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ABSTRACT
Cooperative localization is an arising research problem for multi-robot system,
especially for the scenarios that need to reduce the communication load of base
stations. This article proposes a novel cooperative localization algorithm, which can
achieve high accuracy localization by using the relative measurements among robots.
To address uncertainty in the measuring robots’ positions and avoid linearization
errors in the extended Kalman filter during the measurement update phase, a
particle-based approximation method is proposed. The covariance intersection
method is then employed to fuse preliminary estimations from different robots,
guaranteeing a minimum upper bound for the fused covariance. Moreover, in order
to avoid the negative effect of abnormal measurements, this article adopts the
Kullback–Leibler divergence to calculate the distances between different estimations
and rejects to fuse the preliminary estimations far from the estimation obtained in
the prediction stage. Two simulations are conducted to validate the proposed
algorithm. Compared with the other three algorithms, the proposed algorithm can
achieve higher localization accuracy and deal with the abnormal measurement.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Autonomous
Systems, Robotics
Keywords Cooperative localization, Robust localization, Multi-robot system, Covariance
intersection, Kullback–Leibler divergence

INTRODUCTION
Localization is a fundamental requirement in many engineering applications (Bi et al.,
2021; Poursheikhali & Zamiri-Jafarian, 2021), such as surveillance (Ferri et al., 2017),
environmental monitoring (Mesmoudi, Feham & Labraoui, 2013), target tracking
(Morbidi & Mariottini, 2012) and intelligent navigation (Lee, 2021). With the progress of
localization technology and positioning accuracy requirements, cooperative localization is
becoming a promising localization method under complicated environments (Wymeersch,
Lien &Win, 2009; Van Nguyen et al., 2015;Huang et al., 2017; Fathy et al., 2021). Different
from traditional localization algorithms, cooperative localization algorithm emphasizes the
relative measurements between robots and the inter-robot communication during the
localization process (Zhu, 2020). It is also the reason that the cooperative localization
algorithm is mainly used in multi-robot system. Moreover, cooperative localization
algorithm has higher accuracy in complicated environment since robots can jointly process
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the relative measurements. Another advantage of the cooperative localization is that it
doesn’t require to place other redundant sensors in environment, which leads lower cost
than traditional localization methods.

In fact, there are many scientists who study cooperative localization (Kurazume, Nagata
& Hirose, 1994; Patwari et al., 2005; Van Nguyen et al., 2015; Huang et al., 2021).
According to the different framework adopted, the existing research can be divided into
two categories: filter-based and optimization-based methods (Chang, Chen &Mehta, 2021;
Garcia-Fernandez, Svensson & Särkkä, 2017; Prorok, Bahr & Martinoli, 2012). Among
them, the filter-based method includes extended Kalman filter and particles filter
(Indelman et al., 2012; Fox et al., 2000). For optimization-based method, it includes
maximum likelihood estimation (Howard, Matarić & Sukhatme, 2003) and maximum
posteriori estimation (Nerurkar, Roumeliotis & Martinelli, 2009; Liu, Lian & Zhou, 2019).
Comparing the filter-based method, the optimization-based method requires excessive
internal communication and lots of complicated calculation (Chang, Chen &Mehta, 2021),
which is also the reason that this article mainly focuses on the filter-based method.

The filter-based methods are the common method for cooperative localization of multi-
robot system. In Xu, Asghar & Liu (2019), a Huber-based robust algorithm is proposed for
cooperative localization of autonomous underwater vehicles, which adopts an adaptive
noise estimation method to estimate the non-Gaussian noise. In Fang, Li & Yang (2021),
an adaptive cubature split covariance intersection filter is used to estimate the vehicle state,
the advantage of which is that it uses the cubature transform and innovation-based
adaptive estimation theory to deal with dynamic measurement noise. However, these two
works did not consider the scenes with abnormal measurements. In order to handle the
spurious sensor data, Wang et al. (2021) presents a cooperative localization algorithm
based on covariance union (CU) that simply uses the properties of the CU method to
obtain a consistent estimate. However, the method can only handle the spurious sensor
data with small deviation, but not those with large deviation in malicious attack or non-
line-of-sight (NLOS) scenarios. Moreover, in Chang, Chen & Mehta (2020), a cooperative
localization method based on covariance intersection (CI) is proposed and verified in
experiments, which has the same problem of not being able to process the spurious sensor
data with large deviations. Based on the above research, this article tries to study the
cooperative localization problem and improves the robustness of the cooperative
localization algorithm for large abnormal measurements.

In this article, a novel cooperative localization algorithm based on CI is proposed to
locate robots in multi-robot system. A robot can achieve high accuracy localization by
fusing the preliminary estimations from its neighbour robots. To improve the robustness
of the localization algorithm, a particle-based approximation method is proposed to avoid
the errors caused by linearization when accounting for the uncertainty in the positions of
the neighbours. Furthermore, the Kullback–Leibler divergence (KLD) is used to handle the
case with abnormal measurements. The main contributions of this article can be
summarized as follows.
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(1) An approximation method based on particles is proposed to account for the
uncertainty of the positions of robots. This process can improve the accuracy of the
extended Kalman filter in positioning.

(2) A cooperative localization algorithm based on the CI method is proposed to achieve
localization by fusing the preliminary estimations. And the advantage of this algorithm is
that it can achieve high localization accuracy by minimizing the trace of the fused
estimation covariance.

(3) The KLD theory is used to eliminate the abnormal measurement and provides a robust
estimation for robot.

PRELIMINARY WORK
In this section, both the kinematic and measurement model of the robot used are presented
firstly. Then an approximate method based on particles is proposed to adjust the
measurement noise for considering the uncertainty of robots’ positions.

Kinematic model of robot
Generally, a robot’s kinematic model depends on its type and the modeling method. In this
article, robots are assumed with nonholonomic constraint and only permitted to move on
the horizontal plane. So the position and orientation of robots are only needed to consider
that on the plane, which correspond to two and one dimension respectively. Moreover, the
control variables of the robot only include linear velocity v and angular velocity x.
Supposing the state of robot at time k is Xk ¼ ½qk; hk�>, where qk ¼ ½xk; yk� denotes the
position of the robot and hk is the orientation angle. Then the kinematic model of the robot
can be presented as

Xkþ1 ¼ f ðXk; uk; dkÞ ¼
xk þ ðvk þ dvÞT cosðhkÞ
yk þ ðvk þ dvÞT sinðhkÞ

hk þ ðxk þ dxÞT

2
4

3
5 (1)

where f ð�Þ is the nonlinear state propagation function of the robot, uk ¼ ½vk;xk�> is the
control input at time k, T is the sampling time interval, and dk ¼ diag ½dv; dx�ð Þ is the input
noise obeying a zero-mean Gaussian distribution with variance Q.

Measurement model
The measurement model commonly depends on the type of sensors used. In this work, the
measurement information only considers the distance between robots, which can be
obtained by the range sensing sensors, such as ultra-wide bandwidth (UWB) device and
Zigbee. So the measurement model can be represented as

zij ¼ hðqi; qjÞ ¼ jjqi � qjjj þ gij (2)

where hð�Þ is the measurement function, jj � jj is the Euclidean norm, qi and qj are the
positions of robots i and j. Moreover, gij is the measurement noise obeying a zero-mean
Gaussian distribution with covariance R.
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Method for considering measurement uncertainty
The above measurement model is based on the assumption that both the two robots’
positions are accurate. However, in real application, robots’ position are commonly a series
of estimations with variance, that is, their position are inaccurate. In the cooperative
localization applications, if we directly adopt the measured distance between two robots
without considering the uncertainty of its position, it might enlarge the variance of the
fused estimation and cause the cooperative localization algorithm to diverge. Conversely, if
we consider the uncertainty of robots’ positions and select the measurements from those
robots with low position uncertainty to conduct the fusion estimation, the positioning
accuracy of the cooperative localization algorithm can certainly be improved. In order to
consider the uncertainty of robots’ positions, an immediate idea is adjusting the
measurement noise by using its marginal distribution after combine the uncertainty of
robots’ positions and the measurement noise as a joint probability distribution.

As described in Eq. (2), the measurement noise is assumed as gij � Nð0;RÞ. For the
measured distance zij, it can also be considered that it obeys the same distribution, so its
probability density function can be represented as

pðzij j xi; xjÞ ¼ 1ffiffiffiffiffi
2p

p
R
exp

zij � jjxi � xjjj
� �2

2R2

( )
(3)

where the conditional probability pðzij j xi; xjÞ means that the measured distance zij is
correlated with the positions of xi and xj. In real scenarios, if the position robots are known
and certain, their probability distribution can be considered as the delta distribution. Then
the joint probability can be represented as

pðzij; xi; xjÞ ¼ pðxiÞpðxjÞpðzij j xi; xjÞ (4)

So the measurement with considering the uncertainty of robots’ positions is obeyed to

pðzijÞ ¼
ZZ

pðxiÞpðxjÞpðzij j xi; xjÞdxidxj

¼
ZZ

dðxi � liÞdðxj � ljÞ
1ffiffiffiffiffi
2p

p
R
exp

zij � jjxi � xjjj
� �2

2R2

( )
dxidxj

¼ 1ffiffiffiffiffi
2p

p
R
exp

zij � jjli � ljjj
� �2

2R2

8><
>:

9>=
>;

¼ Nðjjli � ljjj;RÞ

(5)

where dð�Þ denotes the delta distribution, li and lj are the real positions of robots i and j,
respectively. The third equality of Eq. (5) is obtained by using the characteristic of delta
distribution, and Eq. (5) denotes the marginal probability of the measurement has a same
distribution to the measurement noise when robots’ positions are accurate.

It is worth noting that the conclusion in Eq. (5) cannot be obtained if the positions of the
robots are inaccurate. Additionally, calculating the detailed marginal distribution can be
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challenging due to the nonlinear mapping of the term pðzij j xi; xjÞ. To address this issue, a
common approach is to linearize the measurement model Eq. (2), which is typically used
in the extended Kalman filter. However, when considering the uncertainty of both robots,
linearizing the Eq. (2) model at the positions of the two robots can introduce linearization
errors twice. This can reduce the estimation accuracy of the extended Kalman filter during
the positioning process. To address these challenges and avoid linearization errors, an
approximation method based on particles has been proposed. This approach enables the
consideration of uncertainty of robots and can be used in the extended Kalman filter
without introducing the two linearization errors. The basic idea of the method can be
viewed in Fig. 1. As shown in Fig. 1, measurement Z is the measured distance between
robots p1 and p2. Two groups of particles are generated according to the probability

 Ω

Ω

Z =||q - q ||i jij

 i

j

Figure 1 Illustration of the method for accounting for the uncertainty of measurement. �i and �j are
the probability distribution regions of robot positions qi and qj respectively.

Full-size DOI: 10.7717/peerj-cs.1373/fig-1

Algorithm 1 An approximate method for accounting for the uncertainty of measurement

Initialization:

1: Input the probability distributions of robots’ positions PðqiÞ and PðqjÞ, the measurement distance zij, the
covariance R of the measurement noise gij and the particles number L.

Iteration:

2: Based on the positions’ distributions PðqiÞ and PðqjÞ, using the sampling method to generate two particle
groups with L particles, �qi and �qj .

3: Calculate the distances between all two particles from different groups and denote the result as
D ¼ jjs� ajj j s 2 �qi ; a 2 �qj

� �
.

4: Minus the measurement distance zij from every distance in D to obtain the deviation set
C ¼ zij � u j u 2 D

� �
5: Add the variance of deviation set C the covariance R to obtain the uncertainty value S.

6: return S
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distribution of robots’ positions. Then the method calculates the distances between
particles from different groups and obtains the variance between the distances and the
measured distance Z. The details of the method are presented in Algorithm 1.

COOPERATIVE LOCALIZATION
In this section, a novel cooperative localization based CI method is proposed to fuse
preliminary estimations. And the KLD theory is used to detect the abnormal measurement
and improve the robustness of the cooperative localization algorithm.

State prediction process
Similar to the extended Kalman filter, the novel cooperative localization method consists of
two parts, namely the state prediction process and the measurement update process.
Besides, the two method have a same state prediction process, and their difference is in the
measurement update process. In order to fit the theme of the cooperative localization, here
we consider a multi-robot system with N robots, which can be denoted as
fR1;R2; . . . ;RNg. If we distinguish robot’s state in two process by using different
subscripts, then the predicted state of robot Ri at time k can be denoted as XRi

kþ1jk, and the
updated state of robot Ri at time k is XRi

k . Correspondingly, the state prediction equation of
robot can be represented as

XRi
kþ1jk ¼ ARi

k X
Ri
k þ BRi

k u
Ri
k (6)

whereARi
k is the Jacobianmatrix of Eq. (1) with respect to XRi

k , and B
Ri
k is the Jacobianmatrix

of Eq. (1) with respect to uRi
k . The two Jacobian matrices can be calculated according to

ARi
k ¼

1 0 �vRi
k T sinðhRi

k Þ
0 1 vRi

k T cosðhRi
k Þ

0 0 1

2
4

3
5 BRi

k ¼
T cosðhRi

k Þ 0
T sinðhRi

k Þ 0
0 T

2
4

3
5 (7)

Correspondingly, the covariance of robot Ri’s state is propagated as

PRi
kþ1jk ¼ ARi

k P
Ri
k ðARi

k Þ> þ BRi
k QðBRi

k Þ> (8)

where Pk is robot Ri’s state covariance at time k, and Q is the noise of input variable.

Measurement update process
Based on the characteristics of the ranging sensor, robots Ri and Rj need to communicate
with each other if a relative distance Z

Ri;Rj

kþ1 between the two robots is measured. Through
this communication, robots can also exchange their own state information and covariance.
Supposing robot Ri obtains X

Rj

kþ1jk and P
Rj

kþ1jk from robot Rj, then it can calculate a
preliminary estimation based on the measurement Z

Ri;Rj

kþ1 . And the calculation of the
preliminary estimation is similar to the process of the extended Kalman filter, which can be
represented as

X
Ri;Rj

kþ1 ¼ XRi

kþ1jk þ K
Ri;Rj

kþ1 ðZ
Ri;Rj

kþ1 � hðXRi

kþ1jk;X
Rj

kþ1jkÞÞ (9)
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P
Ri;Rj

kþ1 ¼ PRi
kþ1jk � K

Ri;Rj

kþ1 S
Ri;Rj

kþ1 K
Ri;Rj

kþ1

� �>
(10)

K
Ri;Rj

kþ1 ¼ PRi
kþ1jkH

Ri
kþ1ðS

Ri;Rj

kþ1 Þ�1 (11)

S
Ri;Rj

kþ1 ¼ HRi
kþ1P

Ri
kþ1jkðHRi

kþ1Þ> þ R
Ri;Rj

kþ1 (12)

where HRi
kþ1 is the Jacobian matrix of the measurement model with X

Ri;Rj

kþ1 , R
Ri;Rj

kþ1 is the
approximated measurement noise calculated by Algorithm 1.
Remark 1. Actually, the calculation method of R

Ri;Rj

kþ1 is the main difference between Eq. (12)
and the extended Kalman filter without considering robots’ uncertainty. And in Eq. (12), the
calculation of R

Ri;Rj

kþ1 have considered the uncertainty of robots’ positions. Moreover, the first
term of Eq. (12) has considered the uncertainly of robot Ri’s position, so it’s only need to
consider the uncertainly of robot Rj’s position when calculating the value of R

Ri;Rj

kþ1 . In other
words, it is only need to generate a group particles in application to approximate the
probability distribution of Rj’s position, which is also a method to reduce the computation load.

According to the description above, robot Ri can obtain a preliminary estimation

ðXRi;Rj

kþ1 ; P
Ri;Rj

kþ1 Þ based on the measurement to robot Rj. If robot Ri can communicate with

multiple robots at the same time, it will have multiple preliminary estimations. Supposing
robot Ri has m communication robots at time kþ 1, then all preliminary estimations for
robot Ri can be denoted as fðXRi;R1

kþ1 ;PRi;R1
kþ1 Þ; ðXRi;R2

kþ1 ; PRi;R2
kþ1 Þ; . . . ; ðXRi;Rm

kþ1 ;PRi;Rm
kþ1 Þg. In order

to obtain the accurate estimation of robot Ri, the CI method can be used to fuse all
preliminary estimations to generate the final fused estimation.

As an effective method fusing state estimations for the distributed system, CI method
can provide a conservative estimation for robot Ri based on its preliminary estimations
(Chen, Arambel & Mehra, 2002; Arambel, Rago & Mehra, 2001; Carrillo-Arce et al., 2013).
And the main formulas of the CI method can be represented as

XRi
kþ1 ¼ PRi

kþ1 x1 PRi;R1
kþ1

� ��1
XRi;R1
kþ1 þ . . .þ xjNij P

Ri;RjNi j
kþ1

� ��1
X
Ri;RjNi j
kþ1

	 

(13)

PRi
kþ1

� ��1 ¼ x1 PRi;R1
kþ1

� ��1 þ . . .þ xjNij P
Ri;RjNi j
kþ1

� ��1
(14)

where xs is the weight of preliminary estimation ðXRi;Rs
kþ1 ; P

Ri;Rs
kþ1 Þ. Moreover, weight xs

should meet the constraints with xs 2 ½0; 1� and PjNij
s¼1xs ¼ 1. As for the selection of the

optimal weight xs, it is determined by minimizing an optimization problem such that

min trðPRi
kþ1Þ ¼ min tr

XjNij

s¼1

xs PRi;Rs
kþ1

� ��1

" #�1
8<
:

9=
; (15)

where trð�Þ denotes the trace of the covariance matrix.
Obviously, the optimization problem in Eq. (15) is complex and has lot of computation,

because it involves a large number of matrix inversion and optimization iteration. To
handle this problem, a simplified method is used to optimize Eq. (15), which cancels the
matrix inversion operation and directly uses the trace of the covariance matrix in the
optimization. The simplified method is actually a generalization form of CI method, whose
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rationality and performance are validated in Daass, Pomorski & Haddadi (2021). For ease
of understanding, here presents the core formula of the simplified method, which can be
represented as

w1 þ w2 þ . . .þ wjNij ¼ 1

ws�1trðPRi;Rs�1
kþ1 Þ � wstrðPRi;Rs

kþ1 Þ ¼ 0 ðs ¼ 2; . . . ; jNijÞ
(16)

If we write method Eq. (16) into compact matrix format, a set of equations can be obtained

n1 �n2 0 . . . 0
0 n2 �n3 . . . 0

..

. ..
. ..

. . .
. ..

.

0 . . . 0 ns�1 �ns
1 . . . 1 1 1

2
666664

3
777775

w1

w2

..

.

ws�1

ws

2
666664

3
777775 ¼

0
0
..
.

0
1

2
66664

3
77775 (17)

where ns is a shorthand for trðPRi;Rs
kþ1 Þ, utilized to simplify the corresponding term in the

matrix. It’s clearly that the computation load of Eq. (17) is far smaller than that of Eq. (15).
Furthermore, this article presents a simple example to illustrate the effectiveness of the

CI method, which uses the CI method to fuse three preliminary estimations shown in
Fig. 2. In the figure, the red triangle and ellipse denote the fused estimation and covariance
respectively. And other three triangles and ellipses with different color represent the three
preliminary estimations. It’s obviously that the red ellipse covers the overlap of other three
ellipses, which is also the reason that the CI method has a stronger robustness than the
classical extended Kalman filter (Li et al., 2020).

-0.5 0 0.5 1

x/m

3.8

4

4.2

4.4

4.6

4.8

5

5.2

y/
m

Estimation 1
Estimation 2

Estimation 3
Fused estimation

Figure 2 An illustration for fusing three preliminary estimations with the CI method.
Full-size DOI: 10.7717/peerj-cs.1373/fig-2
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Strategy for eliminating abnormal measurements
Although the CI method can provide a conservative fused estimation, it may not work
properly if there are abnormal measurements caused by defective sensors or obstacles
between the robots. To handle the problem, the KLD theory can be used to detect the
abnormal measurement and eliminate it during the process of measurement update. As we
known, the KLD is a method in machine learning to measure the similarity of two
probability distributions by quantifying the distance between them (Al Hage, El Najjar &
Pomorski, 2017; Wu, Ma & Zhang, 2018).

We assume there are two probability density functions for the same variable x, denoted
pðxÞ and qðxÞ respectively. Then the KL divergence between pðxÞ and qðxÞ is defined as

DKLðpjjqÞ ¼
Z þ1

�1
pðxÞ log pðxÞ

qðxÞ
� �

dx (18)

For the cooperative localization problem in this article, pðxÞ and qðxÞ in Eq. (18) can be
viewed as robot’s estimations in the prediction process and the preliminary estimation in

Algorithm 2 Cooperative localization algorithm based on CI method

Initialization:

1: Input the state estimations for all robots at time k, fðXRi
k ; PRi

k Þg, i 2 f1; 2; . . . ; ng.
2: Input the control signal uRi

k at time k and the measurement Z
Ri ;Rj

kþ1 at time kþ 1, where Rj is the robots that existing a communication with Ri.

3: Input the threshold χ to detect the abnormal measurement.

Iteration:

4: for each robot Ri, i 2 1; . . . ; n do

5: Generate robot Ri’s state estimation fðXRi
kþ1jk; P

Ri
kþ1jkÞg according to Eqs. (6) and (8).

6: for each measurement Z
Ri;Rj

kþ1 from robot Rj do

7: Adjust the measurement noise of Z
Ri;Rj

kþ1 according to Algorithm 1

8: Generate the preliminary estimation fXRi;Rj

kþ1 ; P
Ri;Rj

k g according to Eq. (9)

9: Calculate the KLD value DKL between fðXRi
k ; PRi

k Þg and fXRi;Rj

kþ1 ; P
Ri ;Rj

k g according to Eq. (19)

10: if DKL � v then

11: Send the preliminary estimation fXRi;Rj

kþ1 ; P
Ri;Rj

k g to set B

12: else

13: Discard the measurement Z
Ri;Rj

kþ1 from Rj.

14: end if

15: Fuse all the preliminary estimations in set B according to Eq. (13), and obtain the final estimation fXRi
kþ1; P

Ri
kþ1g.

16: end for

17: end for

18: return fXRi;Rj

kþ1 ; P
Ri
k g; i 2 f1; 2; . . . ; ng
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the measurements update process, respectively. If robot’s estimations are assumed as
multivariate Gaussian distribution, the KL divergence can be represented as

DKLðNpjjNqÞ ¼ 1
2

ðlp � lqÞ>��1
q ðlp � lqÞ þ ð��1

q �pÞ � nþ ln
detð�qÞ
detð�pÞ

� �	 

(19)

where li and �i are the mean and covariance of the Gaussian distribution respectively, det
ð�Þ is the determinant of a matrix, and n is the dimension of robot’s state.

After adding the KLD theory into the cooperative localization process, the whole
algorithm can be summarized as Algorithm 2. In the algorithm, lines 1 � 3 are the
initialization operations including the inputs of robots’ estimation in the prediction stage,
the preliminary estimations in the measurements update process, and a threshold v. The
threshold v here is to detect the abnormal measurement with the KLD theory, which is
chosen as 0.14 by experience in our further simulations. The main operations of the
algorithm are presented in lines 4 � 17, which are composed by two loops to make all
robots complete the localization process. Moreover, the abnormal measurement detection
operations with the KLD theory are presented in lines 10 � 14.

SIMULATIONS
In this section, the verification processes have been done in two parts. The first part aims to
validate the method of considering robots’ uncertainty. In the second part, the
performance of the proposed cooperative localization algorithm is validated through two
simulations. These simulations are conducted to demonstrate the algorithm’s performance
in scenarios with and without abnormal measurement. The performance of the
localization algorithms is evaluated based on the trajectory error of robots.

Validating the method of considering robots’ uncertainty
To validate the effectiveness of Algorithm 1, we have conducted two simple examples
involving two robots. And the results is used to compare with that obtained by the
extended Kalman filter. In both of the examples given, the robots’ predicted positions are
subject to uncertainty, and accurate measurements are used to perform a one-step update
using Eq. (9) through Eq. (12). The error between the updated position and its true
positions is then used to evaluate the performance of the algorithm.

In the first example, robot i and robot j’s true position are at ½4; 0�> and ½0; 0�>
respectively. Initially, the predicted positions of both robots, XRi

kþ1jk and X
Rj

kþ1jk, are at their
true positions, with the same covariance PRi

kþ1jk ¼ P
Rj

kþ1jk ¼ diagð½0:2; 0:2�Þ. The actual
measurement Z

Ri;Rj

kþ1 ¼ 4 has measurement noise of gij ¼ 0:1. We will then move XRi
kþ1jk in

the positive direction of the x-axis to obtain updated values for different predicted
positions, and the results are presented in Fig. 3. For simplicity, the horizontal axis
represents the distance between Robot i’s predicted position and its true position.
Furthermore, the blue line represents the result obtained by the extended Kalman filter,
which considers the uncertainty of robot j and requires linearization at both XRi

kþ1jk and

X
Rj

kþ1jk during the calculation. It is evident that the error obtained by Algorithm 1 is lower

than that obtained by the extended Kalman filter when the distance is greater than 1. This
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indicates that Algorithm 1 accounts for the uncertainty of robot j during the update
process, which avoids the large errors caused by two linearizations when using the
extended Kalman filter method. When the distance is small, the errors introduced by
linearization are small. So the error of Algorithm 1 is slightly greater than that of the
extended Kalman filter, but still within the acceptable range.

In the second example, we consider two cases where XRi
kþ1jk is at ½4:4; 0�> and ½5:6; 0�>,

respectively. All other parameters are the same as in the first example. We then vary the
covariance of robot j to investigate the effect of covariance on Algorithm 1. For simplicity,
we assume that the covariance P

Rj

kþ1jk has the same values on the diagonal. The results are
presented in Fig. 4. It is evident that as the covariance of robot j increases, the error
obtained by Algorithm 1 and the error obtained by the extended Kalman filter with
consideration of robot j’s uncertainty become increasingly similar. This demonstrates that

Figure 4 Comparison of performance of two algorithms at different covariance: (A) XRi
kþ1jk ¼ ½4:4; 0�>;

(B) XRi
kþ1jk ¼ ½5:6; 0�>. Full-size DOI: 10.7717/peerj-cs.1373/fig-4
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Figure 3 Comparison of performance of two algorithms at different prediction positions.
Full-size DOI: 10.7717/peerj-cs.1373/fig-3
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Algorithm 1 can successfully consider the uncertainty of robot in the measurement update
process.

Simulation for the case with normal measurement
The first simulation considers the case that six robots R1 � R6 keep a formation to track
their reference trajectories shown in Fig. 5A. For each reference trajectory, the square
denotes the robot’s start point while the triangle is the terminal point of the robot. The
initial states of all robots are presented in Table 1. Corresponding, the variance of all
robots’ initial states are set as diagð½0:2; 0:1; 0:01�Þ, except that the variance of R1’s initial
state is assumed as diagð½0:01; 0:01; 0:01�Þ. Meanwhile, the input noise of all robots are
assumed as Q ¼ diagð½0:2; 0:14�Þ. Furthermore, the communication topology graph
between robots is shown in Fig. 5B. It’s easy to find that all the robots can be divided into
three layers, while robot R1 lies at the first layer and acts as the leader of the formation. And
other five robots are the followers and are placed at the other two communication layers.

Obviously, all robots can track their trajectory perfectly if the input noise doesn’t exist.
However, the input noise is very common in real scenario, which is considered in this
article and assumed as Q ¼ diagð½0:2; 0:14�Þ for all robots. Furthermore, among the six
robots, robot R1 can obtain its position by other localization method while other robots
only achieve localization by the relative distance measurements between robots. This
assumption is equivalent to the case that there is only one anchor in the environment.
According to the principle of two-dimensional localization, there must be at least three
anchors if we want to achieve robot positioning, which means robots R2 � R6 in the
simulation can’t positioning themselves with the common localization algorithm. In this

Figure 5 Reference trajectories and communication topology graph: (A) robots’ reference
trajectories; (B) communication topology graph. Full-size DOI: 10.7717/peerj-cs.1373/fig-5

Table 1 Initial states of robots.

ID Robot R1 Robot R2 Robot R3 Robot R4 Robot R5 Robot R6

Initial state (16,8,p=2) (8,10,p=2) (8,6,p=2) (0,4,p=2) (0,8,p=2) (0,12,p=2)
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article, the proposed cooperative localization algorithm can handle this problem and locate
other five robots by using the relative measurements. In order to make a comparison, three
other methods are also used to locate robots, which are the CI method, the CUmethod and
the method proposed in Wang et al. (2021), respectively. Among those methods, both
Wang et al. (2021) and the general CU method use the same way to fuse the local
estimations. ButWang et al. (2021) has considered the cross-correlation term of covariance
and the general CU method haven’t, which is also the differences between Wang et al.
(2021) and the general CU method. Similarly, the main differences between the general CI
method and the proposed method in this article are that the proposed method has taken
into consideration the uncertainty of robots’ position and has used the KLD to eliminate
abnormal measurements, while the general CI method has not.

Figure 6 Trajectories of different robots obtained by the proposed algorithm for the case without
abnormal measurements: (A) R2’s trajectory; (B) R2’s trajectory error; (C) R5’s trajectory; (D) R5’s
trajectory error. Full-size DOI: 10.7717/peerj-cs.1373/fig-6
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For simplicity, each communication layer selects a robot to compare its fused trajectory
and trajectory error to evaluate the performance of the proposed algorithm. Figures 6A
and 6C have presented R2 and R5’s fused trajectories and their reference trajectories. It’s
easy to find that the fused trajectories obtained by the proposed localization algorithm can
match the ideal trajectories for the two robots, while the fused trajectories obtained by
other three methods have deviations with the ideal trajectories. In terms of the size of the
deviations, the CU method and Wang et al. (2021) have similar performances since their
fusion way are same. However, both of them are worse than the performance of the other
two methods. For clarity, the trajectory error E ¼ jjq� qdjj is also introduced as one
evaluation criterion, where q is the estimation of robot’s position, and qd is the
corresponding position on the ideal trajectory. And the variation of trajectory error E of
robots R2 and R5 with time can be seen in Figs. 6B and 6D respectively. Viewed from the
trajectory error changes of robots R2 and R5, it also be concluded that the performance of
the proposed algorithm is the best among the three algorithms, which is same to the
conclusion from comparing the robots’ fused trajectories.

Considering that there are multiple robots in this simulation, the root mean square
error (RMSE) and the root mean trace error (RMTE) are used to evaluate the overall
localization performance for all robots. The two metrics are defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

jjq� qdjj2=N
vuut ;RMTE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

trð½��iÞ=N
vuut (20)

where N is the number of robots and �i denotes the state covariance of robot Ri

Figure 7 has presented the two metrics change with time. In Fig. 7A, the RMSE of the
proposed algorithm is obviously smaller than that of other two methods, which keeps same

Figure 7 The RMSE and RTSE metrics of localization algorithms for the case without abnormal
measurements: (A) RMSE changes with time; (B) RTSE changes with time.

Full-size DOI: 10.7717/peerj-cs.1373/fig-7
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to the previous conclusion. For the RMTE metric, it’s easy to find that both the proposed
algorithm and the general CI method keep a smaller error than the general CUmethod and
Wang et al. (2021). The reason for this phenomenon is that the CU method generally
increases the final fused estimation’s covariance to include all estimations’ covariance,
while the CI method determines the final covariance by including the intersection part of
all estimations’ covariance. Furthermore, the proposed algorithm has a bigger RMTE than
the general CI method, which is caused by the proposed algorithm to adopt the
approximate method in Algorithm 1 to adjust the measurement noise. In other words, the
proposed algorithm has considered the uncertainty of robots, which leads its preliminary
estimations have larger covariance than that in the general CI method. Besides, two
methods use the same way to fuse preliminary estimations, so it is a normal situation that
the proposed algorithm has a bigger RMTE than the general CI method. It’s worth noting
that the result of cooperative localization is evaluated comprehensively by both RMSE and
RTSE metrics. Although the RTSE of the proposed method is slightly greater than that of
the general CI method, but its RMSE is significantly less than the general CI method. So it
can also determine the proposed algorithm has a better performance. After analyzing the
results of the other three methods based on the two metrics, it can be concluded that the
proposed algorithm performs better than both the CU and CI methods.

Simulation for the case with abnormal measurement
The second simulation is conducted to validate the performance of the proposed algorithm
when robots have abnormal measurements. In this simulation, an assumption is made that
there exists a 1 m distance deviation on the measurement between robots R1 and R2. Other
conditions are same to that in the previous simulation. Similarly, robots R2 and R5 are
chosen to compare their trajectories. Figure 8 has presented the comparison results.

In Fig. 8A, four fused trajectories with using different algorithms are compared for robot
R2. There is no doubt that the proposed algorithm exhibits the best performance, as its
fused trajectory perfectly matches the ideal trajectory. Moreover, the fused trajectory
obtained by the CU method is very disorganized after receiving an abnormal
measurement, while the CI method can make the fused trajectory similar to the ideal
trajectory with relatively stable deviation error. As for the result of the method in Wang
et al. (2021), it shows an obvious improvement than the two general method since the
cross-correlation term of covariance in Wang et al. (2021) has a small inhibitory effect to
the abnormal measurement. And the trajectory error in Fig. 8B shows a similar
phenomenon, which illustrates that the proposed algorithm performs well even in cases
with abnormal measurements. For the trajectory of robot R5, the result of the proposed
algorithm also has a better performance compared with the other three algorithms. It’s
worth noting that robot R5 does not receive any abnormal measurement, but its fused
trajectory is still affected by the abnormal measurement between robots R1 and R2. This is
due to the characteristics of cooperative localization, that is, the estimation accuracy of
each robot will also affect its neighboring robots’ estimation. It also illustrates the necessity
of eliminating the estimation with large deviation during the process of cooperative
localization.
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Furthermore, the RMSE and RMTE metrics’ change are also presented in Fig. 9. It’s
obvious that the RMSE of the proposed algorithm has been kept at a low level and much
better than that of the other three algorithms. And the reason is that the abnormal
measurement of robot R2 has been eliminated in the process of cooperative localization so
as to avoid interfering with other robots. In Fig. 9B, the RMTE of the CU method and
Wang et al. (2021) increases rapidly to more than 6 and never decreases again, while the
other two algorithms’ RMTE remain relatively small. However, the performance of the
proposed algorithm is the best among the three cooperative localization algorithms after
combining the RMSE and RMTE metrics. It also demonstrates only the proposed
algorithm has the robustness for the case with abnormal measurements.

Figure 8 Trajectories of different robots obtained by the proposed algorithm for the case with
abnormal measurements: (A) R2’s trajectory; (B) R2’s trajectory error; (C) R5’s trajectory; (D) R5’s
trajectory error. Full-size DOI: 10.7717/peerj-cs.1373/fig-8
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To demonstrate the impact of the threshold v on eliminating abnormal measurements,
we have included a summary of the acceptance of preliminary estimations for both R2 and
R5 in this simulation. This summary is presented in Fig. 10, where the horizontal axis
represents the number of iteration steps, and the vertical axis represents the robot number.
The colored line consists of a series of points, which indicate that the corresponding robot
has accepted the preliminary estimation from its neighboring robots. From Fig. 10A, it is
evident that robot R2 did not accept the preliminary estimation from robot R1 throughout

Figure 9 The RMSE and RTSE metrics of localization algorithms for the case with abnormal
measurement: (A) RMSE changes with time; (B) RTSE changes with time.

Full-size DOI: 10.7717/peerj-cs.1373/fig-9

Figure 10 Acceptance of preliminary estimation: (A) R2’s neighbor robots; (B) R5’s neighbor robots.
Full-size DOI: 10.7717/peerj-cs.1373/fig-10
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the simulation period due to the presence of abnormal measurements between them.
Moreover, robot R1 accepted the preliminary estimation from robot R3 initially but later
rejected it when the distance between their estimations exceeded the threshold v. A similar
phenomenon is observed in Fig. 10B, highlighting the effectiveness of the threshold v in the
cooperative localization process.

CONCLUSIONS
In this article, the cooperative localization problem is studied and a novel localization
algorithm based on CI method is proposed to achieve accurate localization for multi-robot
system. The proposed cooperative localization algorithm can locate robots by using the
relative distance measurement with few anchors in the environment. In order to improve
the accuracy of algorithm, an approximation method based on particles are proposed to
adjust the measurement noise with considering the uncertainty of robots’ position.
Furthermore, the KLD theory is used to detect the abnormal measurement and improve
the robustness of the localization algorithm. Finally, two simulations are conducted to
validate the performance of the proposed algorithm. The results indicate that that the
proposed algorithm can attain a high degree of localization accuracy for robots and exhibit
robustness in scenarios involving abnormal measurements.
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