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ABSTRACT
The accurate knowledge of Heat Transfer Coefficients is essential for the design of
precise heat transfer operations. The determination of these values requires InverseHeat
Transfer Calculations, which are usually based on heuristic optimisation techniques,
like Genetic Algorithms or Particle Swarm Optimisation. The main bottleneck of
these heuristics is the high computational demand of the cost function calculation,
which is usually based on heat transfer simulations producing the thermal history
of the workpiece at given locations. This Direct Heat Transfer Calculation is a well
parallelisable process, making it feasible to implement an efficient GPU kernel for this
purpose. This paper presents a novel step forward: based on the special requirements
of the heuristics solving the inverse problem (executing hundreds of simulations
in a parallel fashion at the end of each iteration), it is possible to gain a higher
level of parallelism using multiple graphics accelerators. The results show that this
implementation (running on 4 GPUs) is about 120 times faster than a traditional CPU
implementation using 20 cores. The latest developments of the GPU-based High Power
Computations area were also analysed, like the new NVLink connection between the
host and the devices, which tries to solve the long time existing data transfer handicap
of GPU programming.

Subjects Distributed and Parallel Computing, Graphics, Scientific Computing and Simulation,
Software Engineering
Keywords GPU, CUDA, Inverse heat conduction problem, Heat transfer, Parallelisation, Data-
parallel algorithm, Simulation, NVLink, Graphics accelerator, Optimisation

INTRODUCTION
As a fundamental experience of modern materials science, material properties are
influenced by the microstructure; therefore, these can be altered to improve the mechanical
attributes (Oksman et al., 2014). One of the most widely used methods for this purpose is
heat treatment which usually consists of two consecutive steps: heating up the work object
to a given high temperature and cooling it down in a precisely controlled environment. It
is necessary to know the attributes of the given material and the environment, to achieve
the best results, especially the Heat Transfer Coefficient (HTC) which shows the amount
of heat exchanged between the object and the surrounding cooling medium.

The Inverse Heat Conduction Problem (IHCP—the determination of the HTC) is a
typical ill-posed problem (Beck, Blackwell & Clair st, 1985; Alifanov, 1994; Felde, 2016b).
Without any known analytical solution, most methods are based on the comparison
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of temperature signals recorded during real heat treatment processes and estimated by
simulations. The aim of these methods is to find the HTC function giving the minimal
deviation of the measured and predicted temperature data.

It is usual to use heuristic algorithms, like Genetic Algorithms (GAs) (Szénási & Felde,
2017), Particle Swarm Optimisation (PSO) (Felde & Szénási, 2016; Szénási & Felde, 2015)
or some hybrid approaches (Felde, 2016a) to find this parameter. Kim & Baek (2004)
presented a hybrid genetic algorithm for the analysis of inverse surface radiation in an
axisymmetric cylindrical enclosure.Verma & Balaji (2007) used a stochastic Particle Swarm
Optimization to estimate several parameters in the field of inverse conduction-radiation.
Both papers have significant contribution in the field of inverse methods.

In the case of GAs, every chromosome of the population encodes one possible HTC
function in its genes. These are two-dimensional continuous functions given by the time
and location. Therefore, a limited number of control points have been used to approximate
these (340 floating point values perHTC).With the already existingDirectHeatConduction
Problem (DHCP) solvermethods (based on finite-elements or finite-difference techniques),
it is feasible to simulate the cooling process and to record the thermal history for each
chromosome. The difference between this generated thermal history and the measured one
produces the cost value for the individual. The purpose of the IHCP process is to find the
best gene values resulting in minimal cost.

The bottleneck of this process is the high computational demand. The runtime of one
cooling process simulation is about 200 ms using one traditional CPU core, and it is
necessary to run these simulations for each chromosome in each iteration. Assuming a
population of 2,000 chromosomes and a GA with 3,000 iterations, it takes several days
to finish the search. Furthermore, according to the random behaviour of the GA and the
enormously large search space, it is worth running multiple searches. As a result, an overall
IHCP process can take many weeks.

There are several attempts at using graphics accelerators to speed up physical simulations,
and there are several substantial achievements in this field too. Satake, Yoshimori & Suzuki
(2012) presented a related method to solve heat conduction equations using the CUDA
Fortran language. They worked out a very well optimised method (analysing the PTX code
generated by the compiler), but they only dealt with the one-dimensional unsteady heat
conduction equation for temperature distribution.

Klimeš & Štětina (2015) presented another model using the finite difference method
to simulate the three-dimensional heat transfer. Their results showed that the GPU
implementation is 33–68 times faster than the same CPU-based simulation using one
Tesla C2075 GPU for running kernels. This significant speed up makes it possible to use
their method in a real-time fashion. Narang, Wu & Shakur (2012) and Narang, Wu &
Shakur (2016) also used programmable graphics hardware to speed up the heat transfer
calculations based on a similar finite difference method. They used a Quadro FX 4800 card,
and the speed up was still significant (about 20× in the case of a large number of nodes).

There are also several papers from similar areas. Humphrey et al. (2012) and He et al.
(2013) have very significant contributions to the field of radiative heat transfer problems.
These also show that it is worth implementing GPU codes for physical simulations.
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The main difference between these studies and this research is that this paper is focusing
on the two-dimensional IHCP. Heat transfer simulation is a major part of the IHCP solving
process; moreover, it is necessary to run thousands of simulations. Accordingly, it is feasible
to use a higher level of parallelism by using multi-GPU architectures (the presented papers
are usually deal with only one device). It is possible to install multiple graphics cards into
a standard PC motherboard, and the CUDA programming environment can handle all of
them. Using multiple GPUs can double/triple/quadruple the processing power, but it is
necessary to adapt the algorithms to this higher level of parallelism.

One of the most interesting developments of 2016 in HTC computing is the result
of the IBM and NVIDIA collaboration, the NVLink high-speed interface between IBM’s
POWER8 CPUs and NVIDIA’s Pascal GPUs. Data transfer between the host and device
memory was an important bottleneck in GPU programming, making several promising
applications practically unusable. This high-speed connection and the existence of multiple
Pascal based graphics cards give developers the ability to accelerate applicationsmore easily.
The assumption was that it is worth implementing an IHCP solver system based on this
architecture.

Based on these advancements, a novel numerical approach and a massively parallel
implementation to estimate the theoretical thermal history are outlined. The rest of the
paper is structured as follows: the next section presents the novel parallel DHCP and IHCP
solver methods; ‘Results and Discussion’ presents the raw results of the benchmarks and
the detailed analysis; finally, the last section contains the conclusions and further plans.

MATERIALS & METHODS
Direct heat conduction problem
There are various fundamental modes of heat transfer, but this paper deals only with
transient conduction when the temperature of the workpiece changes as a function of time.
The determination of the temperature of any points of the object at any moment often
calls for some computer-assisted approximation methods. In the case of three-dimensional
objects, these calculations can be very complicated and resource intensive, preventing the
efficient usage as a GA cost function. For cylindrical objects, an essential simplification can
significantly decrease the computational effort. As can be seen in Fig. 1 it is enough tomodel
the middle cross-section of the cylinder, resulting in the two-dimensional axis-symmetrical
heat conduction model. The radius of the cylinder is noted by R and Z.

The cylinder is subjected to a longitudinal local coordinate and time varying Heat
Transfer Coefficient HTC(z,t ) on all its surfaces. Both the thermal conductivity, density
and the heat capacity are varying with the temperature, k(T ), ρ(T ) and Cp(T ). It has
to be noted that phase transformations of the materials applied do not occur during the
experiments, therefore latent heat generation induced by phase transformations is not
considered.

Based on this simplified model, the mathematical formulation of the nonlinear transient
heat conduction can be described as Eq. (1), with the following initial and boundary
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Figure 1 Two-dimensional axis-symmetrical heat conductionmodel.
Full-size DOI: 10.7717/peerjcs.138/fig-1
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where

• r,z—local coordinates;
• t—time;
• R—radius of the workpiece;
• ρ(T )—density of the object;
• T0—initial temperature of the workpiece;
• Tq—temperature of the cooling medium;
• T (r,z,t )—temperature of the workpiece at given location/time;
• k(T )—thermal conductivity (varying with temperature);
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• Cp(T )—heat capacity (varying with temperature);
• HTC(z,t )—heat conduction (varying with local coordinate and time).

Discretising of these equations using the weighted Schmidt explicit finite difference
method, results in nine different equations, according to the location within the object.

• case (a)—inner items surrounded by four neighbouring items;
• case (b)—inner items at the centre line of the object;
• case (c)—boundary items at the outer surface of the object;
• case (d)—boundary items at the top surface of the object;
• case (e)—boundary items at the bottom surface of the object;
• case (f)—boundary item at the outer top corner;
• case (g)—boundary item at the inner top corner;
• case (h)—boundary item at the outer bottom corner;
• case (i)—boundary item at the inner bottom corner.

The reliability of the estimated HTC strongly depends on the numerical approach
applied. During the DHCP calculations, the resolution of the finite grid is essential,
parameters n= 10,m= 34 were used, where n is the number of points horizontally, andm
is the number of points vertically. A sufficiently small dt (simulation time interval) value
is also necessary to ensure the accuracy of the method (dt = 0.01 second).

Massively parallel solution
It is necessary to solve the heat transfer equations for each finite item for the consequent
time periods. Equations for calculating the heat movement between neighbouring items
within the same time can be solved in a parallel fashion because none of these calculations
modifies the output of the others.Moreover, for several items, the steps of these calculations
are the same, only the input parameters are different. This makes it possible to implement
an efficient data-parallel algorithm. Assuming n×m number of threads, the parallelization
level is:

• (n−2)× (m−2) threads have to calculate case a;
• (m−2) threads have to calculate case b;
• (m−2) threads have to calculate case c;
• (n−2) threads have to calculate case d;
• (n−2) threads have to calculate case e;
• 1+1+1+1 threads have to calculate case f, g, h and i.

Based on this data parallel fashion, it is worth implementing a GPU-based
implementation. Every GPU thread is responsible for one item in the finite grid. The
task of these threads is the determination of the temperature in the corresponding location
in each consecutive time step. These threads can work in parallel with the equations of
the same time step. Nevertheless, these are not totally independent, because as an input
parameter, threads need the temperature of the neighbouring elements at the previous
time step. The threads have to wait until all the others have finished the calculations for
the actual period to fulfil this before they can continue working on the next time step.
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This needs an explicit synchronisation after every time step, and in theCUDA framework,
the only efficient barrier synchronisation is given by the __syncthreads() function, which
synchronises the threads within the same block. According to this, it is necessary to keep all
threads working on the same finite grid in the same CUDA block. There is an upper limit
for the number of threads within a block (1,024 for current architectures); but, in the case
of ordinary configuration, this is not a limiting factor (10 ·34= 340 threads were used).

Running 340 threads is not sufficient to fully utilise amodernGPU.One P100 accelerator
card has 3,584 CUDA cores. Therefore, this low number of threads leads only a low
theoretical occupancy level (number of used cores/number of available cores = 340/3,584
= 9.48%), and the practical utilisation is expected to be even worse (not to mention, that
one server node has four cards installed). At this point, recall that this DHCP calculation
is responsible for the cost calculation part of a genetic algorithm. A population containing
P chromosomes needs P number of thermal history generations in the evaluation phase
of the GA. These are independent calculations, so it is feasible to launch these in a parallel
fashion using more than one multi-processors. Given this higher level of parallelism, the
required number of threads becomes P×340, which is enough to utilise the computing
power of the graphics accelerators fully.

This observation is the key point for the multi-GPU implementation. The already
mentioned independencemakes it possible to distribute these fitness calculations among the
available devices. In the case of G number of GPUs, it is worth to assign each chromosome
to one of the GPUs using Eq. (6), which shows the number of assigned chromosomes (Pi)
for the ith GPU (where 1≤ i≤G).

Pi=


P− (G−1)

⌊
P
G

⌋
, if i= 1⌊

P
G

⌋
, otherwise

(6)

Further optimisation
Using shared memory
GPU applications can easily be limited bymemory bandwidth issues. Data starvation occurs
when all threads of a block must wait for loading or storing the actual temperature value
of the corresponding finite item. Taking the advantages of the heterogeneous memory
hierarchy makes it feasible to decrease this adverse effect. Chromosome data (the HTC
functions) and the fitness values must be in the device memory of the GPU because these
must be transferred from and to the host. However, during the thermal history generation,
it is better to store the actual temperature data of the finite grid in the fast on-chip shared
memory. All threads of the block can read and modify these values. Therefore, these can
read the actual temperature values of the neighbouring elements.

The adverse effect of heavy shared memory usage is the limit for the number of parallel
block executions. The P100 architecture has 64 KB of shared memory per multiprocessors.
340 float variables are necessary to store the actual values of the grid, requesting only 1,360
bytes of sharedmemory by simulations. According to this, even 48 blocks can run in parallel
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Figure 2 Heavy warp divergence at the top of the workpiece. Letters show the locations linked to
threads in the first warp. Different letters represent different code paths.

Full-size DOI: 10.7717/peerjcs.138/fig-2

in one multiprocessor. Other constraints (maximum number of resident warps/threads by
multiprocessor) have much stronger limits, and thus shared memory usage does not cause
any disadvantage. The implementation of this on-chip memory usage gives about 2–3×
speed-up for the GPU implementation (based on other parameters, like population size,
grid size, full simulation time).

Warp divergence
When a thread block is assigned to a multiprocessor, it is divided into further groups of 32
threads called warps. This partitioning is predetermined: threads with index 0–31 will be
the first warp, threads in the 32–63 index range the second warp, and so onNVIDIA (2014).
The warp is the lowest unit of execution scheduling, at any time, one instruction is fetched
and executed by all threads within the same warp. The operands of these instructions can
be different; therefore, in the case of conditional statements, different threads in the same
warp should take different paths. The solution for this warp divergence is that all threads
within a warp must take both branches of the conditional statement; threads with false
condition are stalling, while the others are executing the instructions of the true branch,
and threads with true condition are stalling, while the others are executing the false branch.
These stall phases can significantly decrease the occupancy; hence, warp divergence should
be avoided to obtain the best performance.

In the case of DHCP calculations, the number of threads is equal to the size of the finite
grid (n×m). Every thread corresponds to the calculations of one item in the grid, and the
first intuition shows that thread indices should be the same as the indices of the corre-
sponding finite item. However, this leads to heavy warp divergence; for example, threads of
the first warp (identified by indices below) should execute the following code paths (Fig. 2):

• (0, 0) thread have to calculate case g;
• (9, 0) thread have to calculate case f;
• (1, 0)–(8, 0) threads have to calculate case d;
• (0, 1)–(0, 3) threads have to calculate case b;
• (9, 1)–(9, 2) threads have to calculate case c;
• (1, 1)–(8, 2) and (1, 3) threads have to calculate case a.
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Separation of thread indices and the corresponding finite grid locations makes it possible
to decrease this divergence significantly. Threads inside the first warp should calculate the
equations corresponding to the elements at the centre line (32 items). The second warp
should correspond to the outer surface elements (32 items). Threads in the next eight warps
should be responsible for the inner elements (272 elements), and the last warp should solve
all the remaining equations (20 elements).

In this partitioning, only the last warp has divergent threads. The tests show that the
gained speed-up is about 10–20%.

Algorithm description
The DHCP function of Algorithm 1 contains the main host-side steps of the GPU based
DirectHeatConduction Solver algorithm including devicememory allocation/deallocation,
memory transfers to/from the device and the kernel launch. The DHCP-Kernel function
shows the device-side steps of the heat transfer simulation according to the presented
optimisation steps.

RESULTS AND DISCUSSION
Benchmarking methodology
Several benchmarks were run with the CPU and the GPU implementations focusing on
the following questions:

• What is the correlation between the number of CPU cores/GPU devices and the required
runtime? A linear correlation is expected because of the weak dependencies between the
different tasks.
• In the case of GAs, which hardware configuration is preferred for a given population
size? The expectation is that it is worth using the CPU for small populations and the
GPU for larger populations.
• The amount of input parameters (HTCcontrol points) andoutput results (fitness values)
is relatively small compared to other HPC applications. Is the new NVLink technology
between the CPU and GPU able to significantly reduce the memory transmission time
for these small data transfers?

The details of the test environments are as follows:

• Test Environment 1 (TE1)

– CPU—1 × Intel(R) Core(TM) i7-2600

∗ 4 physical cores
∗ 8 logical cores

– GPU—2 × GeForce GTX TITAN Black

∗ CUDA cores: 2880
∗ Memory: 6 GB
∗ Link: PCIe 4× + PCIe 8×
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Algorithm 1 Data parallel DHCP solver
Require: HTC : Heat Transfer Coefficient
Require: T0: initial temperature
Require: R: reference point inside the work object
Ensure: S[ ]: recorded temperature values at the reference point
1: function DHCP-kernel( ) F threadId: unique identifier in 0...n ·m−1
2: (i,j)←AssignThreadToFiniteNode(threadId) F ‘Warp divergence’
3: Ti,j←T0 F Shared array to store actual temp values (‘Using shared memory’)
4: synchronise threads
5: for t← 0 to S.length−1 do
6: time← t ∗dt F Actual time
7: temp←Ti,j F Thread-level variable (actual temp at (i,j) pos)
8: switch (i,j) do F Calculate heat movement (‘Direct heat conduction

problem’)
9: case (0,0)
10: temp← temp+HeatTransferInnerTopCorner(T ,HTC)

11: case ...
12: ...

13: end switch
14: synchronise threads
15: Ti,j← temp
16: synchronise threads
17: if threadId= 0 then F First thread calculates the result
18: S[t ]← InterpolateTempAt (T ,R) F Calculate temp at ref. point
19: end if
20: end for
21: end function
22:

23: function DHCP(HTC,T0,R)
24: AllocateGPUMemory( )
25: CopyFromHostToDevice(HTC,T0,R)
26: DHCP-Kernel≪ n∗m≫ ( ) F Launch n ·m parallel threads
27: CopyFromDeviceToHost(S)
28: FreeGPUMemory( )
29: return S
30: end function
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• Test Environment 2 (TE1)

– CPU—2 × IBM POWER8NVL

∗ 10 cores

– GPU—4 × Tesla P100-SXM2

∗ CUDA cores: 3584
∗ Memory: 16 GB
∗ Link: PCIe 8×+ NVLink

TE1 was a Windows 10 based desktop machine with two GeForce GTX TITAN Black
cards installed into the PCIe slots. The IHCP codebase was developed using Visual Studio
2015 (with CUDA 8.0) and compiled with the Nvidia nvcc compiler to standard 64 bit
executables. These binaries were launched from the standard Windows command prompt.

The C ++ standard std::chrono:high_resolution_clock object was used to measure the
execution time. To decrease uncertainty, 20 independent tests were run for all parameter
sets, removing the lowest and highest runtimes (5–5%) and computing the average of the
remaining values.

TE2 was an Ubuntu Linux based Power System S822LC node in the IBM’s Accelerator
Lab for High Performance Computing cluster. This is a two socket system equipped with
the followings: 2 POWER8 10 Core CPUs, up to 1TB SystemMemory, and 4 NVIDIA P100
GPUswithNVLink connection. This system includes the exclusive NVLink high bandwidth
interconnect between the POWER8 CPUs and NVIDIA GPUs, providing unprecedented
bandwith between the CPU and GPUs not available on any other platform. Each P100
GPU is connected to one of the CPUs with 80 GB/sec bi-directional bandwith NVLink
connections, and each pair of P100 GPUs are also directly connected to each other with
80GB/sec bi-directional bandwidth NVLink connections (Fig. 3). The same codebase was
compiled with gcc and CUDA 8.0 tools using the arch=compute_60,code=sm_60 flags. The
benchmarking methodology was the same as for TE1.

Several tests were run using different population sizes (P), where P = 10, 20, 30. . . 2,000.
As a second parameter, the number of GPU devices (G) was changed, too. G= 1,2 for the
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Table 1 Runtime values for different population sizes with the GeForce Titan Black cards. Each col-
umn shows the elapsed time for one step of the entire process (memory copy from host to device; kernel
execution; memory copy from device to host) in the case of single and dual GPU configurations. The last
column shows the speed up total time.

Size H→D (µs) Kernel (µs) D→H (µs) Speed-up

1 GPU 2 GPUs 1 GPU 2 GPUs 1 GPU 2 GPUs
∑

1GPU∑
2GPUs

10 985 1,233 146,294 121,549 1,306 2,107 1.19
70 1,025 1,131 375,013 144,549 1,319 1,379 2.57
150 1261 1,071 571,440 316,126 1,321 1,811 1.80
200 1,389 1,101 755,850 386,924 1,349 1,874 1.95
300 1,706 1,160 975,547 569,181 1,294 1,892 1.71
400 1,857 1,156 1,338,839 755,804 1,289 1,861 1.77
500 2,139 1,258 1,701,178 931,072 1,281 1,854 1.82
1,000 3,251 1,829 3,256,236 1,697,402 1,301 1,906 1.92
1,500 4,408 2,249 4,839,201 2,476,768 1,307 1,894 1.95
2,000 5,595 2,329 6,436,735 325,6094 1,347 1,864 1.98

Table 2 Total runtimemeasured with the P100 cards using different population size and number of
GPUs. The last four column shows the speed-up compared to the dual GeForce Titan Black configuration.

Size P100 total runtime (µs) Speed-up

1 GPU 2 GPUs 3 GPUs 4 GPUs 1 GPU 2 GPUs 3 GPUs 4 GPUs

10 113,169 121,021 126,504 136,640 1.1 1.03 0.99 0.91
60 150,220 118,646 123,225 133,152 0.9 1.14 1.1 1.01
100 151,407 121,210 124,574 131,500 1.08 1.35 1.31 1.25
150 215,939 156,227 126,208 129,586 1.48 2.04 2.53 2.46
200 275,368 158,652 161,757 134,157 1.42 2.46 2.41 2.91
250 345,573 222,044 163,408 171,787 1.58 2.46 3.34 3.18
350 488,600 281,892 228,032 170,615 1.2 2.08 2.57 3.44
450 615,683 350,498 228,424 240,026 1.25 2.2 3.38 3.21
500 620,517 351,773 229,557 236,969 1.51 2.66 4.07 3.94
700 954,014 499,165 360,445 295,467 1.22 2.32 3.22 3.93
1,000 1,301,749 627,025 46,3151 370,042 1.31 2.71 3.67 4.6
1,500 1,891,230 972,337 636,643 517,577 1.31 2.55 3.9 4.79
2,000 2,536,917 1,310,073 909,350 640,883 1.29 2.49 3.59 5.09

first environment, and G= 1,2,3,4 for the second environment. To compare the CPU and
GPU performance, the same tests were run using a different number of CPUs (C), where
C = 5, 10, 20. The executed steps of the DHCP process are not affected by the actual HTC
values. Therefore, predetermined input values were used for the simulations (instead of
random chromosomes from a real genetic algorithm).

GPU runtimes
Table 1 and Fig. 4 show the GPU results for TE1, and Table 2 and Fig. 5 show the GPU
results for TE2.
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As expected, the required runtime inversely linearly correlates with the number of
devices. However, in practice, this is a bit more complex, because the series showing the
runtimes in both figures are not straight lines, which is caused by the speciality of GPU
hardware. This fragmentation is best visible in the case of the one GTX Titan Black card
(black solid series in Fig. 4). The total runtime is slightly increased from population sizes
10 to 60, but the required runtime for population size 70 is almost twice as large. The
explanation for this phenomenon is based on the GPU architecture. The GTX Titan Black
has 15 streamingmultiprocessors (each of them containing 192 processing units), and every
multiprocessor can execute four heat transfer simulations simultaneously. Accordingly,
launching one or 60 parallel simulations takes a similar time. In the case of a greater
number of threads, the scheduling (including memory transfers) becomes more complex;
consequently, the effect of these steps becomes less sharp.

As visible in Fig. 5, these steps already exist for one P100 card, the runtime increases
in every 50–60th step. The P100 has 56 multiprocessors, each of these can execute one
simulation at the same time; therefore, the device can run 56 thermal history generations
in parallel. This regularity can also be observed in the case of multiple GPUs; for example,
in the case of 4 P100 devices, steps from 220 to 230 (56 ·4= 226) and from 440 to 450
(56 ·4 ·2= 448) has a significant impact to the runtime. It is worth evaluating as large a
population as possible at the same time. Thus, the recommended population size should
be near to these limits from below (220 or 440).

Szénási (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.138 12/20

https://peerj.com
https://doi.org/10.7717/peerjcs.138/fig-4
http://dx.doi.org/10.7717/peerj-cs.138


0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0
0 . 0

5 . 0 x 1 0 5

1 . 0 x 1 0 6

1 . 5 x 1 0 6

2 . 0 x 1 0 6

2 . 5 x 1 0 6

Ru
nti

me
 (µ

se
c)

P o p u l a t i o n  s i z e

 1  G P U
 2  G P U s
 3  G P U s
 4  G P U s

Figure 5 Runtime (µs) for different population sizes with P100 cards.
Full-size DOI: 10.7717/peerjcs.138/fig-5

Table 3 Runtime of the DHCP solver for different population sizes and CPU core counts (thread
counts). Last two columns show the measured speed-up for configurations with 20 CPU cores compared
to five CPU cores, and four P100 GPUs compared to 20 CPU cores.

Population size 5 cores 20 cores Speed-up

(µs) (µs) 5C → 20C 20C → 4G

10 1,197,806 1,023,642 1.17 7.49
100 12,233,650 5,068,359 2.41 38.54
500 60,234,800 21,247,890 2.83 89.67
1,000 121,159,900 39,240,730 3.09 106.04
2,000 241,941,200 78,851,140 3.07 123.04

CPU runtimes
Table 3 and Fig. 6 show the CPU results for TE2.

CPU performance analysis is not in the focus of this paper, but these benchmarks have
been run only for the CPU–GPU comparison. As visible, the increase in the number of
cores effectively increases the performance (each core is responsible for one heat transfer
simulation). On the other side, as the population size was increased, the runtime increased
almost linearly.

In the case of CPU implementations, the implementation is much simpler. There is no
need to transfer input data from the host to the device and the output data from the device
to the host, and kernel launch overhead is also missing. Therefore, the expectation was that
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Figure 6 Runtime (µs) for different population sizes with POWER CPUs.
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the CPU would be faster in the case of small population sizes (where the GPUs cannot take
advantage of the high number of multiprocessors), but as is visible, this was not true.

Comparing these results to the GPU runtimes, it is evident that it is not worth using the
CPU for any population size. In the case of 20 parallel heat transfer simulations (which is
the ideal configuration for the server with 20 CPU cores), all P100 GPU implementations
were 8–9 times faster. Above this population size, the difference becomes even bigger. In
the case of 2,000 parallel simulations, the P100 cards were 123 times faster.

It also raises the question of whether it is worth implementing and using a hybrid solution
combining the CPUs and GPUs together. For small population sizes, the answer is no. For
example, in the case of 200 chromosomes, if the GPUs evaluate 199 of them (needs about
134 ms) and the CPUs evaluate only one (needs about 1,024 ms), the overall runtime will
be higher (max(134 ms, 1,024 ms) = 1,024 ms) than the plain GPU implementation. The
only occasion when it is worth considering the hybrid implementation is a large population
size near the previously explained runtime steps from above. For example, in the case of
1,690 chromosomes and two GPUs, it would be worth to assign 20 of them to the CPUs.
The CPU runtime will be about 1,024 ms, the GPU runtime for the remaining is 1,054
ms. Consequently, the overall execution time is 1,054 ms. Using the GPU implementation
exclusively, it requires more, 1,132 ms. In the case of four GPUs, it would also be possible
to find a similar situation, but not in the examined 10–2,000 population size interval.
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Table 4 Details of the Host to Device memory transfer for the GeForce Titan Black cards. The first col-
umn shows the size of the population; the second one contains the total required memory for the chro-
mosome data. The following columns contain the runtime of device memory allocation and data transfer.
Data transfer rate (DTR) is the amount of data that is moved in a given time.

Size Data (byte) Allocation (µs) Copy (µs) DTR (GB/s)

1 GPU 2 GPUs 1 GPUs 2 GPUs 1 GPU 2 GPUs

10 13,600 817 930 168 304 0.08 0.04
50 68,000 795 863 251 309 0.25 0.21
100 136,000 812 883 368 286 0.34 0.44
200 272,000 777 806 611 295 0.41 0.86
300 408,000 784 826 922 334 0.41 1.14
400 544,000 784 801 1,073 355 0.47 1.43
500 680,000 891 841 1,249 417 0.51 1.52
1,000 1,360,000 856 1,156 2,395 673 0.53 1.88
1,500 2,040,000 905 1,336 3,504 913 0.54 2.08
2,000 2,720,000 982 1,183 4,613 1,146 0.55 2.21

Table 5 Details of the Host to Device memory transfer for the P100 cards. The first column shows the
size of the population; the second one contains the total required memory for the chromosome data. The
following columns contain the runtime of device memory allocation and data transfer. Data transfer rate
(DTR) is the amount of data that is moved in a given time.

Size Data (byte) Allocation (µs) Copy (µs) DTR (GB/s)

1 GPU 2 GPUs 1 GPUs 2 GPUs 1 GPU 2 GPUs

10 13,600 648 1,806 14 18 0.94 0.7
50 68,000 644 1,810 15 19 4.21 3.28
100 136,000 646 1,788 17 20 7.4 6.28
200 272,000 647 1,790 22 23 11.72 11.2
300 408,000 645 1,789 26 26 14.65 14.84
400 544,000 647 1,804 30 29 16.92 17.61
500 680,000 646 1,802 34 32 18.54 19.72
1,000 1,360,000 647 1,802 55 49 23.03 25.88
1,500 2,040,000 653 1,789 77 67 24.64 28.55
2,000 2,720,000 654 1,794 96 80 26.3 31.78

Data transfer rates
During the tests, the data transfer rates were also recorded in the case of TE1 and TE2.
Tables 4–5 and Figs. 7–8 show these results. The advance of the new NVLink based Power
CPU–GPU connection is the high transfer bandwidth between the CPU and the GPU
memory. As visible from the results, this works well in practice.

Table 4 shows that the measured results for TE1 were far from the theoretical maximal
transfer speed and it is also visible, that using two GPUs have advantages compared to
the single GPU configuration. These devices are installed into different PCI-E slots, so
their data transfers can be processed in parallel (both cards were installed into PCI-E 16×
slots, but one of them works at 4× speed, and the other one at 8× speed). In the case
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Figure 7 Memory transfer time (µs) for different population sizes with GeForce Titan Black cards.
Full-size DOI: 10.7717/peerjcs.138/fig-7

of the CPU–GPU NVLink architecture (Table 5), the bandwidth was significantly higher
(however, the amount of data is still low to achieve the theoretical maximum).

It is worth noting that with the two GeForce GPUs, the memory transfer time is well
over twice as fast as with one card; in sharp contrast, for two P100 cards it is only about
40% faster than that with one card. And what is more interesting, the usage of three or four
devices does not have any benificial effect. The reason for this is that the used P100 node
has a special architecture in that one CPU socket and a maximum of two GPUs form an
‘‘island’’ in which any pair of the triad has fast data transfer. In contrast, transfer of data
between islands is slower. In the case of NG number of GPUs, the IHCP solver code uses
NG individual CPU threads to manage the data transfers between the host and the devices.
This practice was satisfactory for TE1, but leads to the experienced strange behaviour for
TE2, because all of these threads were scheduled on the same physical processor. To reach
the maximum transfer rate with four devices, multiple CPU threads should be launched
and bounded to logical CPUs that are appropriately placed for the GPUs we intend to use.
However, customizing the already existing codebase to a specified architecture is out of the
scope of this paper, especially in view of the fact that the NVLink capable server was even
significantly faster without any fine-tuning.

Comparing the GTX and P100 based configurations, the latter was 12–49 times faster.
The new NVLink architecture is, therefore, faster, and its overall transfer rate becomes
higher with multiple cards. This speed up is achievable in the case of small population sizes
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(it is 16 times quicker in the case of 20 chromosomes and 2 GPUs). Therefore, this novel
architecture is highly recommended for running the IHCP solver GAs.

CONCLUSIONS
A novel data-parallel algorithm to solve the IHCP and a GPU based implementation was
outlined. By using a higher level of parallelism, it can use the processing power of current
multi-GPU systems. Analysing the architecture of the new P100 based servers and the
runtime results, the conclusions are as follows:

• In the case of the IHCP, the runtime of both the CPU and the GPU implementations
is nearly linearly depending on the population size, and inversely on the number of
processing cores. In the case of GPUs, the number of devices and the multiprocessor
architecture makes this correlation more complex, the runtime increasing significantly
at given (predictable) population sizes.
• According to this observation, the recommended population size is close to these points
from below for the exclusive GPU implementations. In the case of hybrid systems, the
most efficient population size should be close to these points from above.
• The NVLink connection between the CPU and GPUs can significantly decrease the data
transfer time. It is also faster for small population sizes; however, themaximal bandwidth
is not achievable in these cases. The results of this work encourage the use of multiple
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graphics accelerators for the purposes of heat transfer simulations. To fully utilise the
processing power of all GPUs, it is necessary to reach a higher level of parallelism, but
there are several subfields (like the IHCP) where it is feasible.

As future work, it is worth fine tuning the algorithm to the new IBM Power System
architecture. Only a naïve porting of the already existing CUDA algorithms have been used
to this new environment without any major changes. It deserves a deeper study to see why
only one block is scheduled into each multiprocessor of the P100 devices. If it is possible
to use some minor configuration changes (decreasing the number of registers or shared
memory) to run multiple blocks, then this can double the performance of the system.
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