Submitted 10 February 2023
Accepted 26 April 2023
Published 19 May 2023

Corresponding author
Juan A. Lara, in2latoj@uco.es

Academic editor
Wenbing Zhao

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.1402

© Copyright
2023 Barreiro et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Towards the portability of knowledge in
reinforcement learning-based systems for
automatic drone navigation

José M. Barreiro', Juan A. Lara’, Daniel Manrique' and Peter Smith’

' Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Madrid, Spain
* Department of Computer Science and Numerical Analysis, Universidad de Cérdoba, Cérdoba, Spain
3 University of Sunderland, Sunderland, United Kingdom

ABSTRACT

In the field of artificial intelligence (AI) one of the main challenges today is to make
the knowledge acquired when performing a certain task in a given scenario applicable
to similar yet different tasks to be performed with a certain degree of precision in other
environments. This idea of knowledge portability is of great use in Cyber-Physical

Systems (CPS) that face important challenges in terms of reliability and autonomy.

This article presents a CPS where unmanned vehicles (drones) are equipped with a

reinforcement learning system so they may automatically learn to perform various

navigation tasks in environments with physical obstacles. The implemented system

is capable of isolating the agents’ knowledge and transferring it to other agents that
do not have prior knowledge of their environment so they may successfully navigate
environments with obstacles. A complete study has been performed to ascertain the
degree to which the knowledge obtained by an agent in a scenario may be successfully
transferred to other agents in order to perform tasks in other scenarios without prior
knowledge of the same, obtaining positive results in terms of the success rate and

learning time required to complete the task set in each case. In particular, those two
indicators showed better results (higher success rate and lower learning time) with our
proposal compared to the baseline in 47 out of the 60 tests conducted (78.3%).

Subjects Artificial Intelligence, Autonomous Systems, Data Mining and Machine Learning
Keywords Cyber-physical systems, Reinforcement learning, Knowledge portability, Drones

INTRODUCTION

CPS are complex systems that integrate computational and physical components to
perform a given task in the real world. From this definition, it is clear that CPS consist of
two well-differentiated but fully inter-related levels. On one hand, the physical elements
that are in direct contact with the environment such as sensors or actuators. On the other
hand, we have at the computational level we have software elements (such as intelligent
agents) in charge of different tasks such as managing user queries, management of incidents
arising from the presence of uncertainty, real-time control, knowledge management, and
more importantly, uncertainty handling, with several examples of uncertainty drivers given
in Asmat, Khan & Hussain (2022).

How to cite this article Barreiro JM, Lara JA, Manrique D, Smith P. 2023. Towards the portability of knowledge in reinforcement
learning-based systems for automatic drone navigation. Peer] Comput. Sci. 9:e1402 http://doi.org/10.7717/peerj-cs.1402

https://peerj.com/computer-science
mailto:in2latoj@uco.es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1402
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

CPS constitutes a disruptive technology of great importance today (Serpanos, 2018), as
it allows us to perform advanced automation and control tasks (Zanero, 2017). It may be
applied in different areas ranging from agriculture, manufacturing, critical infrastructure,
personalized healthcare, energy management, aircraft controls, to defence systems, and
therefore offers important research opportunities in all of them (Liu et al., 2017). Although
CPS have important advantages (automation, ease of technology integration, etc.), they also
pose significant challenges, such as security, reliability, dependability, need for scalability,
modularity and composability (Serpanos, 2018); or the need for autonomy without a
human in the control loop (Zanero, 2017).

Currently, there are various types of CPS. Of these, one that has sparked great interest
recently are the so-called Unmanned Aerial Vehicles (UAV) or drones (Um, 2019), which
are aircraft without a pilot on board, and which may be controlled remotely by a pilot or
even travel autonomously by means of computational elements. They are of great use in
areas such as agriculture, mining, surveillance, military purposes, or medicine, to mention
a few (Kumar et al., 2021; Shahmoradi et al., 2020; Mogili ¢& Deepak, 2020).

Generally, most recent research in CPS has focused on the issue of security (Kholidy,
2021; Li & Zhao, 2021). Nevertheless, to the knowledge of the authors, there is barely
any work on another essential aspect of CPS, i.e., the importance of the learning of
computational elements (for example, intelligent agents) and the positive impact it may
have on overcoming the aforementioned challenges of dependability, reliability and
autonomy.

In this regard, the use of machine learning techniques appears to be a promising line
of research. Especially in environments that require a high degree of autonomy of CPS
elements, the use of reinforcement learning (RL) techniques opens up a line of research
that we explore in this article. RL is an area of artificial intelligence (AI) that studies how
systems size up an environment in an attempt to maximize the notion of reward, and
it is based on the concept of reinforcement (positive or negative) (Alvarez de Toledo et
al., 2017). There are different approaches to RL which include Q-learning, Monte Carlo
methods or, more recently, Deep RL which combines the foundations of RL with the Deep
Learning characteristic of artificial neural networks (Botvinick et al., 2020; Wang, Chou &
Chung, 2021; Nikita et al., 2021).

In CPS, the knowledge acquired by computational elements by means of approaches
such as RL may be highly important if, above all, this knowledge obtained by some of
these elements may be exported and shared by others that do not yet possess it. In this
regard, the use of knowledge portability approaches is of great interest. The idea behind
this approach is that the knowledge acquired when solving a particular task may be used
to perform another different (although related) task with a certain degree of success.
Recently, this idea has been successfully used in areas such as Education (Lépez-Zambrano,
Lara & Romero, 2020), although other applications, such as UAV, can also benefit from
this approach.

This article presents a simulated prototype of RL CPS based on intelligent agents that aid
in drone automatic navigation and collision avoidance. These systems have been equipped
with mechanisms that isolate the knowledge obtained by an agent during their learning

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

process and transfer it efficiently and immediately to other agents without prior knowledge
of the environment. This CPS is an improvement adapted for drones, based on an aircraft
navigation system previously proposed by the authors (Alvarez de Toledo et al., 2017).
Specifically, the contributions of this new work are:

e It proposes a mechanism that lets us isolate the knowledge obtained by an agent
during its learning and to separate it from the rest of the tasks (perception, action, etc.),
which was not possible in the earlier version of the system and reduced its capacity for
knowledge portability.

e It presents a complete and exhaustive study of knowledge portability between agents in
different scenarios, which provides an idea of how portable is the knowledge obtained
by means of RL techniques.

Therefore, this research article seeks to answer the following research question: To what
degree can the knowledge acquired by an agent (drone) in a certain environment be used
efficiently by other agent(s) in other different environments?

In the next section we discuss work related to our research. After that, we discuss our
system. Then, our experimental design is presented and the results obtained are discussed.
The final section of this paper includes the conclusions derived from our work.

RELATED WORKS

The term reinforcement learning (RL) refers to a type of automated learning where the
agents that interact in an environment attempt to maximise the concept of reward, so that
actions that lead to the achievement of a goal are assessed positively (reward) and those that
take them away from the goal are assessed negatively (punishment). They are distinguished
from supervised learning approaches as it is not necessary to label the input—-output pairs
as is the case, for example, in neural networks.

There are multiple RL approaches. Monte Carlo methods are non-deterministic
approaches used to simulate complex problems that are difficult to evaluate. They require
certain prior experience for learning (Rubinstein, 1981; Kalos ¢ Whitlock, 1991; Ulam,
1991). The Temporal Difference methods make successive predictions of the same value
over time and perform what is known as bootstrapping (Sutton, 1978a; Sutton, 1978b; Barto,
Sutton & Anderson, 1983). This is an approach where learning is incremental, without the
need to wait until the end of a learning episode. On the other hand, the methods called
Q-learning use a value-action function to predict the reward that is provided by a specific
action in a concrete situation (Watkins & Dayan, 1992). Recently, the fusion of deep
learning and RL techniques has proved to be promising. For example, in Botvinick et
al. (2020), they provide a high-level introduction to deep RL, discuss some of its initial
applications to neuroscience, and survey its wider implications for research on brain
and behaviour, concluding with a list of opportunities for next-stage research; in Wang,
Chou & Chung (2021), they propose a deep reinforcement learning (DRL) approach
to explore better task mappings by utilizing the performance prediction and runtime
communication behaviours provided from a simulator to learn an efficient task mapping
algorithm; and before in Nikita et al. (2021) they propose a novel approach based on

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

reinforcement learning (RL), wherein a maximization problem is formulated for cation
exchange chromatography (biopharmaceutical industry) for separation of charge variants
by optimization of the process flowrate.

Given its special connection with this research, it is important to highlight the work
of Alvarez de Toledo et al. (2017), where they propose a general RL model independent of
input and output types and based on general bioinspired principles that help to speed
up the learning process. That model was applied in the air navigation domain, a field
with strong safety restrictions, where the perception sensors were based on Automatic
Dependent Surveillance-Broadcast (ADS-B) technology. It is a model that uses principles
similar to Q-learning and which will be explained later, as the system proposed by the
authors in this paper is a drone-related evolution and enhancement of the aforementioned
work.

Specifically, RL is now used successfully in the drone industry (Bogyrbayeva et al.,
2023). This is mentioned not just in this article, but also in other recently published
works. In Faraci et al. (2020), RL has been adopted in the system controller to optimally
manage the fleet usage considering the variability of both the bandwidth demand and the
green power availability. Hodge, Hawkins ¢ Alexander (2020) describe a generic navigation
algorithm that uses data from sensors onboard the drone to guide the drone to the site
where a problem is occurring in hazardous and safety-critical situations.

Additionally, in RL scenarios it is important that the learning obtained by an agent to
perform a certain task may be used by it or by other agents to perform other different tasks.
In this regard, it deals with ideas that have already been proposed and as we shall see later
in this article, are worth revisiting. This is the case of works such as those by Konidaris
¢ Barto (2006) and Konidaris, Scheidwasser ¢ Barto (2012), who introduced the use of
learned shaping rewards in RL tasks, where an agent uses prior experience on a sequence
of tasks to learn a portable predictor that estimates intermediate rewards, resulting in
accelerated learning in later tasks that are related but distinct; or by Lazaric (2012), who
provided a formalization of the general transfer problem, and identified the main settings
which had been investigated so far, and reviewed the most important approaches to transfer
in RL.

Outside the field of RL, knowledge portability techniques are also being studied in
relation to the drone industry, not just in this work but also in other contemporary works.
In Kentsch et al. (2020), the authors study and quantify issues related to the use of transfer
learning approaches in their own UAV-acquired images in forestry applications. Chen,
Liang & Zheng (2020) propose a learning algorithm that enables a quadrotor unmanned
aerial vehicle to automatically improve its tracking performance by learning from the
tracking errors made by other UAVs with different dynamics.

Finally, there are three works that are especially linked to this article in that they use
knowledge portability (or similar) approaches in RL models applied to drones. In Anwar
& Raychowdhury (2020), the authors present a transfer learning based approach to reduce
on-board computation required to train a deep neural network for autonomous navigation
via value-based Deep Reinforcement Learning for a target algorithmic performance.

In Venturini et al. (2020), the authors propose a distributed RL approach that scales to larger

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

swarms in UAVs without modifications and can easily deal with non-uniform distributions
of targets, drawing from past experience to improve its performance. In Yoon et al. (2019)
the authors present an algorithm-hardware codesign for camera-based autonomous flight
in small drones that performs transfer and online RL.

Nevertheless, and in spite of their connections to our work (they discuss the idea of
using previous RL learning in drones), the aforementioned works belong more to the area
of Deep RL, where the models obtained are adjusted in advance (tuning) to test their new
use in different tasks (Ladosz et al., 2022). In our research however, learning is not adjusted,
rather it is directly transferred for use and is enriched with the new experiences that the
agent acquires in the new scenario. Additionally, our work performs a detailed study of
how learning behaves when it is shifted from one scenario to another.

With all of the above, and to the best of the authors’ knowledge, this is the first work to
make an exhaustive study of the degree of portability of the knowledge extracted by agents
(that steer drones and that learn automatically with RL techniques) in certain navigation
scenarios, when this knowledge obtained is transferred to other agents to perform different
tasks in substantially different scenarios.

SYSTEM DESCRIPTION

Throughout this section, we shall provide a detailed description of the proposed system,
which is an evolution of the previous system used in the field of air navigation with
conventional aircraft, which has been adapted to be used with drones and modified in
order to isolate the knowledge extracted by the agents so it may be exported for use by
other agents in the same or other scenarios.

It is important to clarify that the developed system is an emulator and the exercises
performed are simulations. This is a customary practice in critical areas such as navigation
and must be performed before implementation in real environments.

Antecedents

The previous version of the system was based on a bioinspired RL model that was initially
designed to be used in different areas. It was specifically implemented for use in aircraft
navigation, with the goal that planes should learn to autonomously travel from one place
to another, avoiding collisions with possible obstacles (buildings, other aircraft).

For this, the system was supported by Automatic Dependent Surveillance-Broadcast
technology (ADS-B) which allowed it to detect the location of different elements in the
environment (point of origin and destination, other planes, etc.) typically with the help of
Global Positioning System (GPS) satellites. In traditional navigation environments, these
elements are usually detected and communicated by air traffic control towers. Nevertheless,
this technology has the advantage that the aircrafts themselves can take decisions at any
moment when they encounter any other aircraft or obstacle in their path.

Based on the received readings, throughout the learning process the agent continues to
learn how to approach the destination point and how to avoid obstacles, all by means of a
simulation. To achieve this, the agent decides on the most convenient action (movement)
to be taken at each moment, and after a feedback process (positive or negative), the agent

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 5/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

is gradually able to establish positive connections between the perceived situations and
convenient actions to be taken at that moment. The possible movements to be made are:
ADVANCE, STOP (equivalent to reducing speed), ASCEND (change heading), DESCEND
(heading), TURN_RIGHT (heading) and TURN_LEFT (heading). Note that at each
moment, the objects (points of origin and destination, location of aircrafts, etc.) have an
associated position within a three-dimensional space (X,Y, Z) where “X” and “Y” represent
the object’s coordinates taking as reference the ground plane (XY) and “Z” represents the
height of the object.

This idea was initially implemented for aircraft, without focusing on whether the
knowledge extracted by an agent in a specific environment could be used by other agents
in other navigation environments.

The described system, although modular and equipped with certain principles for quick
learning by the agents, requires some important changes for its adjustment to other areas
and for the knowledge obtained in a scenario to be isolated and exported for use by other
agents in different scenarios. For an exhaustive description of the previous version of the
system, consult (Alvarez de Toledo et al., 2017).

Adaptation to drones

A limitation of the system implemented for aircraft was that the movements available to
the agents was restricted. This is characteristic of air navigation with planes, as large aircraft
have physical limitations with regard to the movements they can make. They undoubtedly
constitute one of the most useful, rapid and safe means of transportation, but they possess
highly fixed dynamics that prevents them from making certain movements that other types
of aerial devices may perform. For example, an aircraft cannot make a tight U-turn within
a limited amount of space, nor can it turn on itself as drones can.

Consequently, it was necessary to expand the range of actions available in the action
subsystem in order to adapt the previous system for use in drones. More specifically, the
six actions meant for aircraft were retained and five new actions were added, which are
described in Table 1. Note that the agent is, at all times in the position (X,Y,Z) and, after
executing the corresponding action (movement), this position changes according to the
indications in the second column of Table 1 (XY is the plane parallel to the ground; YZ is
the plane perpendicular to the ground aligned on the length of the agent; <>represents the
angle; SIN() represents the sine mathematical operation; 7 is the mathematical constant,
with the value 3.141592... ; and finally COS() represents the mathematical operation
cosine).

Note that while the actions performed by aircraft (apart from ADVANCE and STOP)
were limited to changes in the heading, drones can directly shift in a specific direction
without first having to change their heading. Thus, the action subsystem of our proposal
lets us execute all the movements typically associated with a drone, which is actually a
supergroup of the movements permitted in a traditional aircraft. Also, note that the STOP
action was included in the first version of our system and, although it was not needed for
aircraft navigation, it was necessary and useful for drone navigation, since it is one of the
most used actions of drones during navigation.

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Table 1 Description of the new actions implemented.

Action Effect on the drone position (formulae)

REVERSE X = X + SIN (<YZ>)*COS (<XY>+ 7)
Y =Y + SIN (<YZ>)*SIN (<XY>+ 1)
7 =7+ COS (<YZ>)

MOVE_UP X = X + SIN (<YZ>— 7/2)*COS (<XY>)
Y=Y + SIN (<YZ>— 7/2)*SIN (<XY>)
Z =7+ COS (<YZ>—1/2)

MOVE_DOWN X =X+ SIN (<YZ>+ 7/2)*COS (<XY>)
Y =Y + SIN (<YZ>+ 7/2)*SIN (<XY>)
Z =7+ COS (<YZ>+ 7/2)

MOVE_RIGHT X =X + SIN (<YZ>)*COS (<XY>— 7/2)
Y =Y + SIN (<YZ>)*SIN (<XY>— 7/2)
7 =7+ COS (<YZ>)

MOVE_LEFT X = X + SIN (<YZ>)*COS (<XY>+ 7/2)
Y =Y + SIN (<YZ>)*SIN (<XY>+ 7/2)
7 =7+ COS (<YZ>)

A graphical explanation of the new actions is presented in Fig. 1, which includes different
views of the drone for the sake of clarity.

Knowledge exportation and importation

In earlier versions of the system for aircraft, the knowledge that the agents progressively
acquire over the course of the simulations was distributed over different classes along with
other simulation data, which made it difficult to export and then import this knowledge.

In this new version, this knowledge has been redesigned so it may be isolated and
separated from the rest of the system data and procedures. In this regard, we have designed
two fundamental data structures to manage the knowledge learnt by the agents. On
one hand, we have a table which contains the information on patterns perceived in the
environment. On the other, we have the information relative to the associations between
each perception pattern and the possible actions (movements) to be taken by the drone for
said perception pattern.

These two knowledge structures have been implemented as hash tables, and are described
in Fig. 2. In the upper part of the figure, we see how the table on perception patterns
(table_perception_patterns) consists of a set of elements that represent each perception
pattern(P_1, P_2, ...), each containing an identifier (pattern_Id), the pattern position
(position) and a coded description of the perception pattern (pattern_description). Note
that each pattern has a unique identifier which is generated by the system incrementally
as the environment is progressively discovered by the agents. In turn, the position of the
perception pattern is used to learn which element from the table of associations corresponds
to the specific perception pattern. Finally, the description of each perception pattern is the
result of the (coded) concatenation of the information that the perception system receives
from the environment in relation to the agent’s position, the detection of obstacles, and the
detection of other agents (see more details on the description of the pattern in Alvarez de
Toledo et al. (2017)). It is necessary to export this information so that when imported, the

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Movs_upl

U’F =) REVERSE

MOVE_DOWN l

<@

WAY
€

DESTINATION

MOVE_RIGHTI

x

MOVE_LEFT l

<@

Figure 1 Graphical explanation of the new actions implemented for drones. (A) Side view. (B) Top
view.
Full-size &l DOI: 10.7717/peerjcs.1402/fig-1

agents can already draw upon the knowledge of the environment, marked by the explained
patterns and their description.

In the lower section of the figure, we see the table of associations (table_associations).
Here, we may interpret a series of numbered positions that are marked from the “position”
field in the table on perception patterns. Each position contains a set of elements that are
the assessment of the perception pattern, rating (positive or negative and with a greater or
lower value depending on their proximity or distance from the destination point and the
presence of obstacles—more details on the assessment subsystem in Alvarez de Toledo et al.
(2017)); a pointer that indicates another table (associations) that contains the association
values of said perception pattern with each of the associated actions and an integer (between
0 and 10) that represents the number of actions associated with each perception pattern
(num_act_associated) from the 11 possible actions that may be executed by the drone. The
aforementioned table of associations stores sets that represent the degree of association
(association_value) of the perception pattern in question with each one of the associated
actions (action_code). Note that a perception pattern may not be associated with all

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 8/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1402/fig-1
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

table_perception_patterns P_1 P2 | I | P_i l
P_1 pattern_Id position pattern_description
l 54671 | 1 I 791 (example)
0 1 2 i-1
table_associations A1 A2 | | Ai ’
A2 rating ? associations | num_act_associated

action_code | association_value
AC_1 AV_1
AC_2 AV_2
AC_j AV_j

Figure 2 Designed knowledge structures.
Full-size &l DOI: 10.7717/peerjcs.1402/fig-2

possible actions, only those that the agent has experienced until then for each perception
pattern during the learning process.

Once this information is isolated, it may be exported for subsequent importation. For
this, we have opted to use text files (two: one for the table on perception patterns and
another for the table of associations) with a structure similar to that of the explained
tables. The knowledge export procedure is responsible for creating and opening these
files, dumping the perception patterns into the file in question and finally, dumping the
associations in the corresponding file. This procedure is included in Algorithm 1, where the
two data structures described, the number of pattern perceptions, and filenames assigned

by the user to the files to be generated, are entered and it outputs said files with the exported
knowledge.

Barreiro et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1402 9/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1402/fig-2
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

ALGORITHM 1

Input: table_perception_patterns, table_associations, num_perception_patterns,
name_file_patterns, name_file_associations

Output: <name_file_patterns>.pdp, <name_file_associations>.aso
Procedure:

1. Create file <name_file_patterns>.pdp

2. Create file <name_file_associations>.aso

3. Open file <name_file_patterns>.pdp

4. Open file <name_file_associations>.aso
5.Fori=1...num_patrones_percepcion

/I The perception patterns are dumped

5.1. pos = table_perception_patterns[i].position

5.2. Write (<name_file_patterns>.pdp, table_perception_patterns[i].pattern_Id + TAB) //tab-
ulator

5.3. Write (<name_file_patterns>.pdp, pos + TAB)

5.4. Write (<name_file_patterns>.pdp, table_perception_patterns[i].pattern_description +
EOL) //end of line

//The associations are dumped

5.5. Write (<name_file_associations>.aso, table_associations[pos].num_act_associated +
BLANK)

5.6. Write (<name_file_associations>.aso, table_associations[pos].rating + EOL)
5.7.For j=1...table_associations[pos].num_act_associated

5.7.1. Write (<name_file_associatios>.aso,
table_associations[pos].associations[j].association_value + BLANK)
5.7.2. Write (<name_file_associations>.aso,
table_associations[pos].associations[j].action_code + EOL)

End For (5.7)

End for (5)

6. Write (<name_file_patterns>.pdp, EOF) //end of file

7. Write (<name_file_associations>.aso, EOF)

8. Close file <name_file_patterns>.pdp

9. Close file <name_file_associations>.aso

As an example, Fig. 3 contains a screenshot of a real fragment (within the dotted
outline) of a perception pattern file generated by the system (Fig. 3A) and another with
a fragment from an associations file (Fig. 3B). The patterns file contains a line for each
pattern(identifier, position and description). The associations file is more complex and
for each perception pattern, it includes the number of associated actions (highlighted in
bold in the figure) and the assessment of the pattern in the first line followed by a number
of lines equal to the number of associated actions, including in each line the value of the
association with the corresponding action, followed by the code of said action.

The import procedure is similar but in reverse order. That is to say, the data stored in
the patterns and associations files are dumped into the perception patterns table and the
associations table respectively, and the agent is thus ready to use the imported knowledge.

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Number of actions associated
to the perception pattern
(num_act_associated)
position

pattern_Id . .
- Perception pattern rating
\ pattern_description
/ s -2.48074
& : o 1.06879 0

1068 0 11 Associations for the 1st "
54671 1 91 -
54609 5 6 perception pattern
1570 3 13
1632 4 33
1630 5 31 2nd
695044 7979

Patterns 595042 977
1694 8 53 3rd
1697 10 56
1699 11 58
48849 12 177 4th
1693 13 52
695040 14 975
729409 15 31180301807975

Associations between Actions
perception pattens and actions (action_code)
(association_value)

A B

Figure 3 Example of real fragments from exported files. (A) Perception patterns file (.pdp). (B) Associ-
ation file (.aso).
Full-size Gal DOI: 10.7717/peerjcs.1402/fig-3

As a procedure analogous to the exporting (but in reverse), we have not provided an added
description of the import procedure, for simplicity’s sake.

EXPERIMENTAL DESIGN

To assess the system presented in the previous section, we have designed a validation
strategy that considers different learning scenarios where one (or more) drone(s) must
move from a given starting point to a specified destination point, avoiding collisions with
defined obstacles and with other drones present in the environment. The different scenarios
are detailed in the next subsection.

For each scenario, we have a training procedure with the goal of achieving learning
by the agents and its later exportation. Next, this knowledge is imported by other agents
without prior knowledge of the environment in question and the utility of this knowledge
in other scenarios has been tested. This test was performed according to a series of metrics
presented later in this paper.

Note that we have performed a system implementation that allows us to perform
simulations. For this, each agent must face the environment in which it must learn and for
this, it has a maximum number of movements in which to achieve its destination (called
“cycles”). If the destination is achieved without exhausting the maximum number of cycles,
the agent is stated to have obtained a “success”. Otherwise, the agent obtains a “failure”. In
any case, the agent repeats this procedure in a loop, therefore, in each iteration, it possesses
the knowledge obtained in the previous iterations (accumulated knowledge). Each of these
iterations is called “attempt”. In each experiment, 15,000 attempts for each simulation
have been considered and a maximum of 600 cycles per attempt.

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 11/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1402/fig-3
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Description of the learning scenarios

The experiments performed have considered a total of five different scenarios. They have
varying numbers and positions of agents, as well as varying quantities and distributions
of obstacles in order to have sufficient variety so we may obtain conclusions of interest.
The scenarios considered are described in Table 2. Note that we have increased complexity
to check the evolution of the performance in learning portability. For instance, we have
started with a simple scenario with just one agent and no obstacles, then two agents with
no obstacles, and finally one agent with obstacles of different types.

Metrics used
In order to assess the utility of the learning imported by an agent in an unknown scenario,
the following metrics were used:

e Average number of cycles per attempt (Avg_CI): This considers the number of cycles
that the agent has invested in each attempt and calculates the average of said values. The
lower the value, the quicker the agent is able to perform its task and therefore it implies
better learning.

e Success rate (%Success): represents the number of successful attempts in relation to the
total number of attempts for each simulation.

e Simulation time (T_Sim): represents the amount of time required by the agent (or
agents) to complete the simulation. The lesser the time, the quicker the agent has learnt.

These metrics are especially significant for analysing the results of this article, as they
constitute indicators that are directly related to learning efficiency, which is precisely what
we seek to study.

RESULTS

This section displays the results obtained in each scenario when using the knowledge
generated in the other scenarios, in an attempt to measure the degree of portability of this
knowledge between different scenarios and thus respond to the research question posed in
this article.

For this, we shall now describe each scenario mentioned in the previous section, and we
shall demonstrate with graphs and tables, the results that have been obtained with reference
to portability, using the aforementioned metrics as reference.

Scenario 1 (Sc1)

The results displayed in Table 3 have been obtained from the tests relative to this scenario.
This table format will be used for all the scenarios and this is why it requires a prior
explanation. The rows represent the different metrics considered. The final column always
displays the results obtained by the agents in the learning process of the scenario (Scenario 1
in the case of Table 3), without knowledge import, therefore this is the baseline column for
each scenario. The rest of the columns display the results obtained in the analysed scenario
(Scenario 1 in case of Table 3) using the knowledge generated previously in the rest of the
scenarios and subsequently imported (the best values for each metric are highlighted in
bold in the knowledge import columns, with the exception of the baseline column).

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 12/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Table 2 Explanation of the simulation scenarios posed.

Id Description Picture
Scl There is no obstacle. A single agent must reach from the
starting point (20, 60, 5) to the destination point (20, 0, 0)) 3
and land there, only avoiding collision with the ground. Destination
Start
T
~
Scenario 1
Sc2 There is no obstacle. Two agents located initially at the
positions (15, 60, 5) and (25, 60, 5) respectively must reach
the destination point (20, 0, 0) and land, avoiding collisions
with the ground and with each other.
) Ly
o 7
;;v o
Scenario 2
Sc3 A single agent must reach from the starting point (20, 60, 5)
to the destination point (20, 0, 0) and land there, avoiding
collision with the ground and with three fixed towers of a ®
certain width standing in its way.
Py
*
Scenario 3
Sc4 A single agent must reach from the starting point (20, 60, 5)
to the destination point (20, 0, 0) and land there, avoiding
collision with the ground and with twenty fixed narrow
towers standing in its way.
Scenario 4
Sc5 A single agent must reach from the starting point (20, 60, 5)
to the destination point (20, 0, 0) and land there, avoiding
collision with the ground and with a fixed tower of a certain
width standing in its way. S
7
e
Scenario 5
Barreiro et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1402 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Table 3 Results obtained for Scenario 1.

Sc2 — Scl Sc3 — Scl Sc4 — Scl Sc5 — Scl Scl (baseline)
Avg CI 80.8 123.48 106.28 80.22 101.56
%Success 100 98.67 99.33 100 98.33
T_Sim 3'17" 342" 4'16" 10'31” 424"

Nore;he best values for each metric are highlighted in bold. The values that worsen the baseline are underlined.

The analysis of the results of the table shows that with regard to the average number of
cycles per attempt, using the knowledge of Scenarios 1 (own), 2 and 5 improves the baseline
data for Scenario 1, but worsens when using the knowledge of Scenarios 3 and 4 (the values
that worsen the baseline are underlined). The success rate, the primary indicator, improves
in all cases with reference to the baseline. The simulation time improves (is reduced) in all
cases except when using the knowledge of Scenario 5.

As part of the results for this scenario, Fig. 4 displays the evolution of learning in the
baseline (Fig. 4A) and the evolution of learning in the best of the cases with importing
knowledge (with reference to the success rate) which is Scenario 5 in this case (Fig. 4B). For
the sake of simplicity, this figure does not include information on the axes as it is identical
in meaning and scale for all the figures and additionally, what interests us is the evolution
of the graph. The horizontal axis simply represents each attempt in the simulation (range
[0-15000], with the axis divided into sections of 1,500 attempts each) and the vertical axis
represents the number of cycles needed for success in each attempt (range [0-600], with
the axis divided into sections of 60 cycles each). The above applies also to Figs. 5, 6, 7 and
8.

In Fig. 4 we see that in the first attempts, the agent has difficulties in attaining the
goal, using a high number of cycles, until learning is stabilised around attempt 1,500.
Nevertheless, this stability is noted in Fig. 4B from the start of the simulation, therefore the
knowledge imported from Scenario 5 is useful from the very beginning.

Scenario 2 (Sc2)

The results displayed in Table 4 have been obtained from the tests relative to this scenario.
In this case, for the three indicators, there are two scenarios where the results improve the
baseline, and another two where they do not.

Figure 5 demonstrates the baseline evolution of learning (Fig. 5A) compared to an
equivalent simulation importing the knowledge of Scenario 1 in this case (Fig. 5B), which
gives the best success rate after import. Again, we see that the imported knowledge is of
great use, given that the agent achieves success from the starting cycles of the simulation,
and maintains this stable trend (Fig. 5B). Without this imported knowledge the learning
process is much longer (Fig. 5A).

Scenario 3 (Sc3)

The results displayed in Table 5 have been obtained from the tests relative to this scenario.
In this case, with the exception of the indicator Avg_CI in the import from Scenario 4 to
3, the imported knowledge improves the baseline results.

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Figure 4 Comparing the evolution of learning (cycles per attempt) of the baseline with the best case of
importation for Scenario 1. (A) Baseline. (B) Importing knowledge from Sc5 (best case).
Full-size Gl DOI: 10.7717/peerjcs.1402/fig-4

<

A ;!

Figure 5 Comparing the evolution of learning (cycles per attempt) of the baseline with the best case of
importation for Scenario 2. (A) Baseline. (B) Importing knowledge from Sc1 (best case).
Full-size Gal DOI: 10.7717/peerjcs.1402/fig-5

Figure 6 Comparing the evolution of learning (cycles per attempt) of the baseline with the best case of
importation for Scenario 3. (A) Baseline. (B) Importing knowledge from Sc2 (best case).
Full-size Gl DOI: 10.7717/peerjcs.1402/fig-6

Figure 6 demonstrates the baseline evolution of learning (Fig. 6A) compared to an
equivalent simulation importing the knowledge of Scenario 2 in this case (Fig. 6B), which
gives the best success rate after import. In this case we observe that although the agent still
has to learn in the first attempts even when knowledge is imported, learning is stabilized
quite rapidly from attempt 3,000 onwards (Fig. 6B). However, without this imported
knowledge the learning process is much longer and unstable (Fig. 6A).

Barreiro et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1402 15/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1402/fig-4
https://doi.org/10.7717/peerjcs.1402/fig-5
https://doi.org/10.7717/peerjcs.1402/fig-6
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

AAM N P

Figure 7 Comparing the evolution of learning (cycles per attempt) of the baseline with the best case of
importation for Scenario 4. (A) Baseline. (B) Importing knowledge from Sc5 (best case).
Full-size Gl DOI: 10.7717/peerjcs.1402/fig-7

A B

Figure 8 Comparing the evolution of learning (cycles per attempt) of the baseline with the best case of
importation for Scenario 5. (A) Baseline. (B) Importing knowledge from Sc3 (best case).
Full-size &l DOI: 10.7717/peerjcs.1402/fig-8

Table 4 Results obtained for Scenario 2.

Scl — Sc2 Sc3 — Sc2 Sc4 — Sc2 Sc5 — Sc2 Sc2 (baseline)
Avg CI 213.96 312.21 464.08 232.87 253.17
%Success 929 91 65 96 93
T_Sim 65" 7'41" 943" 23/32" 7'48"

Notes.
The best values for each metric are highlighted in bold. The values that worsen the baseline are underlined.

Scenario 4 (Sc4)

The results displayed in Table 6 have been obtained from the tests relative to this scenario.
We can clearly see that the importing of this knowledge improves all indicators in all the
imports performed.

Figure 7 demonstrates the baseline evolution of learning (Fig. 7A) compared to an
equivalent simulation importing the knowledge of Scenario 5 in this case (Fig. 7B), which
gives the best success rate after import. In this case, once again, although the agent still
needs time to stabilise learning (Fig. 7B) after importing knowledge, the time taken is much
less that when knowledge is not imported (Fig. 7A).

Barreiro et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1402 16/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1402/fig-7
https://doi.org/10.7717/peerjcs.1402/fig-8
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Table 5 Results obtained for Scenario 3.

Scl — Sc3 Sc2 — Sc3 Sc4 — Sc3 Sc5 — Sc3 Sc3 (baseline)
Avg CI 383.24 261.09 464.01 235.27 428.33
%Success 69 90 63 87 61
T_Sim 28'31” 17'52" 25'30” 17'40” 34'51"

Notes.
The best values for each metric are highlighted in bold. The values that worsen the baseline are underlined.

Table 6 Results obtained for Scenario 4.

Scl — Sc4 Sc2 — Sc4 Sc3 — Sc4 Sc5 — Sc4 Sc4 (baseline)
Avg CI 351.13 246.81 216.12 189.12 441.07
%Success 85 91 92 95 67
T_Sim 3042 21'15” 18'49” 16'14” 39'50”

Notes.
The best values for each metric are highlighted in bold. The values that worsen the baseline are underlined.

Table 7 Results obtained for Scenario 5.

Scl — Sc5 Sc2 — Sc5 Sc3 — Sc5 Sc4 — Sc5 Sc5 (baseline)
Avg CI 191.76 155.86 179.33 350.41 171.13
%Success 95 96 97 78 94
T_Sim 33/34" 7'40" 810" 12'16" 28/51"

Notes.
The best values for each metric are highlighted in bold. The values that worsen the baseline are underlined.

Scenario 5 (Scb)

The results displayed in Table 7 have been obtained from the tests relative to this scenario. In
this case, the number of cycles per attempt does not improve in most cases of importation,
but the success rate and the simulation time both improve (with one exception in each
case).

Figure 8 demonstrates the baseline evolution of learning (Fig. 8A) compared to an
equivalent simulation importing the knowledge of Scenario 3 in this case (Fig. 8B), which
gives the best success rate after import. In this case, when knowledge is imported, learning
is found to be quite stable (with the exception of certain peaks around attempt 2,000) from
the beginning (Fig. 85) when compared to the baseline (Fig. 8A) where the early attempts
constitute slow learning and with several failures, until learning is stabilised around attempt
7,500.

CONCLUSION

This article proposes a simulated system for drone navigation based on a RL model. This
system allows drones to arrive at a specific destination point completely automatically,
avoiding physical obstacles and collisions with other drones. It is the evolution of a previous
system implemented by the authors for drones with modifications to the range of possible
movements by agents in the surroundings (Alvarez de Toledo et al., 2017).

Barreiro et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1402 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Additionally, the new system has been equipped with new mechanisms that allow the
knowledge obtained in a scenario to be separated from the rest of the system data and
procedures, so it may be exported for later use in other scenarios. Specifically, this article
studies the degree of portability of knowledge between different scenarios. For this, we have
performed learning simulations for five significantly different scenarios and the knowledge
acquired in each scenario has been transferred to the rest in order to determine its utility
in learning.

A total of 20 knowledge transfers were made in all the five scenarios. In each transfer,
three different metrics were studied, leading to 60 portability results. Of these 60 results,
positive results were obtained in 47 cases in comparison to the baseline scenario (78.33%)
thus giving us an affirmative answer to the research question posed in this article.

When analyzing each scenario independently, the best transfer results were displayed in
Scenario 4 (when knowledge was transferred from the rest of the scenarios to Scenario 4).
In this case, all metrics improved after knowledge was transferred in all cases. The worse
results were those of Scenario 2 (when knowledge was transferred from the rest of the
scenarios to Scenario 2), with improvement observed in half of the transfers and worse
results in the other half. In the remaining scenarios, results were generally positive, but with
certain exceptions. This seems to indicate that the presence of small obstacles (Scenario 4)
is a pattern that is simple to learn with previous knowledge of other surroundings, even
when these do not have obstacles. Nevertheless, the presence of various drones (Scenario 2)
generates patterns that are more complex to learn, therefore, prior knowledge with simple
fixed obstacles is not of great use.

An analysis of the scenarios in pairs shows a high degree of learning portability between
Scenarios 1 and 2, and in both directions. These are scenarios without obstacles, but with
different number of drones. On the other hand, there is low portability between Scenarios
1 and 5, even though the only difference between them is the presence of an obstacle
of medium size. This appears to indicate that the presence of medium or large obstacles
requires an extra knowledge that cannot be imported from other scenarios without obstacles
of this type. In general, it appears that the biggest complication lies in achieving a good
transfer towards Scenarios 2 (multiple drones) and 5 (medium-large obstacle).

These results may serve as a benchmark in real learning environments without the
possibility of simulations and where experimentation may be expensive. Additionally, the
procedures conducted in this article may serve as a reference for other similar studies of
knowledge portability in the field of artificial intelligence in general, and machine learning
in particular. The ideas of portability presented in our paper can be used in any learning
problem as they are general enough. However, the implementation details of each particular
system will have to be modified and adapted to include our ideas. This would be the main
difficulty in generalizing our ideas for use in other domains. The general nature of the
model and of the portability procedure are the strong points of this study. Of course, the
study was limited to environments with drones where they can interact with each other
and with fixed obstacles, and it must be considered as a preliminary analysis in a limited set
of scenarios. In addition, our study is only a simulation in a very controlled environment

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 18/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

where drones do not have to face external constraints and circumstances, such as weather
conditions, limitations in the use of resources or legal issues.
Some lines of research that may be worth examining in the future are the following:

e To expand the study to include a greater number of scenarios, especially scenarios
with multiple drones interacting with each other and with large obstacles present in the
trajectory of these drones.

e To take a first step towards converting the implemented system(simulation) into
reality. For this, real drones are required with processing systems that include the logic
of the presented system. Additionally, these drones must be equipped with a perception
system(sensors) that allows them to detect obstacles and other drones, and to know
their position relative to the destination point (possibly GPS). It must be possible to
map the set of movements of the simulated agent on to the movement orders of a drone,
probably by means of a movement interface facilitated by its operating system.

e For a more efficient and sustainable learning process of the agents, an option would be
to attempt to reduce the number of perception patterns, which would lead to less storage
and fewer decisions to analyse. This may be achieved by grouping patterns that are very
similar using data mining (clustering) techniques, for example. It must be studied if
the reduction in patterns, along with improved sustainability, allows us to maintain a
certain level of quality with regard to learning (success rate).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
Juan A. Lara is an Academic Editor for Peer].

Author Contributions

e José M. Barreiro conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the article, and
approved the final draft.

e Juan A. Lara conceived and designed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the article, and approved the final
draft.

e Daniel Manrique analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

e Peter Smith performed the experiments, authored or reviewed drafts of the article, and

approved the final draft.
Data Availability

The following information was supplied regarding data availability:
The code is available at GitHub and Zenodo:

Barreiro et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1402 19/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

https:/github.com/n2latojMARSADAfree/Marsada

in2latoj. (2023). in2latoj/MARSADA: Marsada2.0 (Marsada). Zenodo. https:/doi.org/
10.5281/enodo.7614681

The data is available at Zenodo: Juan Alfonso Lara. (2023). Data used in Knowledge
Transfer Research for Drone Navigation [Data set]. Zenodo. https:/doi.org/10.5281/zenodo.
7600381

REFERENCES

Anwar A, Raychowdhury A. 2020. Autonomous navigation via deep reinforcement
learning for resource constraint edge nodes using transfer learning. IEEE Access
8:26549-26560 DOI 10.1109/ACCESS.2020.2971172.

Asmat MN, Khan SUR, Hussain S. 2022. Uncertainty handling in cyber—physical
systems: state-of-the-art approaches, tools, causes, and future directions. Jour-
nal of Software: Evolution and Process 2428 Epub ahead of print Jan 20 2022
DOI 10.1002/smr.2428.

Barto AG, Sutton RS, Anderson CW. 1983. Neuronlike elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics
13:835-846.

Bogyrbayeva A, Yoon T, Ko H, Lim S, Yun H, Kwon C. 2023. A deep reinforcement
learning approach for solving the traveling salesman problem with drone. Trans-
portation Research Part C: Emerging Technologies 148:103981.

Botvinick M, Wang JX, Dabney W, Miller K], Kurth-Nelson Z. 2020. Deep rein-
forcement learning and its neuroscientific implications. Neuron 107(4):603-616
DOI10.1016/j.neuron.2020.06.014.

Chen Z, Liang X, Zheng M. 2020. Knowledge transfer between different UAV's
for trajectory tracking. IEEE Robotics and Automation Letters 5(3):4939-4946
DOI 10.1109/LRA.2020.3004776.

Faraci G, Raciti A, Rizzo SA, Schembra G. 2020. Green wireless power transfer system
for a drone fleet managed by reinforcement learning in smart industry. Applied
Energy 259:114204 DOI 10.1016/j.apenergy.2019.114204.

Hodge V], Hawkins R, Alexander R. 2020. Deep reinforcement learning for drone
navigation using sensor data. Neural Computing and Applications 33(4):2015-2033.

Kalos MH, Whitlock PA. 1991. Monte Carlo methods. New York: Wiley.

Kentsch S, Lopez Caceres ML, Serrano D, Roure F, Diez Y. 2020. Computer vision and
deep learning techniques for the analysis of drone-acquired forest images, a transfer
learning study. Remote Sensing 12(8):1287 DOI 10.3390/rs12081287.

Kholidy HA. 2021. Autonomous mitigation of cyber risks in the Cyber—Physical Systems.
Future Generation Computer Systems 115:171-187 DOI 10.1016/j.future.2020.09.002.

Konidaris G, Barto A. 2006. Autonomous shaping: knowledge transfer in reinforcement
learning. In: Proceedings of the 23rd international conference on Machine learning
(ICML °06). New York: Association for Computing Machinery, 489-496.

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 20/22

https://peerj.com
https://github.com/in2latoj/MARSADA/tree/Marsada
https://doi.org/10.5281/zenodo.7614681
https://doi.org/10.5281/zenodo.7614681
https://doi.org/10.5281/zenodo.7600381
https://doi.org/10.5281/zenodo.7600381
http://dx.doi.org/10.1109/ACCESS.2020.2971172
http://dx.doi.org/10.1002/smr.2428
http://dx.doi.org/10.1016/j.neuron.2020.06.014
http://dx.doi.org/10.1109/LRA.2020.3004776
http://dx.doi.org/10.1016/j.apenergy.2019.114204
http://dx.doi.org/10.3390/rs12081287
http://dx.doi.org/10.1016/j.future.2020.09.002
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

Konidaris G, Scheidwasser I, Barto AG. 2012. Transfer in reinforcement learning via
shared features. Journal of Machine Learning Research 13:1333-1371.

Kumar A, Sharma K, Singh H, Naugriya SG, Gill SS, Buyya R. 2021. A drone-based
networked system and methods for combating coronavirus disease (COVID-19)
pandemic. Future Generation Computer Systems 115:1-19
DOI 10.1016/j.future.2020.08.046.

Ladosz P, Weng L, Kim M, Oh H. 2022. Exploration in deep reinforcement learning: a
survey. Information Fusion 85:1-22 DOT 10.1016/j.inffus.2022.03.003.

Lazaric A. 2012. Transfer in reinforcement learning: a framework and a survey. In:
Wiering M, Van Otterlo M, eds. Reinforcement learning. Adaptation, learning, and
optimization, Berlin, Heidelberg: Springer, 12.

LiZ, Zhao J. 2021. Resilient adaptive control of switched nonlinear cyber-physical
systems under uncertain deception attacks. Information Sciences 543:398—-409
DOI10.1016/.in5.2020.07.022.

LiuY, Peng Y, Wang B, Yao S, Liu Z. 2017. Review on cyber-physical systems. IEEE/CAA
Journal of Automatica Sinica 4(1):27—40 DOI 10.1109/JAS.2017.7510349.

Lépez-Zambrano J, Lara JA, Romero C. 2020. Towards portability of models for
predicting students’ final performance in university courses starting from moodle
logs. Applied Sciences 10(1):354 DOI 10.3390/app10010354.

Mogili UR, Deepak B. 2020. An intelligent drone for agriculture applications with
the aid of the MAVlink protocol. In: Innovative product design and intelligent
manufacturing systems. Lecture Notes in Mechanical Engineering, Singapore: Springer.

Nikita S, Tiwari A, Sonawat D, Kodamana H, Rathore AS. 2021. Reinforcement
learning based optimization of process chromatography for continuous pro-
cessing of biopharmaceuticals. Chemical Engineering Science 230:116171
DOI10.1016/j.ces.2020.116171.

Rubinstein RY. 1981. Simulation and the Monte Carlo method. New York: Wiley.

Serpanos D. 2018. The cyber-physical systems revolution. Computer 51(3):70-73.

Shahmoradi J, Talebi E, Roghanchi P, Hassanalian M. 2020. A comprehensive review of
applications of drone technology in the mining industry. Drones 4(3):34.

Sutton RS. 1978a. Learning theory support for a single channel theory of the brain. Ph.D.
Thesis, Stanford University, Stanford.

Sutton RS. 1978b. Single channel theory: a neuronal theory of learning. Brain Theory
Newsletter 4:72-75.

Alvarez de Toledo S, Anguera A, Barreiro JM, Lara JA, Lizcano D. 2017. A reinforce-
ment learning model equipped with sensors for generating perception patterns: im-
plementation of a simulated air navigation system using ADS-B (Automatic Depen-
dent Surveillance-Broadcast) technology. Sensors 17(1):188 DOI 10.3390/s17010188.

Ulam SM. 1991. Adventures of a mathematician. Oakland: University of California Press.

Um J-S. 2019. Drones as cyber-physical systems. Concepts and applications for the fourth
industrial revolution, Singapore: Springer.

Venturini F, Mason F, Pase F, Chiariotti F, Testolin A, Zanella A, Zorzi M. 2020.
Distributed reinforcement learning for flexible UAV swarm control with transfer

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 21/22

https://peerj.com
http://dx.doi.org/10.1016/j.future.2020.08.046
http://dx.doi.org/10.1016/j.inffus.2022.03.003
http://dx.doi.org/10.1016/j.ins.2020.07.022
http://dx.doi.org/10.1109/JAS.2017.7510349
http://dx.doi.org/10.3390/app10010354
http://dx.doi.org/10.1016/j.ces.2020.116171
http://dx.doi.org/10.3390/s17010188
http://dx.doi.org/10.7717/peerj-cs.1402

PeerJ Computer Science

learning capabilities. In: Proceedings of the 6th ACM workshop on micro aerial vehicle
networks, systems, and applications (DroNet *20). Article 10. New York: Association
for Computing Machinery, 1-6.

Wang Y-C, Chou J, Chung I-H. 2021. A deep reinforcement learning method for
solving task mapping problems with dynamic traffic on parallel systems. In: The
international conference on high performance computing in asia-pacific region (HPC
Asia 2021). New York: Association for Computing Machinery, 1-10.

Watkins CJCH, Dayan P. 1992. Q-learning. Machine Learning 8:279-292.

Yoon I, Anwar A, Rakshit T, Raychowdhury A. 2019. In: Transfer and online reinforce-
ment learning in STT-MRAM based embedded systems for autonomous drones. 2019
Design, Automation & Test in Europe Conference & Exhibition, Florence, Italy,
1489-1494.

Zanero S. 2017. Cyber-physical systems. Computer 50(4):14-16.

Barreiro et al. (2023), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1402 22/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1402

