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ABSTRACT
The Internet-of-Things (IoT) has been used with greater frequency to track peoples’
daily activities, particularly those conducted indoors. Wi-Fi technology has been also
been used as an alternative to global navigation satellite system (GNSS) technologies to
track indoor activities. The received signal strength indicator (RSSI) is widely used
to assist in the positioning of Wi-Fi signals. However, the RSSI-based technique
suffers from multipath, non-line-of-sight (NLOS) problems and the fluctuation of
RSSI measurements via Wi-Fi chipsets. One of the most well-known RSSI-based
approaches is to apply the fingerprinting method to do the positioning. However,
the fingerprinting-based form has an additional problem due to the lack of RSSI
data samples, specifically in harsh area with a huge number of classes or reference
points (RPs) and an unstable matching process algorithm. To mitigate the problems
of the RSSI-based fingerprinting approach, this research proposes a novel matching
process algorithm called Norm_MSATE_LSTM. We first performed the augmentation
process to increase the RSSI data records via theMean Stander deviation Augmentation
TEchnique (MSATE). The RSSI records were normalized (norm), and the long short-
term memory (LSTM) technique was applied to estimate the correct positions. Finally,
the proposed matching algorithm was compared with the stand-alone matching
algorithms, including the weighted k-nearest neighbors (WkNN) and LSTM. The
results obtained from the experiments and the simulated experiments usingOMNeT++
show that the proposed matching algorithm may improve positioning accuracy by
33.1% and 57.5% when only augmentation and augmentation with normalization are
applied, respectively.
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Data Mining and Machine Learning, Neural Networks, Internet of Things
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INTRODUCTION
With the rapid growth and the widespread availability of wireless and Internet-of-Things
(IoT) technologies over the past decade, people are payingmore attention to location-based
services (LBS) in indoor and outdoor environments. Indoor LBS has been widely used for
location identification, indoor user tracking, and positioning users’ requests in various IoT
environments, including airport terminals, subways and public transportation stations,
retail malls, and other indoor settings (Asaad & Maghdid, 2022). Therefore, it is necessary
to design effective, precise, reliable, and real-time indoor positioning (IP) systems to meet
consumers’ IP requests. The rapid spread of mobile devices and smartphone technology
around the world is also driving customer demand for LBS (Liu et al., 2020; Xia et al.,
2021).

LBS requirements have been adequately handled and incorporated into the GNSS in
outdoor settings. However, the GNSS is unsuitable for IP systems since its signal weakens
after passing through interior physical surroundings, resulting in inaccurate location
data or entirely blocking GNSS signals (Asaad et al., 2021). IP systems commonly employ
Bluetooth (Bai et al., 2020), ultra-wideband (UWB) (Djosic et al., 2021), radio frequency
identification (RFID), geomagnetic positioning (Wu et al., 2021), visible light (Guan et al.,
2021), ZigBee (Li, 2021), cellular networks (including LTE and 5G) (Chai, Li & Huang,
2020; García, Maier & Philips, 2020), and Wi-Fi (Maghdid et al., 2019) technologies. Each
technology has its own set of benefits and drawbacks. Among these, the public availability
of Wi-Fi technology at a reasonable cost and with minimal risk to human life makes it the
most widely accepted of these technologies. As a result, Wi-Fi positioning has been used
indoors as an alternative to GNSS technologies (Asaad & Maghdid, 2022).

In general, wireless positioning techniques, including the time of signal arrival
(TOA) (Lim et al., 2021), time difference of signal arrival (TDOA) (Bottigliero et al.,
2021; Sadhukhan & Das, 2009), angle of arrival (AOA) (Al-Sadoon et al., 2020), and
RSSI fingerprint-based techniques, affect the efficiency of the positioning systems. The
aforementioned techniques are based on different measurements, namely the received
signal strength indicator (RSSI), and time of flight (TOF). The RSSI measurements can
be used to compute the distance between a target device and fixed stations or wireless
access points (WAPs) (Maghdid et al., 2019) and to survey the positional environment to
estimate the locations of the target device via matching algorithms (Zhu et al., 2020). The
TOF measurement is also utilized in the TOA, TDOA, and AOA methods to calculate
the target device’s distance from the WAPs. However, using these measurements or
positioning techniques has its own set of restrictions, making it challenging to complete
the procedure accurately.

The RSSI-based fingerprint technique is used widely for indoor positioning due to its
simplicity. It does not need to deploy extra hardware and itmay be used onmost newmobile
devices. The RSSI fingerprint-based technique is creating an RSSI fingerprint database for
matching or testing sample records during the evaluation and detection process. Distinct
RPs in the positioning region obtain different RSSIs of each WAP, which can be utilized
as fingerprints. Further, these fingerprints can provide valuable features and unique
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information in the positioning context (Djosic et al., 2021). Fingerprint-based positioning
usually has two main phases: the offline phase and the online phase. The primary task of
the offline phase is to create a fingerprint dataset experimentally from obtained RSSI of
WAPs at various RPs, which are determined depending on the WAP’s position and the size
of the entire positioning area.

Regarding the online phase, the systems are trained via machine learning (ML)
matching algorithms to identify the incoming online record of RSSI features from WAPs.
The most modern and valuable ML techniques for positioning are weighted k-nearest
neighbors (Chen, 2021), support vector machine (SVM), random forest (RF), artificial
neural network (ANN) (Polak et al., 2021), multi perceptron (MLP), and LSTM as the
well-known technique for time series information including Wi-Fi RSSI (Mirdita et al.,
2021) and deep neural network (DNN) (Li, Lei & Zhang, 2020). The deep learning (DL)
algorithms are more accurate than the rest of the methods. However, the main challenges
of the current positioning solutions using the RSSI fingerprint technique are: (1) dynamic
indoor structures, which result in dynamic multipath and non-line-of-sight signals; (2) the
availability of various IoT devices which are deployed in the vicinity of the same frequency
band; (3) the matching algorithms that lack experience with RP prediction; (4) and the
solutions that are not deployed in a complex indoors structure with a large enough number
of RPs because they are not tested in real scenarios. Lastly, fingerprint-based techniques
are time- and effort-consuming, specifically in a wide IoT positioning area, which may lead
to a lack of RSSI samples. To overcome these concerns, including the lack of RSSI data
samples, simulators can be considered as alternatives to real environments. The common
simulators that are used in the positioning include the objective modular network testbed
in C++ (OMNeT++) (Irshad et al., 2021), Opnet (Maghdid et al., 2016a), and NS3 (Zhao
et al., 2021). In this work, we collected data using OMNeT++, a free simulator that is made
available for academic use only. Augmentation procedures may be used to expand the
number of RSSI records per each dataset’s accessible RPs (Sinha & Hwang, 2020). Here, an
augmentation technique known as the Mean and Standard deviation-based Augmentation
Technique (MSATE), is proposed to increase the RSSI samples in each RP.

The contributions of this study may be summarized as follows:

– Building a fingerprinting database by scanning a wide indoors-area with a large number
of study halls, laboratories, and offices using an OMNeT++ simulator.

– Expanding the fingerprinting database via the augmentation process to increase the
performance of the proposed matching algorithms and proving that augmentation can
reduce the time and effort needed during the preparation of the fingerprinting database.

– Proposing a novel matching algorithm, namely Norm_MSATE_LSTM. Further, the
Norm_MSATE_LSTM algorithm provides better positioning accuracy than stand-alone
matching algorithms, includingWkNN and LSTM. Additionally, Norm_MSATE_LSTM
can offer better positioning accuracy where there is an extensive dataset or a harsh
environment, including obstacles and multipath signals.

The remaining sections of this work are organized as follows. The related work section
provides a review of the relevant literature. The suggested Wi-Fi fingerprint-based solution
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is explained in the Proposed Approach section. The experimental environment setting
and data collection process are presented in the Experimental Environment and Data
Collection section. The proposed solution is compared to many well-known algorithms
regarding positioning accuracy and root mean squared error (RMSE) in the Experimental
Results and Discussions section. Finally, in the Conclusions section, the achievements and
conclusions of this study are summarized.

RELATED WORK
The LBS applications are used for tracking users (Chen et al., 2020a), routing
prediction (Wang et al., 2020), and to predict the revenue from ride-on-demand
applications (Guo et al., 2020) in outdoor applications. However, wireless sensing is mainly
used for indoor localization (Maghdid et al., 2019) and event detection (Sharma & Singh,
2021) in indoor applications. Due to its availability in crowded areas and its low cost, Wi-Fi
is the most commonly used technology in IP systems. Specifically, the Wi-Fi RSSI-based
fingerprinting technique predicts the users’ locations via existing WAPs signals in the
area. However, this technique has many limitations, from the dynamic multipath to
the inaccurate matching process. Therefore, this section presents and investigates the
limitations of the current IP solutions where the RSSI-based fingerprinting technique is
used.

The current fingerprint-based solutions use a modified version of the kNN which
integrates the weighted Euclidean distance metric based on the attenuation law of
spatial WAPs-RSSI values. The recommended weighted-kNN technique can determine
the user’s position. Although this solution reduces positioning errors, it takes a long
time to predict users’ positions due to computational requirements. Therefore, the
researchers in Lan & Li (2019) integrated a clustering method with kNN to improve the
similarity values in fingerprint features. This method also provides an efficient IP
solution that addresses the computational complexity problem of the kNN classifier,
which grows linearly with the number of observations, and enhances the positioning
accuracy according to experimental data. However, the experimental field was small,
with just five WAPs and 120 RPs to choose from, and is insufficient for larger needs of
university campuses and airports, where there will be more RPs. Furthermore, clustering
approaches can improve positioning efficiency by lowering storage and search overheads
in fingerprinting-based systems (Sadhukhan et al., 2021).

Song et al. (2019) developed Wi-Fi fingerprinting and CNN-based IP solutions for
multi-building and multi-floor positioning. Their proposed solution combines a stacked
auto-encoder (SAE) and one-dimensional CNN methods. The SAE was applied to extract
essential features from the sparse RSSI data ofWAPs, whereas the CNNwas used to perform
the classification process. The authors used simulations with two different datasets (Torres-
Sospedra et al., 2014; Lohan et al., 2017) as well as their in-house dataset, UTSIndoorLoc,
to validate the solution. The solution substantially improved the positioning performance
on the newly UTSIndoorLoc dataset, with a floor classification success rate of 94.57% and
a mean positioning error of 7.60 m. Nonetheless, the positioning error rate of more than 3
meters restricts its potential for real-world deployments.
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Chen et al. (2020b) proposed a deep LSTM solution based on local features that utilize the
RSSI values to predict the users’ position. In a 55 x 50 m office, an average positioning error
of 1.75 m was attained, with a maximum error of roughly 10 m. Although it is clear that the
method improves performance, outliers may still occur due to the rise and fall of the RSSI
values. Furthermore, as the network deepens and the site survey increases, the number of
RPs will noticeably increase, and the solution will cease to function correctly. In situations
with a substantial number of RPs, DL approaches will not perform well, mainly when
there are a small number of RSSI samples per RPs, which leads to the failure of the DL
learning process. There are two possibilities for solving these concerns. The first is to spend
more time and energy in the physical surveying environment to gather additional RSSI
recordings. The second is based on augmentation techniques, which include oversampling
the RSSI data records using the previously gathered dataset (Sinha & Hwang, 2020).

The location of the anchor nodes deployed in the positioning contexts in fingerprinting-
based solutions is one of the most critical factors affecting the accuracy of the positioning
systems. Sadhukhan, Dahal & Pervez (2017) examined the influence of the beacon node
location on the results of numerous clustering-based approaches to minimize the
localization time. They suggested an ideal beacon node arrangement approach that
provided coverage visibility inside the positioning environment to enhance IP accuracy in
all of the evaluated clustering approaches by measuring positioning time and error as the
two performance indicators.

InRoy et al. (2021), a solution for dealing with the uncertainty in RSSIWi-Fi fingerprint-
based localization performance was presented. To handle various smartphone settings
within the crowdsourcing era, the authors utilized the Dempster–Shafer belief theory to
determine the weights of several classifiers, including SVM, KNN, Bayes network, and
K*. K* is an instance-based and rule-based learning-optimized lazy family classifier. To
increase the classifiers’ accuracy, the means and the standard deviations were included
as new features, along with RSSI records. They demonstrated that weighted ensemble
techniques outperformed traditional ensemble techniques in IP systems. However, due to
its lack of resilience and increased complexity, the solution’s chance of being implemented
in the actual world is slim.

It is clear from the literature that most of the fingerprinting-based techniques have been
based on RSSI measurements. However, fingerprinting can be based on other features
extracted from channel state information (CSI) in the acquired traffic packets. Zhu et
al. (2021) utilized CSI as the target device fingerprint to extract features and a broad
learning system (BLS) training design. They employed the Bayesian classifier to investigate
the effectiveness of the proposed localization solution. The authors aimed to reduce the
training time compared to the state-of-the-art solutions.

Moreover, several studies on self-locating sensors in indoor IoT contexts have developed
recently. The authors of Garcia et al. (2009) propose a method for wireless sensors to find
themselves in interior environments. Their method is based on a WLAN RSSI readout at
the building level. The technique involves a training phase and a heuristic algorithm that
employs fingerprinting to identify sensor positions. Another breakthrough in Garcia et
al. (2007) was that wireless sensors could determine their self-location using RSSI from
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WLAN technology. The authors conducted their experiments indoors with walls and other
obstacles, multiple interfering sources, multipath impacts, and humidity and temperature
fluctuations. The sensor’s self-location was determined using neuronal networks based
on the RSSI dataset from the training phase. However, the attained positioning average
error with the neural network-based approach was approximately 2.5 m and still requires
improvement.

A deep learning neural networks (DNN)-based solution was presented in Labinghisa &
Lee (2021). This solution was built on the notion of virtual Wi-Fi access points (VWAPs)
to increase the quantity of WAPs without adding extra hardware. In a limited testing
environment, the experiment utilized 20 RPs from the existing three WAPs and two
VWAPs. The additional WAPs made it easier to gather more mobile users’ device RSSI
values for DNN training. However, the ability to reach users successfully in an oversized
and complex positioning environment is not guaranteed.

It is clear from the literature review that the majority of indoor positioning solutions
based on the RSSI fingerprinting technique suffer from low positioning accuracy or the
positioning solutions are tested in limited or unrealistic areas. Therefore, the current RSSI
fingerprinting techniques are not ideal for indoor localization. This work proposes an
algorithm to provide better positioning accuracy, tested in a wider area, in comparison
with most of the state-of-the-art (SOTA) works that have been reported in the literature
to date.

PROPOSED APPROACH
This section explains all of the proposed Wi-Fi fingerprint-based IP solution steps, as
shown in Fig. 1.

Methodology
The first step of the proposed approach is collecting an extensive dataset of WPA RSSI in
the offline phase. However, as explained in the next section, a preprocessing technique
should be applied to construct a comprehensive dataset in a harsh environment, including
RSSI multipath issues. Further, a Mean and Standard deviation based Augmentation
TEchnique (MSATE) was proposed to enhance the quantity of RSSI samples for each class
or RP. One of the methods used during data analysis to increase the quantity of RSSI
data samples is known as data augmentation. Data augmentation involving the creation of
freshly-produced synthetic RSSI data based on previously gathered datasets, or the addition
of slightly modified copies of exisiting RSSI data, was used for data analysis. This serves as a
regularizer and aids in reducing overfitting while training aDLmodel. However, in addition
to the benefits, augmentation has certain limitations. The fundamental disadvantage of data
augmentation is data bias, which means that the enhanced data distribution may deviate
significantly from the original. Because of this data bias, conventional data augmentation
strategies perform sub-optimally for time series data (Wen et al., 2021; Wong et al., 2016).
Therefore, to determine the best data augmentation approach, additional research is
required to generate new or synthetic data records with advanced applicability. The
suggested approach, MSATE, produces a new N number of RSSI values for each WAP at
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Figure 1 ProposedWi-Fi fingerprint-based solution diagram (norm_MSATE_LSTM).
Full-size DOI: 10.7717/peerjcs.1406/fig-1

a specified position (p) based on the mean and standard deviation computation for the
pre-collected RSSI values at point (p). There will therefore be N new RSSI records at (p).
The augmented records are expressed in Eq. (1):

recj,p Aug = (RSS1,p Aug ,RSS2,p Aug ,RSS3,p Aug ,.....RSSM ,p Aug ) (1)

where recj,p Aug is the jth augmented record at point p (for this study j is between 1 ≤ j ≤
15), M is the number of the utilized WAPs (for this study M is equal to 14 WAPs), and
RSSM ,p Aug is the augmented RSS values for each WAPs at point p, as it is expressed in Eq.
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(2):

RSSi,Aug =RSSm,i,p±RSSstd,i,∗+Rand (2)

where the i value is between (1 ≤ i ≤ 14) since the number of the utilized WAPs is 14,
RSSm,i,p is the mean of ithWAPs RSS values at point p, RSSstd,i,∗ is the mean of the standard
deviations (RSSstd,i,p) of all points for each WAPs, as presented in Eq. (3), and Rand is the
randomized value between (−2 ≤ Rand ≤ +2).

RSSstd,i,∗=

∑no_RPs
p=1 RSSstd,i,p

no_RPs
(3)

where no_RPs is the number of RPs of the setting area, and RSSstd,i,p is the standard
deviations of the RSS values of ith WAP at point p. The proposed augmentation procedure
is depicted in the flowchart below, Fig. 2.

In the second step, the proposed solution applies the normalization process over the
expanded dataset. Normalization is a method that is frequently used as a preprocessing
mechanism in the preparation of machine learning data. The purpose of normalization is
to maintain the RSSI values’ ranges while converting the values of a dataset’s numeric RSSI
columns to a comparable scale. Not every dataset has to be normalized formachine learning
and it is only necessary when features have separate ranges. Here, the normalization was
done to reduce fluctuation problems, particularly those that arise when using a variety of
platforms and devices to improve the performance of the LSTM (Maghdid et al., 2022).
The RSSI values were then transformed to a comparable scale that was used to assist
in LSTM training. The z-score method was used as the applied normalization method,
which generates a data set with a mean of 0 and a standard deviation (std) of 1. This
scaling approach works well when the data follows a Gaussian distribution (normal
distribution) (Tabbakha et al., 2021). A snapshot of the normalization formula is expressed
in Eq. (4).

recj Norm= (RSS1 Norm,RSS2 Norm,RSS3 Norm,.....RSSM Norm) (4)

where recj Norm is the jth record in the dataset, M is the number of the utilized WAPs (for
this study M is equal to 14 WAPs), and RSSM Norm is the normalized RSS values for each
WAPs at any records, as it is expressed in Eq. (5):

RSSM , Norm=
RSSM −RSSm,i

RSSstd,i
(5)

where the i value is between (1 ≤ i ≤ 14) since the number of the utilized WAPs is 14,
RSSm,i is the mean of ith WAPs RSS values, and RSSstd,i is the standard deviation of the
RSS values of ith WAP.

The third step uses the LSTM as a matching approach. It is used for position estimation
after the RSSI data preparation. As a rule of thumb, the LSTM network is an extension
of RNN utilized in deep learning and it can effectively train enormous structures of data.
However, using LSTM without applying data normalization and augmentation will not
provide accurate results, specifically for positioning estimation; this is due to the large
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Figure 2 Proposed augmentation technique (MSATE) flowchart.
Full-size DOI: 10.7717/peerjcs.1406/fig-2
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Figure 3 Design of the LSTM.
Full-size DOI: 10.7717/peerjcs.1406/fig-3

number of RPs available. To this end, the LSTM technique was used after making some
data preparations, including RSSI data augmentation (MSATE) and normalization (Norm).
The data preparation addressed the challenge of too many RPs/classes that were available
throughout the setting area. However, the aim of using the LSTM was to minimize the
time and memory complexity of the WkNN. Figure 3 depicts the design of the LSTM and
shows that the network will be fed the sequence from the input layer, which is a series of
normalized RSSI values for each RP or fingerprint.

Afterward, the LSTM layer was connected to the fully-connected layer. The fully-
connected layer was in charge of connecting its nodes to all other nodes in the LSTM layer.
This layer is responsible for deep data feature analysis, with hidden layers automatically
performing feature extraction. Each node in the fully connected layer can be used as an
activation function across the RSSI vector on a linear combination of all the features
learned by the previous layers. A set of weights were used as the parameters for the linear
combination expression. These weights were applied to each layer (Abdul & Al-Talabani,
2022). The last fully-connected layer divided the node outputs into as many nodes as there
were classes in the classification task, which, in this case, was 2,214 classes. As a result, in
the last fully-connected layer, the number of classes equaled the output size parameter.
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Because the region included several classes/RPs, the Softmax layer was utilized to compute
each class’s probability using the classification layer’s network inputs.

LSTM background
The LSTM network is an extension of RNN utilized in deep learning. In the network
structure, the LSTM comprises a more complex repeating module. The primary distinction
between regular RNN and LSTM is that the LSTM can detect long-term dependencies. It
employs an architecture that can overcome the gradient vanishing problem. The LSTM
is a deep learning algorithm that classifies and regresses time-series data like sounds and
RSSI values by taking feature changes into account at each time step. The LSTM layers
establish long-range connections between the sequence data’s RSSI values. The structure
of a memory block LSTM is depicted in Fig. 4 to clarify the LSTM layer. Equations (6)
and (7) calculate the cell and hidden states, respectively (Abdul, Al-Talabani & Ramadan,
2020).

Ct =R(t )�Ct−1+ It � C̃t (6)

Ht =Ot � tanh(Ct ) (7)

where � denotes the vectors’ element-by-element multiplication and tanh() is the
hyperbolic tangent function, which is the state activation function. The input gate and
forget (remember) gate are denoted by It and R(t ). The cell candidate gate is presented by
Ct , the candidate for cell state is indicated by C̃t , which is determined through Eq. (8), and
the output gate is Ot in this study.

C̃t = tanh (WC
[
Ht−1,Xt

]
+Bc) (8)

where C̃t indicates the weight for the input gate, Xt is the input at timestamp t and Bc
is a bias for the input gate.

EXPERIMENTAL ENVIRONMENT AND DATA COLLECTION
This section presents the experimental environment setting anddata collection process. This
is followed by the data preprocessing stage. Finally, the proposed Norm_MSATE_LSTM
classifier’s configuration and operating concept are described.

Environment setting
The OMNeT++ simulator simulated the third floor of the Faculty of Engineering building
from Koya University. This floor was chosen and constructed as an experimental setting
in the proposed solution. The simulated area was approximately 56 ×77.6 square meters,
and was comprised of four corridors, sixteen study halls, four computer laboratories, nine
staff offices, three restrooms, and a large 13m ×19 m meeting hall. A total of 14 WAPs
were deployed in the survey area, as depicted in Fig. 5.
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Figure 4 Amemory block of LSTM layer.
Full-size DOI: 10.7717/peerjcs.1406/fig-4

Figure 5 The OMNeT++ based environmental area; third floor of the Faculty of Engineering from
Koya University.

Full-size DOI: 10.7717/peerjcs.1406/fig-5

Data collection
The entire region of the third floor was included for data collection. The area was divided
into grids of 1 m ×1 m, dividing the region into 2,214 points, as illustrated in Fig. 6. At
each sample point, RSSI data was recorded for one second. A total of 22,140 records were
collected.

A set of parameters were configured for the overall WAPs and a smartphone was
simulated in the network to deploy the simulation. Table 1 shows the primary network
parameters used to construct the experimental environment in the OMNeT++ simulator,
with a simulation period of 2,214 s.
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Figure 6 Region division of many RPs.
Full-size DOI: 10.7717/peerjcs.1406/fig-6

Table 1 Environmental settings and variables.

Deployment area 56 m 77.6 m
Number of WAPs 14
Number of target device 1
Simulation duration 2214s
Carrier frequency 2.4 GHz
Bitrate 54 Mbps
Wlan type Ieee80211MgmtAp and Ieee80211MgmtSta
Number of channels 14
Scan type Passive
Mobility model Modified bonn motion mobility
Transmission power 2W
Packet interval (beacon Interval) 100 ms
Path loss model Rayleigh fading
Propagation model Constant speed propagation
Obstacle loss type Dielectric obstacle loss

Data preprocessing
Due to the restricted coverage range of the Wi-Fi, neighboring interfering devices, the
existence of obstacles, and other factors, not all WAPs were detected among all of the RPs.
The missing WAP RSSI values were required to have an RSSI value before data processing
could take place. As a result, the missing RSSI values were fed with pre-known RSSI data
from the related WAPs and at the same RPs. Additionally, the RSSI value dataset ranged
from -17 dBm to -100 dBm and records with less than -100 dBm, or greater than -17 dBm,
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were ignored. After this process, ten RSSI records were kept at each RP. Consequently,
there were 2,214 RPs and 22,140 preprocessed RSSI record RPs in the entire region.

Setting up the parameters of the LSTM and WkNN
The ML approach, LSTM, was used to train the model based on RSSI data obtained
from the OMNeT++ environment and augmentation process. The trained approach was
configured and tuned to provide improved positioning results.

The selection of hyperparameters was given special consideration here. The LSTM
model was updated until the optimal hyperparameters were chosen and an optimized
LSTM model was obtained. The Bayesian optimizer was then applied to determine
the optimal hyperparameters and training choices for the LSTM model. The Bayesian
optimizer is a practical approach to sweep hyperparameters in such experiments. In this
research, the MatLab toolbox’s Experiment Manager was used to look for a combination of
hyperparameters to improve the accuracy of the proposed solution after giving a range of
values for each hyperparameter. Table 2 shows the set of parameters used to train LSTM.

The RSSI dataset was divided into two portions during the experimental setup to evaluate
the proposed solution, including the LSTM and WkNN. The training used 80 percent of
the whole fingerprint data, including the original and augmented data. Twenty percent of
the remaining data was utilized during the testing phase. As indicated earlier, each RP had
25 RSSI recordings after preprocessing and augmentation. During data separation (80%
for training, 20% for testing), every fifth record out of every five records was chosen for
testing purposes, and the remaining four records were used for training.

The proposed Norm_MSATE_LSTMT solution was compared with the WkNN
technique to evaluate its performance. When estimating the position (x, y) of a sample
RSSI vector, we used the WkNN at a city block distance (Prabhakar & Rajaguru, 2016).
An exhaustive search algorithm was used as the nearest neighbor search method. In this
work, the value of k was chosen empirically and was initialized at 3. The weight values
(w1, w2, w3) were added for the three selected RP coordinates {(x1, y1),(x2, y2),(x3, y3)}.
The weight values were updated for each iteration when applying the WkNN algorithm, as
expressed in Eq. (9).

S=
∑k

i=1
1
di

wi=
1
di
S

(9)

where di is the distance between target RSSI sample vector at (x, y) coordinates and ith
RSSI vector with (xi, yi) coordinates from the three selected RPs. The target coordinate (x,
y) was then calculated by weighting the coordinate positions using Eq. (10).x =

∑3

i=1
wixi

y =
∑3

i=1
wiyi

. (10)
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Table 2 Approved set of parameters.

Parameters Value Note

LSTM layers 2 layers with 300 hidden units
dropoutLayer 0.6
Number of classes 2,214 2,214 RPs
Input size 14 14 WAPs
Optimizer Adam
Validation frequency 691
MiniBatchSize 64
Number of epochs 140
Initial learning rate 0.001

Table 3 Comparison of localization accuracy and RMSE.

Methods WKNN LSTM

Original Dataset 4.8008 meter 6.7990 meter
Normalization 4.4049 meter 4.6351 meter
MSATE 1.9315 meter 4.3071 meter
Norm_MSATE 1.9374 meter 1.6797 meter
(Sinha & Hwang, 2020) (Augmentation) 4.2216 6.4417
Norm_(Sinha & Hwang, 2020) 4.2307 3.9509

EXPERIMENTAL RESULTS AND DISCUSSIONS
A set of experiments were conducted to assess the proposed approach’s performance in a
simulated setting. The results were compared to the two cutting-edge matching algorithms
(WkNN Zhou, Yang & Chen, 2021 and LSTM Maghdid et al., 2022). The experiment
was conducted on the RPs throughout the entire region. After feeding each of the
aforementioned algorithms, WkNN and LSTM, and the proposed Norm_MSATE_LSTM,
the obtained RMSEs were 4.8 m, 6.8 m, and sane as genuine meters, respectively, presented
in Table 3. Further, the proposed method identified almost 62% of the positions correctly,
i.e., the 62% positioning error was zero. While, with the WkNN alone, 62% of the
positioning error was approximately 5 m, and it was more inaccurate with LSTM, with a
62% positioning error of about 7.2 m as illustrated in Fig. 7.

Several experiments, as depicted in Fig. 8, were conducted to evaluate the impact of
the proposed augmentation technique on similarity-based machine learning algorithms
in indoor positioning (i.e., indoor positioning accuracy). Positioning accuracy is defined
as the cumulative percentage of positioning error within a certain distance. WkNN was
implemented in accordance with the following conditions:

(1) Norm_WkNN, in which the WkNN was fed with the original normalized dataset
without considering the augmented dataset records.

(2) MSATE_WkNN, i.e., merely applying the proposed augmentation process over the
original dataset to increase the number of samples. The WkNN was fed with all the dataset
records without applying normalization over the data.
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Figure 7 Comparison of cumulative positioning error probability (Norm_MSATE_LSTM vsWkNN vs
LSTM).

Full-size DOI: 10.7717/peerjcs.1406/fig-7

Figure 8 Comparison of cumulative positioning error probability (effectiveness of MSATE with
WkNN).

Full-size DOI: 10.7717/peerjcs.1406/fig-8

(3) Norm_MSATE_WkNN, in which the WkNN was fed with data after applying
both the augmenting and the normalizing on the original dataset. Figure 8 shows the
experimental findings.

It is evident from Fig. 8 that the proposed augmentation technique, MSATE, with the
WkNN (MSATE_WkNN) was more successful than WkNN alone in terms of positioning
accuracy improvement. MSATE_WkNN was capable of identifying approximately 57% of
the testing records correctly. This was due to the effectiveness of the proposed augmentation
technique. The findings of the Norm_WkNN experiment indicated that normalization
alone did not enhance the WkNNmuch when the WkNN was used to predict the locations
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Figure 9 Comparison of cumulative positioning error probability (effectiveness of MSATE with
LSTM).

Full-size DOI: 10.7717/peerjcs.1406/fig-9

based on the originally-collected data after normalization. This was due to role of the
similarity process in that method. Due to the ineffectiveness of the normalization,
Norm_MSATE_WkNN and MSATE_WkNN provided identical results, as seen by the
final results.

In addition, the efficiency of the suggested augmentation strategy with the DL techniques
was evaluated in a variety of trials under varying situations, as shown in Fig. 9. It is evident
from the figure that the normalization and augmentation processes on the original dataset
contributed little to the positioning improvement with LSTM in both Norm_LSTM and
MSATE_LSTM scenarios. In contrast, when both the augmentation and normalization
operations were carried out on the original dataset using the LSTM (the suggested method,
Norm_MSATE_LSTM), the positioning accuracy was significantly enhanced. According
to the figure, the likelihood of accurately recognizing the testing records was 62%, 17%,
2%, and 0% for the Norm_MSATE_LSTM, MSATE_LSTM, Norm_LSTM, and LSTM
scenarios, respectively.

In order to realize the effectiveness of our proposed augmentation technique (MSATE) vs.
the techniques proposed in the literature, the MSATE was compared with Sinha & Hwang
(2020). Sinha & Hwang (2020), proposed an augmentation technique to oversample
the dataset samples precisely when there was a lack of RSSI samples. This created new
RSSI samples that mimicked the original RSSI readings regarding each WAPs; the newly
generated RSSI samples were then used to expand the training dataset. In their study, only
RSSI values from each RP were used to augment. The RSSI value at each RP was chosen
randomly and entered into a new CSV file, increasing the amount of the data compared
to the original dataset. The resilience comes from the fact that the enhanced data pattern
closely resembled the RSSI data samples prior to augmentation.

The success of each augmentation strategy, MSATE, and that of Sinha & Hwang (2020),
with similarity-based techniques, WkNN, and DL techniques, LSTM, is shown in Fig. 10
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Figure 10 Comparison of cumulative positioning error probability (SMATE vs Sinha & Hwang, 2020)
with bothWkNN and LSTM.

Full-size DOI: 10.7717/peerjcs.1406/fig-10

and Table 3. The figure and the table show that, compared to Sinha & Hwang (2020) with
both LSTM and WkNN, the SMATE substantially influenced an improved positioning
accuracy. That is due to the fact that our augmented new data samples were based on real
data because it was based on plus-minus 4dBm (Maghdid et al., 2016b).

The classification accuracy on the test RSSI records was mentioned in Table 3 for
each applied matching algorithm with different conditions. The proposed augmentation
improved the positioning error by 33.1%; when MSATE was compared with the Sinha
& Hwang (2020) augmentation algorithm. Further, if the proposed approach was applied
with both normalization and augmentation, the positioning accuracy improved by 57.5%,
when the proposed approach was compared with the Norm_ (Sinha & Hwang, 2020). To
further understand the improvement in the positioning accuracy, Eq. (11) was calculated
for both normalization and augmentation approaches.

accimp=
A−M
A
∗100 (11)

where accimp is positioning accuracy improvement in percentage; A represents the obtained
positioning average errors in meters where the augmentation technique in Sinha & Hwang
(2020) is adopted; and M is the average error when MSATE_LSTM is adopted. The same
equation was applied to observe the improved positioning accuracy in percentages in those
augmentations with normalization cases.

CONCLUSIONS
The study reveals that simulators can be used to build and implement sane as genuine
environments to avoid wasting time and effort during environmental surveys to generate
the fingerprint dataset. In this study, OMNeT++was used to design complicated real-world
architecture for collecting RSSI vectors. Because fingerprint-based IP systems suffer from an
unstable matching process, numerous well-known matching algorithms, including WkNN
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and LSTM, have been proposed. This research proposes a new augmentation technique
(MSATE) to address the shortcomings of RSSI-based fingerprinting based on well-known
matching techniques. Numerous experiments were performed to demonstrate how the
suggested MSATE works as a database expansion to increase the efficiency of WkNN and
LSTM. According to the results, the suggested augmentation and normalization enable the
matching algorithms to conduct the localization in an impressively effective manner and
improve positioning accuracy by 33.1% and 57.5%, respectively.

The main limitation of this study is the positioning accuracy as an error range of
approximately 2 m is not enough for most indoor LBS applications. Additional studies are
needed to evaluate the proposed approach when the number of WAPs is smaller or their
signals do not exist in the vicinity. To this end, the proposed approach could be enhanced
via integrating other existing indoor positioning technologies such as LoRa, LTE, or 5G
cellular technologies.
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