Scheduling, Network, Heuristic, Decision-tree, Server-execution

INTRODUCTION

The application of network scheduling is exploited in several research works (Jernmali,
Melhim & Al Fayez, 2022; Sarhan, Jemmali & Ben Hmida, 2021; Alquhayz & Jemmali, 2021;
Jemmali & Alquhayz, 2020). Especially, the problem of treating the scheduling of processes
on identical parallel processors is widely investigated in computer science. It can be
defined by giving n processes (jobs)] ={J1,), ...,J»} and np identical parallel processors
Pr ={Pry,Pr,,...,Pr,,}. Each process J; has an associated time pj with j ={1,2,...,n}. We
assume that each p; is a positive integer and 1 < np < n to avoid trivialities. A processor
can execute at most one task at a given time. In addition, the task can not be processed by
more than one of the np processors. The preemption of processes is not allowed for this

How to cite this article AlFayez F. 2023. Architecture and enhanced-algorithms to manage servers-processes into network: a manage-
ment system. Peer] Comput. Sci. 9:e1408 http://doi.org/10.7717/peerj-cs. 1408

https://peerj.com/computer-science
mailto:f.alfayez@mu.edu.sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1408
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

study. This work mainly focuses on minimizing the maximal completion time of processes
(makespan) in literature this problem is denoted as Pm||Cpqx (Graham et al., 1979).

A solution for Pm||C,,ax is presented by a set S={S1,S,,..., Sy, } of the set J, where each
S; is the subset of processes scheduled on the processor Pr;. The workload of Pr; is denoted
by C(S;) where C(S;) = ij cs.Pk- This means that C(S;) is the completion time of the latest
process scheduled on the processor Pr;. For each assignment S, set Cqx (S) = maxp,, {C(S;)}
which represents the makespan related to the solution S. This problem is important
in practice because the objective is to seek the balancing of the load over the various
processors, which is corresponding to finishing all processes in a minimum time and
having a good distribution on processors. The studied problem is an intensively studied
one in scheduling that has remarkable practical interest and significant utilization in our
life applications. Pm||Cp,y is NP-hard problem in the strong sense, see (Garey ¢ Johnson,
1979). Several researchers applied the parallel machine problem to solve other related
problems like learning effect constraint with minimization of the makespan (Jemmali ¢
Hidri, 20215 Hidri ¢ Jemmali, 2020), mold constraints (Hmida ¢ Jemmali, 2022) or flow
shop problem (Jermmali & Hidri, 2023; Amdouni et al., 20215 Agrebi et al., 2021; Jemmali et
al., 2021). Tt is important to find an approximate solution for a problem that is classified
as a hard one. The algorithms that solve the parallel machine problem can be applied to
several industrial problems. The wide utilization of this well-known problem makes the
study of this problem more imposing. In the literature, there are several works that solve the
problem optimally but the time for some instances is time-consuming or in several cases
does not reach the optimal solution. This article investigates the problem of scheduling
algorithms to propose a new procedure to enhance the approximate solution performance.

The problem of Pm||C,,ax is widely investigated in the literature. One of research
directions was conducted to develop exact solution methods and to show the lower
bounds and heuristics. For instance, exact solutions have been studied and investigated
in Mokotoff (2004), DellAmico et al. (2008) and Haouari & Jemmali (2008). Additionally,
many algorithms were developed by using constructive schema, a worst-case performance
ratio is given, for Pm||Cyux in Hoogeveen, Lenstra ¢ Van de Velde (1997), Mokotoff (2001)
and Phillips et al. (1998). In DellAmico et al. (2008), the authors presented a meta-heuristic
and an exact solution using the existing dataset proposed in the literature review.

For multi-fit and multi-subset solutions based on subset-sum and bin packing
problems (DellAmico ¢ Martello, 1995). Developed results were demonstrated following
performance procedures and lifting heuristics in DellAmico et al. (2008), Haouari, Gharbi
& Jemmali (2006b) and Haouari & Jemmali (2008). An effective simulated annealing
algorithm was developed to generate the near-optimal solution (Lee, Wi & Chen, 2006).
Another study of Pm||C,,, problem was proposed using a hop-field type dynamical
neural network to find a solution for this NP-hard problem even for the case of two
machines (Akyol ¢ Bayhan, 2006).

A dual feasible solution method to solve the problem of the parallel machine with
minimization of the makespan is studied in Haouari, Hidri & Jemmali (2008). Other
research work is also treated for the same problem when authors proposed several lower
bounds for the studied problem (Haouari, Gharbi & Jemmali, 2006a).

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

An application of scheduling problems using parallel processors on network domains and
its application when there are several servers to be exploited such in railway monitoring
domain, new solutions are developed in AlFayez, Melhim & Jemmali (2019), AlFayez
(2020) and Jemmali, Melhim ¢ Al Fayez (2022). Budgets balancing strategies algorithms
are proposed by applying parallel processors in Jernmali (2019b), Alharbi & Jemmali (2020)
and Jemmali (2019a).

In Mokotoff (1999), the authors present an approximation algorithm based on linear
programming formulations with binary variables for decision. Additionally, heuristic
algorithms that iteratively utilize MF and LPT rules on several jobs and machine
sets, obtained by using the existing solution, have been proposed in the literature.
These algorithms give a solution for the well-known problem of multiprocessor
scheduling (Kuruvilla & Paletta, 2015). An approximate solution based on balancing the
hop-field was proposed in Habiba et al. (2018). Other works using local-search methods
with the utilization of partial solutions and mixing were presented in Paletta ¢ Vocaturo
(2011).

Another domain of application of the parallel processors is used in the gas turbines
problem in Jemmali et al. (2019). The dispatching rules variants of the fair distribution
of the used space in the cloud are proposed in Alguhayz, Jemmali ¢ Otoom (2020). The
latter work is an application of the parallel processor’s problem. Recently, several new
applications of the scheduling problem are studied in Jemmali et al. (2022), Jemmali,
Melhim & Al Fayez (2022) and Jemmali (2022).

The proposed algorithms in El-Soud et al. (2021) can be applied to the studied problem
with applying new constraints. In the same context the proposed algorithms can be used the
problems given in Hidri ¢ Jemmali (2020), AlFayez et al. (2019) and Melhim et al. (2020),
Melhim, Jemmali & Alharbi (2019), AlFayez (2023) and Melhim, Jemmali & Alharbi (2018).

The next section reviews the best existing heuristics for the Pm||Cpqx. Assuming that
p1 < pr <--- < py, we present three heuristics from the literature review. The first is
thee longest processing time (LPT'), which is the oldest one. Two other best-performed
heuristics the multi-start subset-sum-based improvement heuristic (MSS) and the multi-
start knapsack-based improvement heuristic (MSK) are also reviewed. Later, we compare
the performance of our new technique with these three heuristics.

The article is structured as follows. Section 2 is reserved for the presentation of the best
heuristics from literature. Section 3 details the proposed network architecture. In Section
4, the proposed heuristics are detailed. The experimental results are discussed in Section 5.
Finally, the work is concluded in Section 6.

BEST HEURISTICS FROM THE LITERATURE

In this section, we present the best heuristics from the literature. These heuristics will be
compared to the proposed ones. The heuristics of the literature that used for comparison
are studied in Haouari, Gharbi & Jemmali (2006b).

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Longest processing time heuristic (LPT)

The processes are arranged in the non-increase arrangement of their processing times and
scheduled on the parallel processors according to this arrangement. The first available
processor is chosen to assign the process.

A multi-start subset-sum-based improvement heuristic (USS)

As shown in Haouari, Gharbi ¢ Jemmali (2006b) the P;||Cax could be reformulated as a
subset-sum problem. Pisinger (2003) introduced a pseudo-polynomial to solve a subset-

sum problem using a dynamic programming algorithm. Based on this idea a multi-start

local search algorithm was implemented.

A multi-start knapsack-based improvement heuristic (MSK)

The MSK heuristic has a similar idea as (MSS). However, the main difference is localized in
the problem solved in each procedure. Indeed, for MSK, each iteration solves a knapsack
problem (KP) instead of the subset problem (SSP). Pseudo-polynomial time can solve KP
efficiently.

PROPOSED NETWORK ARCHITECTURE

In this section, we propose a novel architecture that can ameliorate the execution of all
processes using the scheduling problem. This architecture is based on the component
that can call the best algorithm proposed in this article to solve a scheduling problem.
This component is called the “Management server” (See Fig. 1). Firstly, the component
“Database server” (as shown in Fig. 1) contains all tasks that must be executed. These tasks
will be managed by the component “Database server” by applying a scheduling algorithm
that solves the proposed problem to schedule these tasks to the different servers. It is worth
noting that, each server contains a server number of processors and a different number of
applications to run. Suppose that we have Sn servers. The problem is to find a method that
we can schedule all tasks stored in the “Database server” component to the Su servers. This
problem is NP-hard and refereed to Pm||Cax.

Figure 1 shows that in each server there are different applications to be launched. The
number of servers constitutes a resource that is rare and the number will be limited because
of the high cost of these resources. However, the number of processes is very big and
must be executed in many cases in parallel. In this article, we add functionality to the
“Management server” which is the calling of the best scheduling algorithm in order to
address the problem of assignment. After calling of this algorithm, each process will know
the server and the processor that will execute this process. In fact, each server has a fixed
number of processors and each processor is identified by the variable p.

PROPOSED HEURISTICS FOR 2X PROCESSORS

In this section, we develop a new vision in order to select the number of processors based
on the best utilized in the domain of computers. Indeed, we witness rapid development in
computer hardware that utilizes more performance processors, for instance, core duo (two

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 4/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

|
Applications Applications Applications
| [| |
I I
A A
Server 1 Server 2 ‘ Server Sn

A

Management server

Database server (Precesses)

Figure 1 Proposed network architecture.
Full-size @ DOI: 10.7717/peerjcs.1408/fig-1

processors) and quad (four processors). Based on this idea, we refer to our approach to
choosing a number of np = 2 processors for the P||C,x. Note here that in general 2F < n.

This article proposes two iterative heuristics. The first one is established on solving
iteratively a number of P2||C,,x problems using SSP. The second one is to reschedule the
least and most charged processors. For the last step, a randomized heuristic will be applied.
Figure 2 illustrates a flow chart for the proposed heuristics.

An encapsulated subset-sum decomposition heuristic (ESD)

This heuristic generates an approximate solution using a binary tree method by solving
a classification of two processor problems using subset-sum problems. The proposed
heuristic ESD derived from the proposition given by Haouari, Gharbi & Jemmali (2006b)
which shows that all problems of P||C,;,,x where m =2 written as P2||C,y,x will be written
using the subset-sum problem. Indeed, the two processors are identical and parallel (Pr;
and Pr,). Suppose that the Pr,’s total workload does not exceed Pr;’s. Therefore, solving

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 5/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1408/fig-1
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Initial problem

Decomposition into most
loaded and least loaded
MEIIES

Decomposition into subsets

of two processors

Figure 2 Flow chart of the proposed heuristics.
Full-size Gal DOI: 10.7717/peerjcs.1408/fig-2

P2||Cax needs to minimize the workload of Pry. Let y; be a binary variable that takes the
value 1 if the process j is scheduled to Pr;, and 0 otherwise. Thus, P2||C,,4 is formulated
to solve:

min Z}j o Py

S. t.Z}jE]pjijZ]jE]pj(l—yj), (1)
Y € {0, 1},V]j e].

> erPj .
In System 1, we replace Z]je]PjJ’j > Z]J,e]pj(l —y;j) by ’7%—‘ and the obtained
formulation is the subset-sum problem.
Finally, the system will be as follows:

minE]je]pjyj’
ij bj
SSP1: S b Sk 2)
s. t.]J_E]p]yjz|r 5)

y; €{0,1},V]; €J.

where y; takes 1 if process J; is scheduled on the first processor, and 0 otherwise. Now,

having the number np = 2¥, we start by solving the problem of np processors and n
processes applying the SSP1 for P2||Cy4x. The solution decomposes J into two sets the
first J; and the second J,. Now, we treat J; as a sub-problem with two processors solving by
SSP1. Similarly, we solve the sub-set J, by the same solving method. These solutions give
new sub-set problems decomposed into processors and so on until arriving at the 2. The
Example 1 gives a more clear idea of the proposed heuristic.

Example 1 Letan instance with # =10 and np = 4. The processing time for each process
is given in Table 1.

AlFayez (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1408 6/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1408/fig-2
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Table 1 Instance with n=10 and np = 4 applying ESD.

j 1 2 3 4 5 6 7 8 9 10
P 71 29 28 85 76 87 99 71 88 48

level 1

level 2

level 3

Figure 3 Fully complete tree for the example 1 instance.
Full-size Gal DOI: 10.7717/peerjcs.1408/fig-3

To apply the proposed heuristic ESD, the first step is the decomposition of all processes
into 2 groups by applying the Subset-sum problem method. To do that, we calculate the
summation of all processing time which is equal to 682. The two groups G; and G, is
obtained by solving P2||C4y applying SSP1 with respect the capacity C = % =341.
The corresponding solution is G; = {71,29,28,76,88,48} and G, = {85,87,99,71}

Now, we repeat the same idea to G; and G;. For G;, C =170. Solving a P2||C,, for
G1, we have two new groups denoted by Gi; and Gj;. The corresponding solutionis G, =
{29,88,48} and G, =({71,28,76}. For G,, C=171. Solvinga P2||Cpg,y for Gi, we have
two new groups denoted by G, and G,; with Gy; ={99,71} and G,, = {85, 87}. Finally,
it’s clear to see that we have a fully complete binary tree with three levels as shown in Fig. 3.

As shown in Fig. 3 above, in the last level of the tree, we have the following groups
G11,G12,Ga and Gy, with the respective total completion times 165,175,170 and 172.
Each group represents a processor for our studied problem. Applying this correspondence,
we have:

e Gy is corresponding to Pr;
e G, is corresponding to Pr,
e G is corresponding to Pr3

Gy is corresponding to Pry
Therefore, C,u = max{165,175,170,172} =175.

Theorem 1 A feasible solution of P||Cj,, problem with np = 2k conduct the generation
of a fully complete tree (FCT') with the highest level equal to k + 1 and each node in the
leaves in [2’_1,21 — 1] constitute one processor.

Proof The decomposition of the problem into a subset of 2 processor problems implies
the division of the number of processes into two groups. Group for the first processor and
another group for the second one. We continue the decomposition into two groups until

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 7116

https://peerj.com
https://doi.org/10.7717/peerjcs.1408/fig-3
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

reach level 1. It is observable that the decomposition into two groups repetitively constructs
a fully complete tree. The nodes in the leaf will be indexed in the interval [21_1,21 —1]
which every node represents a processor. Now, drawing the (FCT') corresponding to the
initial problems in order to solve by classing 2 processors in a sub-problem. This means
that the feasible solution is encapsulated in (FCT).

Example 2 Let the number of processors as np = 2> = 8. In this case, the number of levels
for the (FCT) is 4. The last level contains 8 nodes. The index of these eight nodes is in
[21_1,21 — 1] =[8,15]. These indexes will constitute the corresponding processors for the
initial problem with np = 8. Figure 4 illustrates the encapsulated FCT for feasible solution
search.

Most loaded and least loaded subset-sum heuristic MLS

The idea of this heuristic can be explained in the following steps. In the first, we apply the
ESD heuristic described above. From the schedule given by the ESD heuristic, we fix the
highest load processor Pr; and the lowest load processor Pr,. Applying the subset-sum
problem with P2|C,,,, we obtain the new distribution of processes on Pr; and Pr,. This
distribution consists of the newly obtained schedule with the enhanced C,,; which
constitutes MLS.

EXPERIMENTAL STUDY

In this section, we highlight and analyze the results of the execution of our implementation.
In order to examine the performance of the new proposed heuristics, we coded all
algorithms in Microsoft Visual C++ (Version 2013). All the programs were tested on
an Intel core i7 CPU 1.8 GHz personal computer with 8GB RAM using Windows 7
operating system with 64 bits. The heuristics were tested on several instances in order
to obtain a good analysis of the performance. We adopt the way of generation of the
processing time that is described in DellAmico & Martello (1995). Two distribution was
applied. The first one is the discrete uniform distribution denoted by U[.]. The second
one is the normal distribution denoted by N(.). Five classes are generated to show the
experimental results as follows.

e Classl: U[1—100];

e Class2: U[20—100];

e Class3: U[50—100];

e Class4: N(100,50);

e Class5: N(100,20).

For each Class and for each pair of np and n, we generate 10 instances, which result in
2,350 instances in total. The choice of the pair (1, np) is as follows. For n =10, np in {2, 4, 8},
for n=25, np in {2,4, 8,16} and for n = {50, 100, 250, 500, 1000, 2500, 5000, 10000}, #p in
(2,4,8,16,32).

The metrics used to measure the performance of the developed heuristics are described
in Table 2.

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 8/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

level 1

level 2

level 3

level 4

G Gz G G Gan Gz G G oz

Figure 4 Encapsulated FCT for feasible solution search.
Full-size & DOI: 10.7717/peerjcs.1408/fig-4

Table 2 Notation and metrics description.

Notation Description

Min The number of instances that the studied heuristic equals
the minimum value given by comparing all heuristics.

U The studied heuristic

L The maximum value of all lower bounds given in the

literature review.

MG =YL x 100
MGP
Opt

Time

A.Time
M .Time

Perc

gap between lower bound and the studied heuristic
The average of MG

The number of instances that the studied heuristic is equal
to L. This means that the number of instances in that we
have the optimal solution is just when we calculate the
studied heuristic.

The spent time to execute the heuristic in corresponding
instances. This time will be in seconds and we denote by
if the time is less than 0.001 s.

@ »

The average of Time for a given set of instances
The maximum of Time for a given set of instances

The percentage

The variation of the percentage Perc is illustrated in Fig. 5. This figure is based on the
results given in Table 3 in line Perc and each column Min for each heuristic. Figure 5,
shows that the best heuristic from the literature is MSK and the best-proposed heuristic is
MLS. The percentage that we have the minimum value compared with the best heuristics
value for MLS is 87.9%. However, the percentage for the MSK is 100%. The difference

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 9/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1408/fig-4
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

LPT MSS MSK ESD MLS

Figure 5 Variation of the percentage Min for all heuristics.
Full-size & DOI: 10.7717/peerjcs.1408/fig-5

Table 3 Heuristics comparison for the overall instances and classes.

LPT MSS MSK ESD MLS

Min Opt Min Opt Min Opt Min Opt Min Opt

Total 1061 1053 2346 2284 2349 2287 2063 2052 2066 2055

Perc% 45.1 44.8 99.8 97.2 100.0 97.3 87.8 87.3 87.9 87.4
A.Time - 0.941 1.307 0.002 0.002
M .Time 0.003 6.572 8.372 0.007 0.006

Notes.
Remarkable values are in bold.

between MLS and MSK is only 12.1%. This means that the results given by MLS are close
to results obtained by MSK.

Table 3 presents the comparison between 2,350 instances for all heuristics. We denoted
by Total and Perc the number of instances and the percentage, respectively, among the
2,350 instances of corresponding Min and Opt.

On the other hand, it is interesting to see that the MSK heuristic is more time-consuming
as the average time is 1.307 s and the maximum time is 8.372 s. For the proposed heuristic
MLS the average time is 0.005 s and the maximum time is 0.006 s. For the proposed
heuristic ESD the average time is 0.002 s and the maximum time is 0.007 s.

Therefore, from Table 3 we can deduce that by adopting the difference of only 12.1%,
we can choose the MLS heuristic instead of the MSK to have an acceptable approximate
solution with minimum time. Indeed, the execution of the overall instances (2,350) costs
3,051.442 s for MSK. However, the same instances costs only 4.068 s, so we win 3,047.374 s.

From Table 3, we know here after the choice of the MLS impact only 12.1% of
performance instances compared with MSK. This latter table shows that the proposed
heuristics ESD and MLS reach the optimal solution in 87.3% and 87.4% cases, respectively.

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 10/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1408/fig-5
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Table 4 Heuristics comparison total instances (1, np) by classes.

LPT MSS MSK ESD MLS
Min Opt Min Opt Min Opt Min Opt Min Opt
Class 1 71.9 71.5 100.0 98.1 100.0 98.1 90.2 89.8 90.6 90.2
Class 2 41.7 40.6 99.8 96.2 100.0 96.4 87.2 86.6 87.2 86.6
Class 3 44.3 44.3 100.0 98.9 100.0 98.9 87.2 87.0 87.2 87.0
Class 4 54.9 54.9 99.6 94.7 100.0 95.1 88.3 87.4 88.5 87.7
Class 5 13.0 12.8 99.8 98.1 99.8 98.1 86.0 85.7 86.0 85.7

Notes.
Remarkable values are in bold.

Table 5 Behavior of the maximum time according to n.

n LPT MSS MSK ESD MLS

10 - 0.005 0.082 0.002 0.001
25 - 0.017 0.252 0.002 0.002
50 - 0.038 0.587 0.007 0.004
100 - 0.075 1.184 0.004 0.005
250 - 0.097 0.772 0.004 0.004
500 - 0.231 0.893 0.004 0.005
1000 - 0.876 1.451 0.004 0.005
2500 0.001 2.357 1.960 0.004 0.006
5000 0.001 2.071 3.299 0.004 0.006
10000 0.003 6.572 8.372 0.005 0.005

Notes.
Remarkable values are in bold.

Table 6 Behavior of the maximum time according to np.

np LPT MSS MSK ESD MLS
0.001 5.376 7.176 0.002 0.001
4 0.003 5.418 7.218 0.002 0.001
0.001 4.690 6.490 0.002 0.002
16 0.002 4.758 6.558 0.004 0.004
32 0.002 6.572 8.372 0.007 0.006

Notes.
Remarkable values are in bold.

For more details, Table 4 preset the percentage among the 470 instances of corresponding
Min and Opt for each class.

Let us now give a time study to compare the literature heuristics and the proposed ones.
Table 5 demonstrates that the maximum time of 8.372 s is obtained for the heuristic MSK
when n=10,000. However, when n =10,000, the maximum time for MLS is 0.005 s which
is less than the minimum value of M .Time for MSK (0.772 s).

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 11/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Table 7 Behavior of the maximum time according to Class.

Class LPT MSS MSK ESD MLS

1 0.003 4.448 6.248 0.006 0.006

2 0.003 6.756 8.556 0.008 0.006

3 0.005 7.122 8.922 0.008 0.006

4 0.002 5.933 7.733 0.008 0.006

5 0.003 10.986 12.786 0.008 0.006
Notes.

Remarkable values are in bold.

Table 6 shows that for MLS the time is almost between 0.001 s and 0.006 s. However,
for MSK the minimum value of M .Time is 6.490 s when np = 8 and the maximum value
is 8.372 s when np = 32.

In Table 7, we present the behavior of M.Time according to Class. Based on the results
shown in this table, for MSK the maximum value of M .Time is 12.786 s for class 5. On the
other hand, the maximum value for MLS is 0.006 s for all classes. It is clear that for MSK
class 5 is harder than other classes. This is not the case applying the MLS heuristic.

CONCLUSION

This work developed an innovative procedure to introduce new heuristics for the identical
parallel 2% processors in different servers into the network. The procedure is articulated on
the subdivision of the initial problem into multiple two sub-problems. Each problem is
solved using a subset-sum problem. The generation of the full tree for each instance made
the execution time less consuming compared with those in the literature. Almost 87.9% of
the total sample is solved using the new heuristic. Its performance is almost the same as the
best-known heuristics in literature. The performance of the proposed procedure is based
on the running time. Indeed, we can solve big-scale instances in a remarkable running time.
The experimental results show that we can gain 3,047.374 s when adopting the proposed
procedure instead of those used in the literature. For future work, the used procedure
can be utilized in an evolutionary meta-heuristic to enhance the results. In addition, the
proposed procedure can be utilized to be applied to several scheduling problems. The
proposed algorithms in this work could be utilized to cloud computing and developed for a
load balancer using virtual machines in AWS or AZURE. A generalization of the proposed
problem can be studied. This generalization is based on the consideration of the number
of processors that are not in the power of 2.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Deanship of Scientific Research at Majmaah University
under project no. R-2023-431. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 12/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Grant Disclosures
The following grant information was disclosed by the author:
The Deanship of Scientific Research at Majmaah University: R-2023-431.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Fayez AlFayez conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The codes are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1408#supplemental-information.

REFERENCES

Agrebi I, Jemmali M, Alquhayz H, Ladhari T. 2021. Metaheuristic algorithms for
the two-machine flowshop scheduling problem with release dates and block-
ing constraint. Journal of the Chinese Institute of Engineers 44(6):573—582
DOI 10.1080/02533839.2021.1933600.

Akyol DE, Bayhan GM. 2006. Minimizing makespan on identical parallel machines using
neural networks. In: International conference on neural information processing. Cham:
Springer, 553-562.

AlFayez F. 2020. Data reading algorithms for WSN’s railway monitoring system. Interna-
tional Journal of Computer Science and Network Security (IJCSNS) 20(8):176-179.
AlFayez F. 2023. Algorithms for pre-compiling programs by parallel compilers. Computer

Systems Science and Engineering 44(3):2165-2176 DOI 10.32604/csse.2023.026238.

AlFayez F, Hammoudeh M, Adebisi B, Abdul Sattar KN. 2019. Assessing the effective-
ness of flying ad hoc networks for international border surveillance. International
Journal of Distributed Sensor Networks 15(7): DOI 10.1177/1550147719860406.

AlFayez F, Melhim LKB, Jemmali M. 2019. Heuristics to optimize the reading of railway
sensors data. In: 2019 6th international conference on control, decision and information
technologies (CoDIT). Piscataway: IEEE, 1676—1681.

Alharbi M, Jemmali M. 2020. Algorithms for investment project distribution on regions.
Computational Intelligence and Neuroscience 2020:3607547.

Alquhayz H, Jemmali M. 2021. Fixed urgent window pass for a wireless network
with user preferences. Wireless Personal Communications 120(2):1565-1591
DOI 10.1007/s11277-021-08524-x.

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 13/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1408#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1408#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1408#supplemental-information
http://dx.doi.org/10.1080/02533839.2021.1933600
http://dx.doi.org/10.32604/csse.2023.026238
http://dx.doi.org/10.1177/1550147719860406
http://dx.doi.org/10.1007/s11277-021-08524-x
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Alquhayz H, Jemmali M, Otoom MM. 2020. Dispatching-rule variants algorithms
for used spaces of storage supports. Discrete Dynamics in Nature and Society
2020:1072485.

Amdouni H, Jemmali M, Mrad M, Ladhari T. 2021. AN exact algorithm minimizing
the make span for the two machine flowshop scheduling under release dates and
blocking constraints. International Journal of Industrial Engineering 28(6):631-643.

Dell’Amico M, Iori M, Martello S, Monaci M. 2008. Heuristic and exact algorithms for
the identical parallel machine scheduling problem. INFORMS Journal on Computing
20(3):333-344 DOI 10.1287/ijoc.1070.0246.

Dell’Amico M, Martello S. 1995. Optimal scheduling of tasks on identical parallel
processors. ORSA Journal on Computing 7(2):191-200 DOIT 10.1287/ijoc.7.2.191.

El-Soud MWA, Gaber T, AlFayez F, Eltoukhy MM. 2021. Implicit authentication
method for smartphone users based on rank aggregation and random forest.
Alexandria Engineering Journal 60(1):273-283 DOI 10.1016/j.a¢j.2020.08.006.

Garey MR, Johnson DS. 1979. Computers and intractability: a guide to the theory of
npcompleteness (series of books in the mathematical sciences), ed. Computers and
Intractability 340:338.

Graham RL, Lawler EL, Lenstra JK, Kan AR. 1979. Optimization and approximation in
deterministic sequencing and scheduling: a survey. In: Annals of discrete mathematics.
Vol. 5. Amsterdam: Flsevier, 287-326.

Habiba H, Ahmed H, Souad T, Zaki S. 2018. Minimizing makespan on identical parallel
machines. Electrotehnica, Electronica, Automatica 66(1):180—185.

Haouari M, Gharbi A, Jemmali M. 2006a. Bounding strategies for scheduling on
identical parallel machines. In: 2006 international conference on service systems and
service management, vol. 2. Piscataway: IEEE, 1162-1166.

Haouari M, Gharbi A, Jemmali M. 2006b. Tight bounds for the identical parallel
machine scheduling problem. International Transactions in Operational Research
13(6):529-548 DOI 10.1111/§.1475-3995.2006.00562..x.

Haouari M, Hidri L, Jemmali M. 2008. Tighter lower bounds via dual feasible functions.
PMS 2008 112—-115.

Haouari M, Jemmali M. 2008. Tight bounds for the identical parallel machine-
scheduling problem: part II. International Transactions in Operational Research
15(1):19-34 DOI 10.1111/§.1475-3995.2007.00605.x.

Hidri L, Jemmali M. 2020. Near-optimal solutions and tight lower bounds for the
parallel machines scheduling problem with learning effect. RAIRO-Operations
Research 54(2):507-527 DOT 10.1051/r0/2020009.

Hmida AB, Jemmali M. 2022. Near-optimal solutions for mold constraints on two
parallel machines. Studies in Informatics and Control 31(1):71-78.

Hoogeveen JA, Lenstra JK, Van de Velde S. 1997. Sequencing and scheduling: an
annotated bibliography. In: Del’ Amico M, Maftfioli F, Martello S, eds. Annotated
Bibliographies in Combinatorial Optimization. Chichester: Wiley, 180-197.

Jemmali M. 2019a. Approximate solutions for the projects revenues assignment problem.
Communications in Mathematics and Applications 10(3):653—658.

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 14/16

https://peerj.com
http://dx.doi.org/10.1287/ijoc.1070.0246
http://dx.doi.org/10.1287/ijoc.7.2.191
http://dx.doi.org/10.1016/j.aej.2020.08.006
http://dx.doi.org/10.1111/j.1475-3995.2006.00562.x
http://dx.doi.org/10.1111/j.1475-3995.2007.00605.x
http://dx.doi.org/10.1051/ro/2020009
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Jemmali M. 2019b. Budgets balancing algorithms for the projects assignment. In-
ternational Journal of Advanced Computer Science and Applications (ITACSA)
10(11):574-578.

Jemmali M. 2022. Intelligent algorithms and complex system for a smart parking for
vaccine delivery center of COVID-19. Complex & Intelligent Systems 8(1):597—-609
DOI 10.1007/s40747-021-00524-5.

Jemmali M, Agrebil, Alquhayz H, Ladhari T. 2021. Optimal algorithm for a
two-machine flowshop scheduling problem with release dates and block-
ing constraints. Journal of the Chinese Institute of Engineers 44(5):440—447
DOI 10.1080/02533839.2021.1919560.

Jemmali M, Alquhayz H. 2020. Time-slots transmission data algorithms into network.
In: 2020 international conference on computing and information technology (ICCIT-
1441). Piscataway: IEEE, 1-4.

Jemmali M, Hidri L. 2021. Bounding schemes for the parallel machine scheduling
problem with DeJong’s learning effect. Journal of Parallel and Distributed Computing
156:101-118 DOI 10.1016/j.jpdc.2021.05.003.

Jemmali M, Hidri L. 2023. Hybrid flow shop with setup times scheduling problem.
Computer Systems Science & Engineering 44(1):563-577.

Jemmali M, Melhim LKB, Al Fayez F. 2022. Real time read-frequency optimization
for railway monitoring system. RAIRO-Operations Research 56(4):2721-2749
DOI 10.1051/r0/2022094.

Jemmali M, Melhim LKB, Alharbi MT, Bajahzar A, Omri MN. 2022. Smart-
parking management algorithms in smart city. Scientific Reports 12(1):1-15
DOI10.1038/s41598-022-10076-4.

Jemmali M, Melhim LKB, Alharbi SOB, Bajahzar AS. 2019. Lower bounds for gas
turbines aircraft engines. Communications in Mathematics and Applications
10(3):637—642.

Kuruvilla A, Paletta G. 2015. Minimizing makespan on identical parallel machines.
International Journal of Operations Research and Information Systems (IJORIS)
6(1):19-29.

Lee W-C, Wu C-C, Chen P. 2006. A simulated annealing approach to makespan
minimization on identical parallel machines. The International Journal of Advanced
Manufacturing Technology 31(3—4):328-334 DOI 10.1007/s00170-005-0188-5.

Melhim LKB, Jemmali M, Alharbi M. 2018. Intelligent real-time intervention system ap-
plied in smart city. In: 2018 21st Saudi computer society national computer conference
(NCC). Piscataway: IEEE, 1-5.

Melhim LKB, Jemmali M, Alharbi M. 2019. Network monitoring enhancement based
on mathematical modeling. In: 2019 2nd international conference on computer
applications & information security (ICCAIS). Piscataway: IEEE, 1-4.

Melhim LKB, Jemmali M, AsSadhan B, Alquhayz H. 2020. Network traffic reduction
and representation. International Journal of Sensor Networks 33(4):239-249
DOI 10.1504/1JSNET.2020.109193.

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 15/16

https://peerj.com
http://dx.doi.org/10.1007/s40747-021-00524-5
http://dx.doi.org/10.1080/02533839.2021.1919560
http://dx.doi.org/10.1016/j.jpdc.2021.05.003
http://dx.doi.org/10.1051/ro/2022094
http://dx.doi.org/10.1038/s41598-022-10076-4
http://dx.doi.org/10.1007/s00170-005-0188-5
http://dx.doi.org/10.1504/IJSNET.2020.109193
http://dx.doi.org/10.7717/peerj-cs.1408

PeerJ Computer Science

Mokotoff E. 1999. Scheduling to minimize the makespan on identical parallel machines:
an LP-based algorithm. Investigacion Operative 97—-107.

Mokotoff E. 2001. Parallel machine scheduling problems: a survey. Asia-Pacific Journal of
Operational Research 18(2):193-242.

Mokotoff E. 2004. An exact algorithm for the identical parallel machine scheduling
problem. European Journal of Operational Research 152(3):758-769
DOI 10.1016/S0377-2217(02)00726-9.

Paletta G, Vocaturo F. 2011. A composite algorithm for multiprocessor scheduling.
Journal of Heuristics 17(3):281-301 DOI 10.1007/s10732-010-9135-1.

Phillips CA, Schulz AS, Shmoys DB, Stein C, Wein J. 1998. Improved bounds on
relaxations of a parallel machine scheduling problem. Journal of Combinatorial
Optimization 1(4):413—-426 DOI 10.1023/A:1009750913529.

Pisinger D. 2003. Dynamic programming on the word RAM. Algorithmica 35(2):128-145
DOI 10.1007/500453-002-0989-y.

Sarhan A, Jemmali M, Ben Hmida A. 2021. Two routers network architecture and
scheduling algorithms under packet category classification constraint. In: The 5th
international conference on future networks & distributed systems. 119-127.

AlFayez (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1408 16/16

https://peerj.com
http://dx.doi.org/10.1016/S0377-2217(02)00726-9
http://dx.doi.org/10.1007/s10732-010-9135-1
http://dx.doi.org/10.1023/A:1009750913529
http://dx.doi.org/10.1007/s00453-002-0989-y
http://dx.doi.org/10.7717/peerj-cs.1408

