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ABSTRACT
Background. Model-based 3D pose estimation has been widely used in many 3D
human motion analysis applications, in which vision-based and inertial-based are
two distinct lines. Multi-view images in a vision-based markerless capture system
provide essential data for motion analysis, but erroneous estimates still occur due to
ambiguities, occlusion, or noise in images. Besides, the multi-view setting is hard for
the application in the wild. Although inertial measurement units (IMUs) can obtain
accurate direction without occlusion, they are usually susceptible to magnetic field
interference and drifts. Hybrid motion capture has drawn the attention of researchers
in recent years. Existing 3D pose estimationmethods jointly optimize the parameters of
the 3D pose byminimizing the discrepancy between the image and IMUdata. However,
these hybrid methods still suffer from the issues such as complex peripheral devices,
sensitivity to initialization, and slow convergence.
Methods. This article presents an approach to improve 3D human pose estimation by
fusing a single image with sparse inertial measurement units (IMUs). Based on a dual-
stream feature extract network, we design a model-attention network with a residual
module to closely couple the dual-modal feature from a static image and sparse inertial
measurement units. The final 3D pose and shape parameters are directly obtained by a
regression strategy.
Results. Extensive experiments are conducted on two benchmark datasets for 3D
human pose estimation. Compared to state-of-the-art methods, the per vertex error
(PVE) of human mesh reduces by 9.4 mm on Total Capture dataset and the mean
per joint position error (MPJPE) reduces by 7.8 mm on the Human3.6M dataset. The
quantitative comparison demonstrates that the proposed method could effectively fuse
sparse IMU data and images and improve pose accuracy.

Subjects Human-Computer Interaction, Artificial Intelligence, Computer Vision
Keywords 3D human pose and shape, A single image with sparse inertial measurement units,
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INTRODUCTION
Reconstructing 3D human pose is important for the somatosensory interaction of gaming,
sports and VR/AR applications. With the development of parametric human body
models (Anguelov et al., 2005; Loper et al., 2015; Pavlakos et al., 2019), model-based 3D
pose estimation methods (Bogo et al., 2016; Kanazawa et al., 2018; Kolotouros et al., 2019;
Kundu et al., 2020a; Kundu et al., 2020b; Kocabas et al., 2021) have been developed to
obtain the 3D human poses and shapes from images with the prior of some parameterized
human model. Most model-based approaches are divided into two broad categories:
optimization-based pose estimation methods (Bogo et al., 2016; Pavlakos et al., 2019;Guzov
et al., 2021) and learning-based pose estimation methods (Kanazawa et al., 2018; Pavlakos
et al., 2018; Kocabas et al., 2021). The optimization-based approach, such as SMPLify
(Pavlakos et al., 2019), estimates the model parameters with an iterative optimization
process. However, the optimization problem is initial-sensitive and generally slower to
converge to an optimum (Ji et al., 2020). The learning-based approach, such as human
mesh recovery (HMR) (Kanazawa et al., 2018), uses a neural network to directly regress
model parameters from global image features. Nevertheless, it is difficult for the network
to learn an effective mapping function, as the parameter space is nonlinear. Benefiting
from a pre-defined human model, a complete human pose could be obtained. However,
state-of-the-art image-based methods of reconstructing 3D human pose and shape are still
sensitive to occlusion. Especially in the outdoor scene, they would produce significantly
erroneous predictions, even when most parts of the human body are observable.

Inertial measurement units (IMUs) can effectively solve the viewpoint limitation of
accessible optical sensors and produce the rotation information of joint points. Many
recent studies (Von Marcard et al., 2017; Yi, Zhou & Xu, 2021; Yi et al., 2022) focus on
wearable sensor estimation of body pose by binding some inertial sensing peripherals to
key joints of the human body and capturing the direction and acceleration of these joints.
However, even if the IMU-based system captures the bodymovement at a high frame rate, it
is susceptible to magnetic field interference and accumulates drift error over time, resulting
in exhibit significant position mistakes. Furthermore, the commercial IMU-based system
usually relies on dense and complex wearable sensors and time-consuming calibration,
e.g., 17 nodes employed by the Xsens Animate suit, causing invasive to the subject and
hindering the free movement of the body.

A straightforward manner to improve the estimation accuracy is to combine the
individual strengths of image-based and IMU-based methods. Previous works (Li et al.,
2017; Majumder & Kehtarnavaz, 2020) have discovered the potential of fusing the features
from IMUs and optical cameras for human action recognition. More recently, some robust
pose estimation methods (Von Marcard, Pons-Moll & Rosenhahn, 2016; Von Marcard
et al., 2018; Malleson, Collomosse & Hilton, 2020; Kaichi et al., 2020) based on IMU and
image fusion mainly followed a similar pipeline. These methods generate parametric 3D
mannequins and optimize their parameters by minimizing the energy functions associated
with IMUs and image features to reduce their differences from images and IMUs. These
methods optimize the kinematic pose of the subject based on a cost function comprising
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orientation, acceleration, 2D position and statistical pose prior terms. A sparse set of IMUs
attached to body segments provides the orientation and acceleration constraints. Positional
constraints are obtained by 2D joint detections from video cameras. However, this pipeline
is initial-sensitive. When 2D joint detection has a small mistake, the accuracy of the
predicted pose will significantly decline. To ensure the accuracy of 2D detection, the input
sources of these methods are multi-view. The computation time increases exponentially
with more input views, as the current 2D joint detector also takes a long time. The exacting
requirement also prevents them from being used outdoors or in indoor scenarios with
separate rooms.

To address the issues mentioned above, this article proposes a method that couples
sparse IMUs with a single RGB camera and realizes 3D human body reconstruction
through adaptive regression learning. In contrast with SOTAmethods based on multi-view
and IMUs (Bao, Zhao & Qian, 2022), the proposed approach can avoid the invasion of
many IMUs to subjects, avoid 2D joint detection, and reduce hardware dependence. An
example of the reconstruction results is shown in Fig. 1. The model in this article realizes
robust pose estimation even in the case of severe self-occlusion. An illustration of the IMUs’
binding position is shown in Fig. 2. We keep the same setting of the sparse IMU binding
position with previous research (Von Marcard et al., 2017; Huang et al., 2018), and employ
a single camera view to provide the auxiliary global information. In other words, this
simple setup can obtain stable position information without any drift over time and can
calibrate the limb position from the IMUs even suffering from serious occlusion. Besides,
a single-view setup like a surveillance camera synergic with several wearable sensors,
balancing the limitations of visual occlusion and inertial data drift, is easier to deploy than
multi-viewpoint cameras in daily life.

Different from the previous optimization-based method (Von Marcard et al., 2018;
Malleson, Collomosse & Hilton, 2020), we adopt a learning-based strategy to fuse the
multiple features into a latent vector. A dual-stream network is first used to extract image
features and IMU features, respectively. For IMU input, the improved temporal encoder
module is applied over a sequence to generate the dynamic features, in which the temporal
features are further refined with position embeddings. Simultaneously, a pre-trained single
image-based 3D human pose and shape model (Kanazawa et al., 2018; Kolotouros et al.,
2019) is employed to extract static image features. The key component of our method is the
residual model-attention network, which is used to realize dual-modal feature fusion with
the guided-attention from the temporal IMU features and visual features, by introducing a
residual branch to connect static image features and fusion features in this article. Finally,
the parameterized human pose and body shape are generated by regressing directly from
the fused vector.

To evaluate the effectiveness of the proposed approach, we conduct experiments
on Total Capture (Trumble et al., 2017; Trumble et al., 2018a; Trumble et al., 2018b) and
Human3.6M (Ionescu, Li & Sminchisescu, 2011; Ionescu et al., 2014) datasets, which are
commonly used benchmarks for human pose estimation. Compared with the recent PIP
(Yi et al., 2022), a sparse-IMU-based method, the per vertex error of our method is reduced
by 9.4 mm on the Total Capture dataset. For the Human3.6M dataset, inspired by previous
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Figure 1 Sample results of reconstructed 3D human pose on the Total Capture dataset. The 3D human
pose and mesh estimated from the single-frame image and the sparse IMUs which are presented under
camera view.

Full-size DOI: 10.7717/peerjcs.1401/fig-1

Figure 2 Illustration of the mesh, skeleton, and joints with the T-pose template. The line plots are a
common kinematic representation of the human body by 24 keypoints. The triangle mesh is the skinned
and vertex-based 3D prior model in SMPL. The placement of six IMUs in this article is indicated by the
orange color.

Full-size DOI: 10.7717/peerjcs.1401/fig-2

work (Yi, Zhou & Xu, 2021), we synthesize the virtual IMU data and consider measurement
error by adding Gaussian noise to validate the general applicability. Compared with the
state-of-the-art Mesh Graphormer (Lin, Wang & Liu, 2021), an image-based method, the
3D joint position error goes down by 7.8 mm. The experimental results demonstrate the
effectiveness of visual-inertial information fusion.

The main contributions of this article are summarized as follows:
1. This article proposed a hybrid motion capture method in a learning-based framework

that combines a single image with sparse IMUs to generate the 3D human pose and
shape, which can alleviate the ambiguity and sensitivity of conventional approaches.
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2. A residual model-attention network is proposed to closely fuse the dual-stream outputs
including dynamic IMU features and static image features. An improved IMU feature
extractor is also presented to enhance the robustness against inertial measurement
error.

3. The method achieves state-of-the-art performance on two benchmarks for 3D human
pose and shape reconstruction, providing a solution for 3D human motion capture in
some unrestricted environments in practice.

RELATED WORK
Image-based methods
The existing 3D pose image-based estimation approaches can be divided into model-
free and model-based methods. The model-free methods (Chen et al., 2019; Wandt &
Rosenhahn, 2019; Pavllo et al., 2019) follow a semi-supervised learning manner, mapping
3D keypoints from an image back to 2D keypoints. However, the lack of ground-truth 3D
keypoints is the greatest challenge that prevents the composition model from achieving
the expected performance in outdoor scenes. Model-based methods yield reasonable pose
estimations based on prior knowledge of kinematic models, such as bone-joint connection
information, joint rotation characteristics, and fixed bone length ratio (Zhou et al., 2016;
Kundu et al., 2020a; Kundu et al., 2020b; Xu et al., 2020). Compared to producing human
posture and kinematic bone models, volumetric models can restore high-quality human
meshes and provide affiliated shape data of the human body, in which SMPL (Loper et
al., 2015) is commonly used in 3D body pose and shape estimation. Several methods
(Bogo et al., 2016; Kanazawa et al., 2018; Jiang et al., 2020) proposed use image feature
information to regress to SMPLparameters to reconstruct 3Dhumanmeshes directly.Other
notable approaches (Kocabas, Athanasiou & Black, 2020; Choi et al., 2021; Wei et al., 2022)
introduce video-based SMPL body pose and shape estimation. VIBE (Kocabas, Athanasiou
& Black, 2020) adversarial training is performed based on the AMASS (Mahmood et al.,
2019) large-scale motion capture dataset to distinguish whether the poses predicted by the
attitude regression module are consistent with natural human movement postures.

IMU-based methods
With the development ofmicro-electromechanical systems, IMUs thatmeasure acceleration
and direction have attracted more attention. Some methods have been proposed using
only IMUs rather than a marker-based system to restore 3D human posture, such as the
commercial inertial motion capture systems (Schepers, Giuberti & Bellusci, 2018) using 17
wearable IMUs to fully obtain the orientation of all bones of the moving body model.
However, deploying many sensors is seriously invasive to the subject and hinders the
subject’s free movement. In addition, the calibration of multiple sensors often takes a
long time. In the methods proposed by Slyper & Hodgins (2008) and Tautges et al. (2011),
data from five accelerometers and poses were retrieved from a pre-established motion
database. Sparse inertial poser (SIP), a groundbreaking work proposed by Von Marcard
et al. (2017), solves human pose estimation using only six IMUs, which is an iterative
optimization method that requires access to the entire motion sequence. Deep inertial
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poser (DIP; Huang et al., 2018) uses a bidirectional recurrent neural network to directly
learn body joint rotation information from IMU measurements to SMPL models and
provides a DIP-IMU dataset. Transpose (Yi, Zhou & Xu, 2021) and PIP (Yi et al., 2022)
use multistage task completion, estimating joint position information before returning to
standard rotation information and connecting IMU data to the next stage of the network
as an intermediate result, thereby significantly improving accuracy and reducing the
running time. Nevertheless, the third stage of Transpose is an inverse kinematics (IK)
solver, which would produce keypoint ambiguity. The IK mathematical process that finds
relative rotations to create the desired position of body joints, is still an ill-posed problem.
Furthermore, simply using the IMU as input to estimate the joint rotation does not
introduce any prior knowledge about the human body.

Image-IMU-based methods
Several works (Von Marcard et al., 2018; Kaichi et al., 2020) have proposed combining
images and IMUs to improve the accuracy of 3D human pose and shape estimation.
Some methods (Von Marcard, Pons-Moll & Rosenhahn, 2016; Von Marcard et al., 2018;
Malleson et al., 2017; Malleson, Collomosse & Hilton, 2020) estimated the 3D human pose
byminimizing the joint energy function of the IMUs and image outputs.Gilbert et al. (2019)
and Trumble et al. (2017) proposed a dual-stream network that connects the embedding
obtained from the image and IMU to obtain the final pose. Zhang et al. (2020) integrated
multi-view images and IMUs. The rotation information is fused with image features at
an early stage to improve 2D pose estimation directly. In the stage of 3D pose estimation,
IMUs data are used to optimize the result through 3D geometry optimization. Although
the two-stage method achieves state-of-the-art performance using images alone, it has
serious limitations and only works well under an indoor scene with multi-view cameras.
Most of the above methods input multi-view images and multiple IMUs, few studies
(Von Marcard, Pons-Moll & Rosenhahn, 2016; Von Marcard et al., 2018; Kaichi et al., 2020)
reported on pose estimation based on sparse IMUs and single-view images.

In contrast to previous work (Gilbert et al., 2019; Malleson, Collomosse & Hilton, 2020;
Zhang et al., 2020), this proposed method in reconstructing 3D human pose lies in two
folds: First, instead of estimating the 3D pose from the images or IMUs separately, this
article proposes a learning-based framework by incorporating inputs of sparse IMUs and
single view images. Second, rather than geometric transformation or 2D-3D lifting, the
adopted fusion strategy is feature-level by designing a residual model-attention network,
allowing the end-to-end training to generate 3D human pose parameters.

METHOD
For clarity, this article first overviews the parametric 3D human body model (SMPL) and
introduces the transformation of relevant coordinate systems and data normalization.
Then, the following parts introduce the proposed framework and network in detail.

SMPL body model
SMPL is a skinned and vertex-based 3D prior model of the human body learned from
thousands of 3D body scans. The human skeleton is a hierarchy of 24 joints defined
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by a kinematic tree, which preserves the parenting of the joints. The SMPL model is
parameterized by θ ∈R72 and β ∈R10, where θ represents the rotation of the corresponding
23 joints relative to the parent joint and one root (pelvic) global orientation, and β is a
human morphological vector composed of 10 scalars. Each scalar indicates that the human
body expands or contracts in a specific direction. A shape blended T-pose of the SMPL
model is shown in Fig. 2. The body mesh M ∈RN×3can be obtained from the mapping
M (β,θ) where N = 6890. In addition, keypoints X ∈Rk×3 of the human body can also
be acquired by a pre-trained linear regressor W , i.e., X =WM , where k represents the
number of bone points. Thus, the joint positions can be obtained by linearly mapping the
mesh vertices with the linear regressorW.

IMU calibration and normalization
Calibration
The overview of IMU calibration is illustrated in Fig. 3. Referring to DIP (Huang et al.,
2018), the calibration aims to transform the IMU readings to a common body-centric
coordinate frame. Denoting the acceleration data relative to the sensor coordinates as Gs

and the orientation data relative to the global inertial coordinates as GI . To convert the
inertial measurement value to the SMPL global coordinate frame GM , it is necessary to
calibrate the coordinate sensor frame to the global inertial coordinate frame, represented
as a rotation RSI : GS

→GI . From the global inertial coordinate frame to the 3D human
body model (SMPL) global coordinate frame, it is defined as a rotation RIM

:GI
→GM .

Supposing GI and GM are unchanging during the calibration period, the process is
expressed as:

GM
=RMIGI , (1)

where RMI
= inv(RIM ) represents the transformation of the global inertial coordinate to

the SMPL global coordinate.
The bone offset under the SMPL global coordinate is necessary as the sensor can be

placed in any direction. At the beginning of each sequence, each subject stands in a known
T-pose with bone orientation OBI

0 and acceleration ABI
0 . The orientation offset RBM

offset and
acceleration offset ABM

offset are assumed to be unchanged during the calibration period, the
per-sensor bone offsets are computed by:

RBM
offset = inv(OIB

0 )R
IM , (2)

ABM
offset =ABI

0 RIM . (3)

Based on bone offset, the orientation and acceleration data of each sensor is first
transformed to the global inertial coordinates, then converted to the SMPL global
coordinates. This process is expressed as:

OBM
t =OBI

t RIMRBM
offset , (4)

ABM
t = (ABI

t RIM )−ABM
offset , (5)
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Figure 3 Overview of the calibration process on coordinate frames. The calibration involves three steps.
The sensor coordinate system is transformed into the global inertial coordinate system. The global inertial
coordinate system is then transformed into the SMPL global inertial coordinate system. Due to the inher-
ent offset between the IMUs and the corresponding joints in SMPL, the third step is to calculate the joint
rotations by giving a known template such as the T-pose.

Full-size DOI: 10.7717/peerjcs.1401/fig-3

where O∈R3×3 represents the orientation and A∈R3 indicates the acceleration, OBM
t and

ABM
t represent the direction and acceleration of t -th frame in the SMPL global coordinates,

respectively. OBI
t and ABI

t represent the direction and acceleration of t -th frame in the
global inertial coordinates, respectively. Then the normalized OBM

t and ABM
t are used as

input for the improved IMU feature extractor.

Data normalization
After converting the IMU readings to the SMPL coordinate frame, denote the normalized
direction and acceleration as O and A, respectively. The leaf joint inertial measurements
are aligned with the root joint:

Aleaf =O−1leaf (Aleaf −Aroot ), (6)

Oleaf =O−1rootOleaf . (7)
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Figure 4 Overview of our proposed framework for reconstructing the human pose and shape from a
single image and sparse IMUs. The pipeline contains three stages: a dual-stream network consisting of an
improved IMU feature extractor and a general image feature extractor, a residual model attention-based
that is implemented to fuse the multiple features and a regression network for 3D human pose generation.

Full-size DOI: 10.7717/peerjcs.1401/fig-4

The standard root is defined as:

Aroot =O−1rootAroot , (8)

Oroot =Oroot . (9)

Network architecture
The pipeline of our proposed network is shown in Fig. 4, which mainly consists of three
stages. The first stage is a dual-stream network, including a temporal encoder to extract
dynamic IMU features and a simple convolutional neural network with pre-trained weights
as the image encoder to extract the visual features. The second stage is a model attention
network for fusing features from different modalities, and the third stage is a regression
network for generating pose parameters from the fused feature vector.

Dual-stream feature extractors
To balance the efficiency, scalability, and long-term modeling ability to extract
representative information from the temporal inertial data, the bidirectional recurrent
neural network (Schuster & Paliwal, 1997) with long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997) unit is employed as the IMU feature extractor. A detailed
implementation of the IMU feature extractor is illustrated in Fig. 5. The input data is a
temporal sequence containing the normalized positions of the leaf joint relative to the root.
The output of the IMU feature extractor is a set of the corresponding frame-level feature
vector. Specifically, a linear embedding layer is first used to encode the normalized position
data, then a two-layers LSTM is employed to aggregate the temporal cues in the context.
The intermedia feature of five leaf joint positions relative to the root joint is obtained
through a fully connected layer. Inspired by the position encoding scheme proposed by
Zhao, Wang & Tian (2022) in image-based keypoint detection, we add an extra temporal
encoder containing a two-layer bidirectional gated recurrent unit (GRU) to refine the
temporal feature with position embeddings and generate T ×2048 features as output.
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Figure 5 Overview of the improved IMU feature extractor. The relative root leaf joint positions are de-
termined as an intermediate output through the implementation of a regular bi-directional LSTM-based
network. The additional temporal encoder equipped with a two-layer bidirectional gated recurrent unit
(GRU) is incorporated to further refine the temporal feature using position embeddings and generates
T×2048 features as the final output.

Full-size DOI: 10.7717/peerjcs.1401/fig-5

For the image-based input branch, we refer to the previous single image-based method
(Kanazawa et al., 2018; Kolotouros et al., 2019) and employ the ResNet-50 (He et al., 2016a;
He et al., 2016b) based backbone with pre-trained weights by the ImageNet as an image
encoder to extract the visual feature fimg ∈R2048. Then the extracted visual feature is
processed by two branches. As the cubes in blue color shown in Fig. 6, the first one is used
as the input to fuse with the IMU features in the residual model-attention network, while
the second one is connected to the final regression module to obtain the pose parameter θ
and body parameter β.

Residual model-attention network
To closely couple distinct dual-modal features and eliminate ambiguity, we design a
residual model-attention network to refine the image feature guided by the IMU feature.
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Figure 6 The pipeline of our residual model attention-based network. The network takes in two frames
of IMU and image input features, following the primary pathway to generate the fusion features. Addi-
tionally, two residual connections including one from the static image features and the other from the
temporal IMU feature, are concatenated to the fused feature in turn, further enhancing feature representa-
tion capability. Two residual connections are also concatenated to the fused feature in turn.

Full-size DOI: 10.7717/peerjcs.1401/fig-6

As shown in Fig. 6, the fusion network combines a model-attention network and a residual
connection network. The input of model attention is a distinct dual-modal feature, and the
output is a fused feature aggregated from visual image and IMUs. Referring to the residual
connection introduced by He et al. (2016a) and He et al. (2016b), the fused feature f (t ) is
generated by concatenating the model-attention feature fattention(t ) with the original IMU
feature fimu(t ) and image feature fimg (t ) in turn. The detailed process is expressed as:

f ′attention(t )=Max
(
fattention(t ),fimu(t )

)
, (10)

f (t )= LayerNorm
(
f ′attention(t )+ fimg (t )

)
, (11)

where Max (·) indicates the max pooling operation, LayerNorm(·) indicates the layer
normalization inspired by previous work (Yu et al., 2019).

The final regressionmodule takes in the fused feature f (t ) and generates a set containing
pose parameter θ and body parameter β. Following the iterative regression module
introduced in Kolotouros et al. (2019), the regression network is initialized with an average
posture, then the output pose θ is regressed with the input fused feature f (t ) through an
iterative process.

Loss function definition
As SMPL is a differentiable digital model that can generate 3D keypoints by a linear
regression X̂ (θ)=WM (θ,β), where X̂ (θ)∈RJ×3 and J represents the number of joints.
The body mesh V̂ (θ)=M (θ,β) can be also generated by linear blend skining, where
V̂ ∈R6890×3, indicating that the mesh consists of 6,890 points. Therefore, the constraints
of the endpoint regression module include the mesh, 3D keypoints, pose parameters θ , and
shape parameters β. The loss function for training the end regression network is defined
as:

Lc = τLvertices+ϕLkeypoints+wLSMPL, (12)

where Lvertices denotes the body mesh loss, Lkeypoints denotes the 3D keypoints loss, and
LSMPL denotes the pose parameter loss. τ ,ϕ and w denote the corresponding weights of
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three loss items. These losses are denoted as follows:

Lvertices= ||V − V̂ ||1, (13)

Lkeypoints= ||X− X̂ ||2, (14)

LSMPL= ||β− β̂||2+||θ− θ̂ ||2, (15)

where θ ∈R24×3×3, andV ,X ,β and θ represent ground truths of V̂ ,X̂ ,β̂ and θ̂ , respectively.
To better utilize the relative joint position information calculated by IMU, we add an

intermedia constraint for the IMU feature extractor during the end-to-end training. Denote
the leaf joints containing five relative-root joints in a sequence as Jleaf =

[
Jr_ankle,...,Jl_wrist

]
.

The loss item for the IMU feature extractor is defined as:

Limu=

T∑
t

||Jleaf − JGTleaf ||. (16)

The overall objective is defined as:

L= Lc+λLimu, (17)

where λ is the corresponding weight to control the relative importance.

Implementation details
Following previous work, the human bounding box is used in both the training and testing
phases for image-based input. The cropped image containing the human body was resized
to 224×224.

Following the IMU measurement processing of Transpose (Yi, Zhou & Xu, 2021), the
acceleration was scaled to 30 times of the original value, normalized and flattened into
72-dimensional vector. The sequence length of IMU data is T = 16 to aggregate the
temporal cues in the context. For network training, the learning rate was initially set to
5×10−5 with using the Adam optimizer, training the network for a total of 50 epochs on
two GPUs. The batch size is set to 32, and the weights of the loss item are τ = 1×10−2,
ϕ= 1,w = 2×10−1, λ= 1×10−2, respectively. PyTorch was used for code implementation.

EXPERIMENTS
Datasets and metrics
Data preparation
The Total Capture dataset is currently the only dataset that provides images, IMU data,
and ground-truth annotations for 3D keypoints. Its data contain images captured by eight
cameras and 13 IMUs (containing rotation information and acceleration). This dataset
contains four actions performed by five subjects, with each action repeated three times.
The experiment used images taken by the eighth camera and values from six IMUs as
input to the proposed network. Experiments on this dataset follow the protocol proposed
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by previous work (Zhang et al., 2020), the movements roaming 1, 2, and 3; walking 1 and
3; acting 1 and 2; and freestyle 1 and 2 of the first three subjects is used as the training
set. The actions of the five subjects (walking 2, acting 3, and freestyle 3) are used for
evaluation. Following the IMU sensor setting of DIP (Huang et al., 2018), the selected six
IMUs’ rotation and acceleration are provided by the authors of DIP.

As the Human3.6M dataset does not provide IMU data, we follow the evaluation setup
of DIP (Huang et al., 2018) to validate the general applicability of this fusion strategy.
The synthetic IMU training data, i.e., the accelerations and orientations of six keypoints
indicated by the orange color in Fig. 2, is obtained by creating virtual sensors on the SMPL
mesh surface. The global rotation is generated by local rotation through forward kinematics
(FK), where the global rotation is the orientation of the IMU. The acceleration of the virtual
sensor is computed through finite differences. More precisely, assuming the position of a
virtual IMU is pt for time t, and the time interval between the two frames is dt , the fitted
acceleration can be calculated by

at =
pt−1+pt+1−2×pt

d2t
, (18)

RIMU = FK (θ,β). (19)

The Human3.6M dataset contains seven subjects with 15 sets of actions, with each set
repeated twice. The SMPL parameters were taken from the same source as the previous
HybrIK (Li et al., 2021) and L2LMeshNet (Moon & Lee, 2020). Following HMR and SPIN
(Kanazawa et al., 2018; Kolotouros et al., 2019), this article used the first five subjects for
training and the last two subjects for evaluation.

Evaluation metrics
For a fair comparison, we employ the most common metrics to report the experimental
results. The evaluation metrics are defined as follows:
1. SIP error measures the global rotation error of the upper arm and thigh in degrees.
2. The angle error indicates the global rotation error of each body joint in degrees.
3. MPJPE represents the average distance error of the node in mm, aligned with the root

joint.
4. PA-MPJPE indicates all nodes’ average Euclidean distance error after further rigid

alignment in mm.
5. PVE means mesh error; the unit is cm, representing the average error of the vertex in

the mesh model. It is a better representation of deformation error.

Ablation study
To evaluate the effectiveness and robustness of this method to improve 3D pose and shape
estimation, the ablation study discusses the impact of multimodal feature fusion, influence
of the IMUs’ placement on individual joints, and analysis on IMU drift with simulated
noise in detail. Note that IMU data here are calibrated and normalized directions and
accelerations defined by Eqs. (8) and (9), respectively.
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Analysis of feature fusion
This article aims to investigate the efficacy of fusing IMU and image in improving the
accuracy of 3D pose estimation. To this end, the Total Capture dataset containing ground-
truth annotations is employed as the benchmark. This ablation study was conducted by
giving four different inputs, designated as ‘‘IMU only’’, ‘‘Image only’’, ‘‘IMU+Image (TP)’’,
and ‘‘IMU+Image’’ employing four evaluation metrics including reconstructed joint, body
mesh, and angle errors. The detailed experimental settings with four different inputs are as
follows:

1. ‘‘IMU only’’ follows Transpose as the baseline, which uses the LSTM network to
obtain leaf keypoints and all relative-root keypoints, connect IMU measurements, and
generate IMU features. The regressor is then used to generate pose parameters.

2. ‘‘Image only’’ follows HMR as the baseline, which uses the single-view image feature
as input to the regression network to generate pose parameters.

3. For the ‘‘IMU+Image (TP)’’, involved IMU feature and image feature follow the
above ‘‘IMU only’’ and ‘‘Image only’’ baselines. ‘‘TP’’ represents the IMU feature extractor
following TransPose (Yi, Zhou & Xu, 2021). The fusion scheme defined in Eqs. (10) and
(11) is employed to generate pose parameters.

4. In contrast to ‘‘IMU+Image (TP)’’, ‘‘IMU+Image’’ used the LSTM network to obtain
the leaf keypoints of the relative root as the intermediate result, connecting the IMU
measurement value and generating a combined IMU feature. The fusion scheme follows
’’IMU+Image(TP)’’.

The detailed results are listed in Table 1. Overall, the experimental results demonstrate
that the fusion of IMU and image features, referred to as ‘‘IMU+Image (TP)’’ and
‘‘IMU+Image’’, significantly improves pose estimation accuracy. The superiority on
all metrics indicates that the proposed network can effectively couple the different features
and reduce the 3D pose and shape error. In addition, the results of ‘‘IMU+Image’’ are
further better than those of the ‘‘IMU+Image (TP)’’, which that indicates the improved
IMU feature extractor is more robust to the sensor disturbance on aggregating the temporal
information. ‘‘IMU+Image (TP)’’ depends on a leaf joint’s target position, and the position
information is reverse derived for n parent joints on the bone chain where it is located
to determine the position of the entire bone chain. However, this derivation process is
sensitive to the incorrect feature, resulting in an inaccurate pose position.

Influence of the IMUs on individual joints
Specifically, to explore the effects of IMUs on improving the accuracy of each joint position,
the method was evaluated by reconstructing 14 key joints defined by Leeds Sports Pose
(LSP, Johnson & Everingham, 2010) with taking in IMU data as input or not. Following
the previous work (Kanazawa et al., 2018; Kolotouros et al., 2019), the 14 LSP joints were
regressed from the body mesh by a pre-trained regressor. The main result is shown in
Table 2. The auxiliary use of IMUs results in a significant reduction in position errors
of six key joints. In particular, the error of wrist and ankle joints reduce by 29.5% and
34.3%, respectively. The end joints, such as the ankle and wrist, are more sensitive to
visual occlusion due to the flexible movement of the human body and the limitations of
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Table 1 Evaluation of the different input data for pose estimation on the Total Capture dataset. The
evaluation metrics include SIP, Angle, MPJPE and PVE indicate the mean global Angle error for the shoul-
der and hip joints, the mean global Angle error, the mean position error for all joints, and the body mesh
error, respectively.

Input data SIP(deg) ↓ Angle(deg) ↓ MPJPE(cm) ↓ PVE(cm) ↓

IMU only 14.11 15.09 7.27 8.24
Image only 12.08 15.23 5.86 6.82
IMU+Image (TP) 10.52 12.28 5.04 5.80
IMU+Image 10.18 12.02 4.88 5.57

Table 2 Evaluation of the position error of each joint with and without IMU data. The samples of sub-
ject 1 from the Total Capture dataset are selected as the benchmark with MPJPE in mm reported for six
key joints of the human body.

Joint Hip Knee Ankle Shoulder Elbow Wrist

Image 9.25 40.22 70.21 37.15 54.10 88.34
IMU 25.50 40.71 75.05 41.07 60.78 75.08
Image+IMU 9.02 29.26 46.10 28.72 43.45 62.25

the camera view. This experimental result indicates that the number of IMUs could be
further reduced to correct the estimated error of image-based motion capture for specific
applications like virtual action sports games.

Analysis of IMU drift with noise
As the IMU is sensitive to the magnetic field and noisy during the measurement, resulting
in prediction jitter and drift. To address this issue, this section mainly discusses the
effectiveness of fusing IMU and image features in overcomingmeasurement noise. Inspired
by TransPose (Yi, Zhou & Xu, 2021), this experiment was conducted on the Human3.6M
dataset to simulate the IMU noise quantitatively, as the ideal data could be generated by
inferring the positions and rotations of a virtual IMU on the corresponding vertices of
the SMPL mesh. Note that we add Gaussian noise to the virtual IMU data during the
test phase. Three different standard deviations i.e., 0.12, 0.2, 0.3 were randomly added to
the 30% of the raw IMU data to simulate the noisy measurements in real-world settings.
The experimental results are presented in Table 3. The ablation study compares two
types of input data, which are denoted as ‘‘IMU only’’ with four standard deviations and
‘‘IMU+Image’’ with four standard deviations, respectively.

Compared to noiseless IMU data, the predicted pose error with using noisy IMU data
would increase by about 27.7%. However, the pose error predicted by fusing images
and noisy IMU data only increased by about 15.1%. By adding the same IMU noise, the
joint accuracy of the fused method improves by about 45.4% compared to that of the
single-source IMU data. The superiority in improving joint accuracy even with noisy
inference demonstrates that the proposed fusion network is qualified for reducing the
ambiguity and drift of conventional approaches.
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Table 3 Evaluation of the impact of noisy IMU data on predicted pose accuracy with and without Im-
age input. The virtual IMU data calculated from the Human3.6M dataset is utilized as the baseline to as-
sess the effect of noisy data. Gaussian noises were added with varying standard deviations including 0.12,
0.2 and 0.3. The metrics of PA-MPJPE and MPJPE in mm are reported with and without Image input.

Input data Noise value PA-MPJPE (mm) MPJPE (mm)

IMU only 0.12 61.66 84.55
IMU only 0.20 62.51 85.53
IMU only 0.30 67.24 91.75
IMU only (without noise) – 55.87 75.75
IMU+Image 0.12 37.39 49.64
IMU+Image 0.20 37.63 49.80
IMU+Image 0.30 37.78 50.04
IMU+Image (without noise) – 33.34 43.44

Table 4 Comparison with the sparse IMUs-based state-of-the-art methods on the Total Capture
dataset. The evaluation is conducted by SIP, Angle, MPJPE and PVE metrics. ‘‘–’’ indicates the results are
not available from the original article. The results of ‘‘Ours (TP)’’ and ‘‘Ours’’ are based on the settings
described in the ablation study.

Method SIP (deg) ↓ Ang (deg) ↓ Pos (cm) ↓ PVE (cm) ↓

Yi, Zhou & Xu (2021) 17.39 17.87 7.43 8.27
Puchert & Ropinski (2021) 13.12 10.12 6.00 –
Yi et al. (2022) 12.93 – – 6.51
Ours (TP) 10.52 12.28 5.04 5.80
Ours 10.18 12.02 4.88 5.57

Comparison with state-of-the-art
To the best of our knowledge, only a few works (Von Marcard, Pons-Moll & Rosenhahn,
2016; Von Marcard et al., 2018; Kaichi et al., 2020) have addressed pose estimation using
sparse IMUs and a single camera. To further demonstrate the advantages of this work
over single and multiple data-based approaches, the proposed method is compared with
previous pose estimation methods from three folds: sparse IMUs, single-frame image, and
fusion methods.

Comparison with sparse IMUs-based methods
To demonstrate the superiority of our improved IMU feature extractor in encoding the
temporal information, the experiment employs the Total Capture dataset as the benchmark
and compares the results with the recent methods based on sparse IMUs. The quantitative
comparison between state-of-the-art methods and ours on the Total Capture dataset is
shown in Table 4. The metrics of SIP, Angle error, MPJPE, and PVE are used to evaluate
the predicted human pose and body mesh. For the Angle error, the AAGC-LSTM network
proposed by Puchert & Ropinski (2021) performs better. However, the model presented
in this article is superior in the other metrics. The results outperform those of the latest
method PIP (Yi et al., 2022). Especially, the per-vertex error (PVE) is reduced by 14.4%,
indicating the effectiveness of the proposed approach.
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Figure 7 presents some visualization results of our method and Transpose (Yi, Zhou
& Xu, 2021) on the Total Capture dataset. The SMPL model is projected to the same
view for better visual effects of human posture. The cases shown in the top two rows are
selected from the outputs of Transpose (Yi, Zhou & Xu, 2021) with relatively high scores.
The case shown in the third row is a representative ambiguous frame, and the bottom row
shows a case chosen from the reconstruction with a lower score by our proposed model.
As shown in the first- and second-line examples in Fig. 7, while each model is correct in
rough structure, the model is much better at reconstructing arm and leg position details,
such as step span, leg bend, and visual arm posture. The model performed better when
reconstructing the pose with both legs bent, as shown in the third example of squatting
below; the reconstruction is visually closer to the ground truth than the Transpose (Yi,
Zhou & Xu, 2021). In the fourth example, each model fails to produce the correct pose, but
our model still achieves much better results in the detail of the leg position.

Comparison with image-based methods
Following previous work (SPIN and HMR), this experiment evaluated the reconstructed
14 LSP joints on the Human3.6M dataset compared with previous methods based on
single-view images. Table 5 lists the detailed results using the rigid alignment average
position error per joint (PA-MPJPE) and position error per joint (MPJPE). As shown in
Table 5, this method could reduce the joint error (MPJPE) by 13.5% compared to the
SOTA method.

To further analyze the influence of partial occlusions on pose estimation, the detailed
results on various human postures with performing 15 movements are listed in Table 6.
Note that the results of several methods using multi-view images are also given for a fair
comparison. This method outperforms better for most actions, particularly the refine
actions such as ‘‘Eating’’ and ‘‘Photo’’ which are significantly corrected benefits from the
auxiliary virtual IMU information. The accuracy for general actions like ‘‘Sitting Down’’
and ‘‘Walking Dog’’ is inferior to that of single-view methods. The main reason is the
proposed method does not consider the global translation, resulting in the estimated
position error.

Comparisons with fusion-based methods
As mentioned above, the work on fusing sparse IMUs and a single-view camera is hardly
addressed in the community. To provide a reference of our approach to other methods,
the experiment follows the protocol of train and test partitions introduced by Trumble et
al. (2017) on the Total Capture dataset. The comparison is regardless of the same number
of IMUs or multiple viewpoints and employs the MPJPE in mm as the evaluation metric.
The detailed results of these similar works are listed in Table 7. The employed numbers of
camera viewpoints and IMUs are also given for clarity. As shown in Table 7, the presented
method is superior to the learning-based approach introduced by Trumble et al. (2017),
which uses all eight cameras and fuse IMUdata with the probabilistic visual hull (PVH). The
proposed method also outperforms that ofMalleson et al. (2017), which report the MPJPE
in 62 mm using eight cameras and all 13 IMUs. The performance of the proposed method
is inferior to that of Von Marcard et al. (2018) by 2.8 mm. The main reason is that the
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Figure 7 Qualitative results of our results compared to other methods on the Total Capture dataset.
The results are ‘‘Ground Truth’’, ‘‘Transpose’’, ‘‘Our (TP)’’ following the Transpose, and ‘‘Our’’ from left
to right. The samples of (A) and (B) are hand-picked from the results of TransPose with a higher score.
Sample (C) is a failure case of TransPose and (D) shows a case chosen from the reconstruction of our pro-
posed model with the lower score.

Full-size DOI: 10.7717/peerjcs.1401/fig-7

method of Von Marcard et al. (2018) is based on the video to model the time information
and additional association of 2D and 3D pose. However, the proposed method does not
need the extra 2D pose detection compared to Von Marcard et al. (2018), which would
make this approach take less time for online applications.

CONCLUSION AND FUTURE WORK
This article proposes a novel learning-based method that combines sparse IMUs and
single-frame images to realize 3D human pose and body reconstruction. This proposed
method adopts a dual-stream network to extract the IMU and image feature information.
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Table 5 Comparison with the monocular image-based state-of-the-art methods on the Human3.6M
dataset. The comparison is conducted by two metrics including PA-MPJPE and MPJPE in mm. ‘‘*’’ indi-
cates that the method was not pre-trained on the different combinations of datasets, and ‘‘–’’ indicates the
results are not available from the original article.

Methods PA-MPJPE(mm) ↓ MPJPE(mm) ↓

HMR (Kanazawa et al., 2018) 56.8 88.0
SMPLify (Pavlakos et al., 2019) 82.3 –
SPIN (Kolotouros et al., 2019) 41.1 –
Pose2Mesh (Choi, Moon & Lee, 2020) 47.0 64.9
L2LMeshNet* (Moon & Lee, 2020) 41.7 55.7
Lin, Wang & Liu (2021) 34.5 51.2
HybrIK (Li et al., 2021) 34.5 54.4
Ours 33.3 43.4

Table 6 Comparison of the results of 15 movements with other approaches on Human3.6M. The metric is MPJPE in mm. Both multiview-based
and single-view with additional training data are considered for the evaluation.

Method Multiview Direct Discus Eating Greet Phone Photo Pose Purch.
Malleson et al. (2017) Yes 92.7 85.9 72.3 93.2 86.2 101.2 75.1 78.0
Martinez et al. (2017) Yes 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Trumble et al. (2018a) and
Trumble et al. (2018b)

Yes 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5

Gilbert et al. (2019) Yes 61.2 63.0 58.6 91.2 76.3 91.1 59.7 68.3
Zhao et al. (2019) No 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4
Ci et al. (2019) No 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4
Liu et al. (2020) No 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0
Xu & Takano (2021) No 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3
Zhao, Wang & Tian
(2022)

No 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1

Ours No 37.2 42.6 38.5 43.0 43.0 49.7 39.3 39.4
Method Multiview Sitting SittingD. Smoke Wait W.Dog Walk W.toget Mean
(Malleson et al., 2017) Yes 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3
Martinez et al. (2017) Yes 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Trumble et al. (2018a) and
Trumble et al. (2018b)

Yes 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5

Gilbert et al. (2019) Yes 76.2 93.4 71.2 85.0 64.5 53.1 67.1 71.9
Zhao et al. (2019) No 88.7 57.7 73.2 65.6 48.9 46.6 51.9 60.8
Ci et al. (2019) No 60.2 78.9 51.2 50.0 54.8 64.8 43.3 52.7
Liu et al. (2020) No 60.4 71.1 51.5 50.1 54.5 40.4 43.7 52.4
Xu & Takano (2021) No 59.7 71.5 51.4 48.6 53.9 40.3 44.1 51.9
Zhao, Wang & Tian
(2022)

No 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8

Ours No 45.7 60.8 43.3 41.1 49.6 37.2 41.4 43.4
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Table 7 Comparison with state-of-the-art fusion-based methods on the Total Capture dataset. ‘‘Views’’ and ‘‘IMUs’’ represent the employed
number of cameras and IMUs in these methods, respectively. ‘‘Temporal’’ demotes whether the temporal information from videos is utilized. ‘‘–’’
indicates the results are not reported in the original article.

Method Views IMUs Temporal SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean

W2 A3 FS3 W2 A3 FS3

Trumble et al. (2017) 8 13 No 30.0 49.0 90.6 36.0 109.2 112.1 70.0
Malleson et al. (2017) 8 13 No – – 65.3 – 64.0 67.0 (62.0)
Von Marcard et al. (2018) 1 6 Yes – – – – – – 39.6
Gilbert et al. (2019) 8 13 No 19.2 42.3 48.8 24.7 58.8 61.8 42.6
Ours 1 6 No 23.8 36.2 62.4 24.0 48.8 61.7 42.4

The sparse IMU provides rotation information of the terminal joint, which makes up for
the significant estimation error of 3D human body reconstruction due to image occlusion.
At the same time, the image provides drift-free 3D global position information. Especially,
a residual model-attention network is proposed to aggregate dual-modal feature fusion. A
final regression network is used to generate 3D pose and shape parameters. By combining
the image-based and IMU-based methods, the challenging problem of noisy inertial data
and occlusion image is solved in an end-to-end learning manner in practice. Extensive
experiments on two public benchmarks demonstrate that the proposed method could
effectively fuse sparse IMU data and images and improve pose accuracy. The superiority
of the lower error on both human mesh and joint shows that the proposed method can
balance the problem of hardware dependence on complexity and precision.

Current applications include games, biomechanical analysis, and human–computer
interaction, such as virtual and augmented reality (VR/AR), which impose three challenging
limitations on human posture reconstruction, i.e., working in daily environments,
minimally invasive instruments for users, and real-time operation. The proposed method
relays on single-view images and sparse IMUs that could be easier adapted to the outdoors
or in indoor scenes across multiple rooms. In addition, the sparse wearable sensors are
less invasive to users, and the single-view based setup can be flexibly deployed through
supervision or moving cameras. A limitation of this work is the lack of the estimation of
the global translation of human motion. Current work focuses on adopting a standardized
SMPL model without fitting the accurate human shape parameters during the initial
calibration of the IMU. In future work, we will explore the visual temporal manner
including structure from motion to solve the above problems.
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