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ABSTRACT
The analysis of networks describing many social, economic, technological, biological
and other systems has attracted a lot of attention last decades. Since most of these
complex systems evolve over time, there is a need to investigate the changes, which
appear in the system, in order to assess the sustainability of the network and to
identify stable periods. In the literature, there have been developed a large number of
models that measure the similarity among the networks. There also exist some
surveys, which consider a limited number of similarity measures and then perform
their correlation analysis, discuss their properties or assess their performances on
synthetic benchmarks or real networks. The aim of the article is to extend these
studies. The article considers 39 graph distance measures and compares them on
simple graphs, random graph models and real networks. The author also evaluates
the performance of the models in order to identify which of them can be applied to
large networks. The results of the study reveal some important aspects of existing
similarity models and provide a better understanding of their advantages and
disadvantages. The major finding of the work is that many graph similarity measures
of different nature are well correlated and that some comprehensive methods are well
agreed with simple models. Such information can be used for the choice of
appropriate similarity measure as well as for further development of new models for
similarity assessment in network structures.

Subjects Computer Networks and Communications, Data Science, Network Science and Online
Social Networks
Keywords Network similarity, Complex networks, Graph distance, Structural network properties,
Dynamics on and of complex networks

INTRODUCTION
Motivation of the study
Many real systems including social, financial, technological, biological, and informational
can be represented as networks, where the elements of a system are nodes and interactions
between elements are edges. In this regard, network theory is an important tool to model
the structure and the dynamics of complex systems that may gain a comprehensive insight
into many practical problems. However, since most of these systems evolve over time,
there is a need to investigate the changes, which appear in the system, in order to assess the
sustainability of the network and to understand how much the network has actually
changed. Such information provides a better understanding of network evolution and it
can be used to identify structural phase transitions in graphs or detect anomalies in real
systems. It should be noted that graph similarity problem is also of great importance both
for studying networks that change over time and for comparing systems of different
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nature. Graph similarity models can be also used to graph matching or to compare real
systems with theoretical models describing these systems.

Research gaps
Unfortunately, evaluating graph similarity is an ill-defined problem. There is no universal
definition for the similarity; consequently, there have been proposed diverse approaches to
the problem. There is also no clear guideline on how to assess the performance of different
methods. Therefore, there exist many models that measure the similarity between two
networks. The simplest models rely on direct comparison of node or edge sets (e.g., Jaccard
index, graph edit distance, vertex/edge overlap, etc.). These models depend explicitly on the
node labelling, thus, they are not invariant under graph isomorphism and cannot be
applied to compare graphs with different nodes labels. Moreover, these measures are local
and do not take into account the global structure of the network.

Several models aim to compare various characteristics that capture the global structure
of the network. These characteristics may include the graph spectrum (e.g., λ-distance,
non-backtracking spectral distance, quantum Jensen–Shannon divergence), some
empirical distributions (e.g., communicability sequence entropy, distributional non-
backtracking spectral distance), node affinities (e.g., Deltacon), graph diffusion processes
(e.g., graph diffusion distance), or some other graph statistics. Most of these models are
invariant to node labelling, hence, they can be used to compare graphs of different size and
nature. Moreover, some of these measures satisfy all metric axioms.

There also exist hybrid models that take into account both local and global structure of
the network and, in addition, consider the community structure or the centrality of nodes
(e.g., D-measure, LD-measure, SLRIC-similarity). However, some of these models do not
satisfy the triangle inequality property while some other properties have not been studied
in detail. Moreover, many similarity measures are designed for undirected unweighted
networks, thus, they cannot be applied to directed or weighted graphs. Furthermore, some
models cannot be applied to large networks due to their high computational complexity.
Finally, the sensitivity of these models to various perturbations in the initial data has not
been examined.

Major finding
This work presents a survey of various models that measure the similarity between two
networks. It considers 39 graph similarity measures, discusses their properties, compares
their performance on real systems as well as on artificial graphs, and gives advice on their
usage.

It is necessary to mention that there exist some reviews on graphs comparison. In
Soundarajan, Eliassi-Rad & Gallagher (2014) the authors consider 20 similarity measures
and perform their correlation analysis on networks from diverse domains. In Donnat &
Holmes (2018), the authors provide an overview of eight graph distances, discuss some
structural changes that they are best able to capture and highlight their performance on
both synthetic and real-data graphs. Tantardini et al. (2019) consider 12 distance measures
and assess their performances both on synthetic benchmarks and on real-world multilayer
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networks. In Wills & Meyer (2020), the authors compare seven distance measures on
random graphs and on some real networks and discuss their computational complexity.
They also provide some recommendations on the choice of the appropriate distance
measure and introduce their implementation in Python. In Hartle et al. (2020) the authors
propose ensembles of random networks as benchmarks for network comparison methods.
They also employ these benchmarks to examine some properties of 20 graph distances. All
these studies are used as the backbone and we extend them.

The major contributions of this article can be summarized as follows:

� The article considers 39 graph similarity measures. To the best of the author’s
knowledge, there are no studies that have analyzed such a large number of models.

� The article incorporates existing approaches of graph similarity comparison and also
introduces some novel approaches.

� The experiments demonstrate that models of different nature are surprisingly well
correlated and that some comprehensive methods are agreed well to simple models.

� The author evaluates the runtime of graph similarity measures on random networks and
reveal models that can be applied to large graphs.

� The author provides an implementation in Python of all graph similarity measures that
are discussed in the article.

Structure of the article
The article is organized as follows. In “Preliminaries and Properties of Distance Measures”,
the author recalls some definitions and discusses the theoretical properties that are usually
examined for graph similarity measures. “Graph Distance Measures” considers various
approaches of assessing graph similarity and provides their classification with respect to
different criteria. “Validation” compares the models on artificial and real networks and
evaluates their runtime. The final Section concludes.

PRELIMINARIES
A network can be represented by a graph G ¼ V ;Eð Þ, where V ¼ 1; . . . ; nf g is a set of
nodes, or vertices, and E � V � V is a set of edges (links), which connect the nodes. Two
distinct nodes i and j are said to be neighbors, or adjacent nodes, if there is an edge
i; jð Þ 2 E or j; ið Þ 2 E between them. Two nodes i and j are said to be connected if there
exists a path from node i to node j. The article considers undirected and directed graphs.
All the graphs are simple and do not allow multiple edges (of the same direction) between a
pair of nodes. For the latter, the existence of edge i; jð Þ does not imply the existence of edge

j; ið Þ. To describe a graph an adjacency matrix A ¼ aij
� �

is used where aij ¼ 1 if there is

edge i; jð Þ, and aij ¼ 0 otherwise. If E ¼ [, the graph is empty (G0). Similarly, if the
E ¼ V � V , the graph is a clique (complete graph, Kn). Denote by N ið Þ a set of neighbors
of node i in graph G. Additionally, if connections between nodes are associated with some
numerical values, representing the intensity of connections, the graph can be described by
weighted adjacency matrix W ¼ wij

� �
that stores the weights of the edges.
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Consider two arbitrary graphs G1 ¼ V1; E1ð Þ and G2 ¼ V2; E2ð Þ. The union of nodes in
graphs G1 and G2 is defined as V ¼ V1 [ V2, while the union of edges is defined as
E ¼ E1 [ E2. The natural way to compute the similarity or dissimilarity between two
graphs is to evaluate the distance between them. Denote by d G1;G2ð Þ a distance metric
between graphs G1 and G2. In other words, the distance function is a mapping d:
(G1;G2Þ ! Rþ. Usually, d G1;G2ð Þ ¼ 0 if graphs G1 and G2 are identical. On the contrary,
large values of d G1;G2ð Þ correspond to a low similarity between two graphs. In some
studies, the distance measure d G1;G2ð Þ is additionally transformed into the similarity
measure sim G1;G2ð Þ 2 0; 1½ � where sim G1;G2ð Þ ¼ 1 for identical graphs and
sim G1;G2ð Þ ¼ 0 for completely dissimilar graphs. In the literature, there have been
proposed many ways of converting a distance metric. Some of them are discussed in
Koutra et al. (2011).

There are several ways how to measure the distance between graphs G1 and G2. Most
approaches firstly collect a probability distribution P from empirical data (e.g., degree
distribution, distance distribution, etc.) or a feature vector~x (e.g., average node degree,
graph density, diameter, assortativity, eigenvalues, etc.) from each graph and then evaluate
the distance between two graphs as the distance between these vectors or distributions.

To compare two vectors~x and~y the most prevalent ways of computing the distance are
the following.

(1) p-norm (Minkowski distance)

The Minkowski distance is a metric that generalizes a wide range of distances (Deza &
Deza, 2009). It is computed as

d ~x ;~yð Þ ¼
X
i

xi � yij jp
 !1=p

;

where xi; yi are i-th coordinates of vectors~x and~y; p is a parameter. If p ¼ 1; it is equal to
L1-norm (Manhattan distance). If p ¼ 2; it is L2-norm (Euclidean distance, Frobenius
norm). The Minkowski distance is equivalent to Chebyshev distance if p ! 1.

(2) Canberra distance

The Canberra distance is a weighted version of L1-norm (Deza & Deza, 2009). It is
defined as

d ~x ;~yð Þ ¼
X
i

xi � yij j
xi þj jyij j :

There also exist different methods to compare two graphs G1 and G2 if they are
characterized by probability distributions P and Q. The most popular approaches are the
following.
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(3) Jensen–Shannon (JS) divergence

JS divergence J P;Qð Þ is one of the most common information-theoretic metrics
satisfying the property of symmetry (Cichocki & Amari, 2010). It is defined as

J P;Qð Þ ¼ 1
2

KL PkP þ Q
2

� �
þ KL QkP þ Q

2

� �� �
;

where
P þ Q

2
is the average distribution, KL P k Qð Þ ¼P pi log

pi
qi

� �
is the Kullback–

Leibler divergence for discrete probability distributions P and Q.
Jensen–Shannon divergence can be also applied to compare more than two

distributions. The equation for comparing N distributions is the following

J P1; . . . ;PNð Þ ¼ 1
N

XN
i¼1

KL PikP0ð Þ;

where P0 ¼ 1
N

XN

i¼1
Pi is the average distribution. One should note that Jensen–Shannon

divergence is bounded by log n (0 � J P1; P2; . . . ; Pnð Þ � log n) where n is the number of
distributions.

(4) Earth mover’s distance (EMD)

The EMD is another widely used metric which compares two probability distributions P
and Q (Deza & Deza, 2009). The main idea of EMD is that it measures the minimum effort
required to transform one distribution to another (“to move earth from one pile to
another”). In mathematics, this measure is also known as Wasserstein distance or
Kantorovich–Rubinstein metric. The EMD can be solved as the optimal flow problem, i.e.,

EMD P;Qð Þ ¼ min
F¼ fijf g

X
i

X
j

fijdij;

where fij is the flow between distributions pi and qi that minimizes EMDmeasure, dij is the
ground distance between pi and qi.

More details on distance measures is provided in Deza & Deza (2009). Before discussing
various graph similarity measures some of their properties are discussed below.

PROPERTIES OF DISTANCE MEASURES
The problem of measuring the similarity among the networks, intuitive at first sight, is not
well defined. Indeed, there is no universal definition of the similarity or dissimilarity
between two complex structures. Therefore, there have been proposed various concepts of
similarity that capture different features of complex systems. One way to compare these
models is to consider some rational properties that should be satisfied. The analysis of
properties may provide a more detailed perception of the main features, advantages
and disadvantages of the existing models and may justify the selection of a particular
concept.
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In geometry, the similarity can be treated as the distances in space, hence, it must follow
the well-known metric axioms (Deza & Deza, 2009):

1. Non-negativity axiom: the distance between any two graphs is non-negative, i.e.,

8G1;G2 d G1;G2ð Þ � 0

2. Identity of indiscernibles axiom: the dissimilarity of two graphs is zero if and only if
they are identical, i.e.,

d G1;G2ð Þ ¼ 0 , G1 ¼ G2:

3. Symmetry axiom: the dissimilarity of graph G1 to G2 is the same as the dissimilarity of
G2 to G1, i.e.,

d G1;G2ð Þ ¼ d G2;G1ð Þ:
4. Triangle inequality: graphs G1 and G2 cannot be farther apart in dissimilarity space
than the sum of their distances to any other graph G3, i.e.,

d G1;G3ð Þ þ d G3;G2ð Þ � d G1;G2ð Þ:
If the dissimilarity between two distinct graphs is zero, the function is a pseudo-metric.
Similarly, the function is quasi-metric if it is not symmetric and semi-metric if it does not
satisfy the triangle inequality. One should mention that many distances in real world do
not satisfy these properties (Cullinane, 2011).

In many studies, the distance function is limited to some interval. In that case, Koutra,
Vogelstein & Faloutsos (2013) introduces a zero property that provides an example of
graphs with the maximal distance (originally, it is defined in terms of similarity).

5. Zero property: the dissimilarity (or the distance) between an empty graph G0 and a
clique Kn should be maximal, i.e., lim

n!1 sim G0;Knð Þ ¼ 0:

For some applications, one can extend the property and claim that distance function
should produce a large value for two complementary graphs.

In Koutra, Vogelstein & Faloutsos (2013) there were also introduced some additional
intuitive properties for the graph distance metrics.

6. Edge Importance: changes that create disconnected components should be penalized
more than changes that maintain the connectivity properties of the graphs.

7.Weight Awareness: in weighted graphs, the bigger the weight of the removed edge is, the
greater the impact on the similarity measure should be.

8. Edge-“Submodularity”: a specific change is more important in a graph with few edges
than in a much denser, but equally sized graph.

9. Focus Awareness: random changes in graphs are less important than targeted changes of
the same extent.
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In literature, most of the studies on the graph similarity consider only classic axioms 1–
4. It is also shown that many models do not satisfy the triangle property. Finally, axioms 5–
9 have not been proved for most of the graph distance measures.

GRAPH DISTANCE MEASURES
There have been developed many models that measure the dissimilarity among the
networks. They can be grouped into categories based on different criteria. Such criteria
include: information about node labeling (with known/unknown node correspondence),
network type (directed/undirected, weighted/unweighted) or the approach that they use
(sets comparison, spectral models, graph kernels, etc.). For instance, graph similarity
models, which are based on node labeling, can be applied to temporal or multiplex
networks but cannot be used to compare graphs of different nature. On the contrary,
distance measures, which compute graphs statistics, allow to compare any two graphs,
however, they do not provide a good performance if node labels are important. In general,
the choice of the models depends on the type of the graph and the notion of similarity
which better suits the problem under consideration.

It should be noticed that most graph similarity models are usually defined for
undirected unweighted graphs, however, some of these models can be extended to directed
or weighted graphs. This section provides an overview of these models and discusses their
properties and computational complexity.

First, the study presents distance measures that are based on nodes correspondence.
This class of models is especially useful in studying temporal or multiplex networks, as they
possess similar sets of nodes.

Distances based on sets comparison

1. Jaccard index (JI)

The Jaccard index is one of the simplest instruments for graph comparison that can be
applied to all types of networks. It measures the similarity between two graphs as the ratio
of intersection and union of edge sets corresponding to two networks, i.e.,

simJI G1;G2ð Þ ¼ E1 \ E2j j
E1 [ E2j j :

This measure can be easily adapted to weighted networks as

simWJI G1;G2ð Þ ¼

P
i;j
min wG1

ij ;w
G2
ij

� �
P
i;j
max wG1

ij ;w
G2
ij

� � :
The Jaccard index is the similarity measure that varies from 0 (for distinct graphs) to 1

(for identical graphs). The computational complexity of the Jaccard index is proportional
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to the number of edges in two networks. One should note that this index is local as it does
not consider the connectivity of the graph or long-distance connections among the nodes.

2. Graph edit distance (GED)

The method is discussed in Sanfeliu & Fu (1983), Bunke et al. (2006), Zeng et al. (2009)
and Gao et al. (2010). It measures the minimum number of graph edit operations to
transform one graph G1 to another G2, i.e.,

dGED G1;G2ð Þ ¼ V1j j þ V2j j � 2 V1 \ V2j j þ E1 þj jE2j j � 2 E1 \ E2j j:

Since the graph edit distance is limited to V1 [ V2j j þ E1 [ E2j j, there also exists a
normalized version of the index

dnGED G1;G2ð Þ ¼ V1 [ V2j j � V1 \ V2j j þ E1 [ E2j j � E1 \ E2j j
V1 [ V2j j þ E1 [ E2j j :

The graph edit distance is the distance measure that provides 0 for two identical graphs.
Note that if two networks have the same set of nodes, the GEDmeasure is equivalent to the
Hamming distance while its normalized version is similar to the Jaccard index.

3. Vertex/Edge overlap (VEO) (Papadimitriou, Dasdan & Garcia-Molina, 2008, 2010).

The method measures the similarity among the graphs based on the overlap of nodes
and edges sets, i.e.,

simVEO G1;G2ð Þ ¼ 2
E1 \ E2j j þ V1 \ V2j j
E1 þj jE2j j þ V1j j þ V2j j :

The VEO measure varies from 0 (for distinct graphs) to 1 (for identical graphs). It is
similar to the Jaccard index, however, it also accounts for nodes sets. One should note that
models 1–3 are local because they treat all edges equally. In other words, they do not
consider whether a particular edge connects two disconnected components or two nodes
in a dense network. Moreover, they do not allow comparing graphs of different nature.

4. k-hop nodes neighborhood (NN).

The distance between two graphs can be computed based on the structural equivalence
of their nodes. Perhaps the simplest measure of structural equivalence is a count of the
number of common neighbors two nodes have (Newman, 2010). Thus, the similarity
between graphs G1 and G2 can be defined as the average similarity of nodes neighborhood,
i.e.,

simNN G1;G2ð Þ ¼ 1
V1 [ V2j j

X
v2V1[V2

N1 vð Þ \ N2 vð Þj j
N1 vð Þ [ N2 vð Þj j ;

where Ni vð Þ is a set of neighbors of node v in network Gi.
If two networks are similar, the similarity of networks is 1. On the contrary, the distance

between two distinct networks is 0. The computational complexity of the model is
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proportional to the number of edges. One should also note that this measure is local as it
measures only 1-hop distance for each node. Thus, one can extend the measure by
considering k-hop neighborhood. This article considers up to 3-hops.

5. Maximum common subgraph distance (MCS) (Bunke et al., 2006)

The maximum common subgraph distance identifies the maximum common subgraph
of two graphs G1 and G2, i.e.,

dMCS G1;G2ð Þ ¼ 1� msc G1;G2ð Þj j
max V1j j; V2j jð Þ

where msc G1;G2ð Þj j denotes the number of nodes that are presented in the maximum
common subgraph. The MCS distance varies from 0 (for identical graphs) to 1 (for distinct
graphs). Note that this measure does not distinguish directed and undirected graphs
because it relies on nodes sets.

Distances based on matrix distances
Next, the article considers some models that transform the initial matrix of each graph into
a new one and then compute the distance between two matrices. Note that most of these
models are not scalable, hence, they cannot be applied to large-scale graphs due to their
computational complexity.

6. Frobenius distance (FRO)

The Frobenius measure computes the distance between graphs G1 and G2 as the
distance between their adjacency matrices, i.e.,

dFRO G1;G2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

aG1
ij � aG2

ij

� �2s
:

The Frobenius distance is zero for two identical networks. It is also very similar to the
Hamming distance. In general, this measure is bounded by V1 [ V2j j2, thus, it can be
additionally normalized to [0,1] interval. Moreover, if graphs G1 and G2 are weighted, one
can compute the Frobenius distance between their weighted adjacency matrices W1 and
W2.

7. Vector similarity algorithm (VS)

The method compares two networks with respect to their edge structure taking into
account the importance of nodes (Papadimitriou, Dasdan & Garcia-Molina, 2008, 2010).
Assume that each node i has a quality score qi, which can be defined externally or defined
using the network structure (for instance, by calculating a centrality measure). The one can
transform the initial weighted adjacency matrix W of graph G into matrix ~W ¼ ~wij

� �
in

order to capture the relative importance of an edge i; jð Þ to node i, i.e.,
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~wij ¼ qiwijP
k
wik

:

In other words, the quality score qi is distributed among all the edges from node i. Then
the similarity between two graphs G and G0 is calculated as

simVS G1;G2ð Þ ¼ 1� 1
E1 [ E2j j

X ~wG1
ij � ~wG2

ij

			 			
max ~wG1

ij ; ~w
G2
ij

� � :
If two networks are identical, the similarity of networks is 1. On the contrary, the

distance between two distinct networks is 0. Note that VS measure is local, however, it may
capture the global structure of the network if a quality score is defined using the network
structure. In this article, the author uses the PageRank algorithm, which computes the
probability of being visited for each node by a random walker, as the quality score (Brin &
Page, 1998).

8. DELTACON

The distance between two graphs can be computed based on nodes affinities (Koutra,
Vogelstein & Faloutsos, 2013). There are multiple ways to construct a nodes affinity matrix

S ¼ sij
� �

which shows the affinity of node i to j in graph G. For instance, one may compare

k-hop nodes neighborhood, however, this approach does not take into account the
distance to each k-hop neighbor. Similarly, one may perform a random walk with restarts
(an extension of the well-known PageRank algorithm) that measures the probability of
visiting other nodes in a network if a random walk restarts at particular node i. This
measure considers indirect connections among nodes but, unfortunately, it has a high
computational complexity. Thus, Koutra, Vogelstein & Faloutsos (2013) use the fast belief
propagation (FABR) model that transforms the adjacency matrix A into the matrix of
nodes affinities, i.e.,

S ¼ sij
� � ¼ I þ e2D� eA


 ��1
;

where I is the identity matrix, D is the diagonal degree matrix, e is a small constant
capturing the influence between neighboring nodes. It was shown in Koutra, Vogelstein &
Faloutsos (2013) that FABR can be written in the Personalized RWR-like form, however, it
has lower computational complexity.

Therefore, the DELTACON model constructs the nodes affinity matrix for each graph
and computes the root Euclidian distance between these matrices, i.e.,

d G1;G2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

ffiffiffiffiffiffiffi
SG1
ij

q
�

ffiffiffiffiffiffiffi
SG2
ij

q� �2s
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The choice of the root Euclidian distance is explained by the fact that it detects small
changes in a graph and satisfies properties 5–8 from “Properties of Distance Measures”
while the Euclidian distance for the FABR model does not satisfy property 5. Additionally,
the authors bound the distance measure to the interval (0, 1] as

sim G1;G2ð Þ ¼ 1
1þ d G1;G2ð Þ :

Additionally, they propose an approximated version of DELTACON algorithm where
all the nodes are randomly divided in g groups and the FABR model is applied to measure
the affinity all the nodes to each group.

9. Polynomial dissimilarity (POL)

Polynomial dissimilarity is a generalization of the Hamming distance that considers
only direct neighborhood of nodes based on adjacency matrices A1 and A2. However, one
may extend the measure and also include information about k-hop neighborhoods of
nodes. Since number of neighbors at distance k is defined by the powers of graphs’
adjacency matrices Ak

1 and Ak
2 while more distant nodes contribute less than direct nodes,

Donnat & Holmes (2018) defines k-hop neighborhood information in graph G using the
polynomial P Að Þ, i.e.,

P Að Þ ¼
Xk
l¼1

Al

N � 1ð Þ/ l�1ð Þ ;

where N is the total number of nodes, / is an arbitrary weighting factor. As matrix A can
be decomposed as A ¼ QΛAQT , one can rewrite P Að Þ as

P Að Þ ¼ Q
Xk
l¼1

Λl
A

N � 1ð Þ/ l�1ð Þ

 !
QT ;

where ΛA is a diagonal matrix formed from the eigenvalues of A and Q is a square matrix
of eigenvectors. As a result, polynomial dissimilarity compares two networks G1 and G2 in
terms of the polynomials of their associated adjacency matrices A1 and A2, i.e.,

d G1;G2ð Þ ¼ 1
N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

P A1ð Þij � P A2ð Þij
� �2s

:

10. Graph diffusion distance (GDD)

The graph diffusion distance measures the distance based on diffusion process in graphs
(Hammond, Gur & Johnson, 2013). To describe the diffusion process on a graph G, assume
some vector v tð Þ 2 RN , which indicates the value of the quantity at each vertex at time t.
Then the diffusion process can be defined as
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v0 tð Þ ¼ �Lv tð Þ;
where L is the graph Laplacian of graph G.

With initial conditions v 0ð Þ at time t ¼ 0, this equation has the analytic solution

v tð Þ ¼ e�tLv 0ð Þ. Thus, e�tL1 and e�tL2 are Laplacian exponential diffusion kernels that
simulates the diffusion in networks G1 and G2 for t timestamps.

According toHammond, Gur & Johnson (2013), the graph diffusion distance defines the
distance between graphs as the Frobenius norm between two diffusion kernels at the
timestamp t	 where the two kernels are maximally different, i.e.,

d G1;G2ð Þ ¼ max
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

e�tL1 � e�tL2ð Þij2:
s

11. Resistance perturbation (RP)

The resistance perturbation compares two networks G1 and G2 with respect to their
resistance matrices (Monnig & Meyer, 2018). The authors adapt the electrical analogy to
network. According to it, the effective resistance between two nodes u and v is the voltage
applied between u and v that is required to maintain a unit current through the terminals
formed by u and v. As a result, the resistance matrix R ¼ Rij

� �
N�N for graph G is

constructed as

Rij ¼ Lyii þ Lyjj � 2Lyij;

where Ly is the Moore-Penrose pseudoinverse of the Laplacian of G.
According to Monnig & Meyer (2018), the resistance perturbation is computed as p-

norm between the two resistance matrices, i.e.,

d G1;G2ð Þ ¼ RG1
ij � RG2

ij j
p

			 �1=p
:

�
If p ! 1, then d G1;G2ð Þ ¼ max

i;j
RG1
ij � RG2

ij

			 			. Note that the resistance perturbation
distance is not normalized.

Distances based on nodes/graph statistics

12. Vertex ranking (VR)

The vertex ranking (VR) compares the two graphs in terms of nodes rankings
(Papadimitriou, Dasdan & Garcia-Molina, 2008, 2010). In other words, the distance
between two graphs is small if the ranking of vertices is similar. The authors adapt the
Spearman correlation coefficient to networks and the define the similarity measure as

sim G1;G2ð Þ ¼ 1� 2
P

v2V1[V2
wi pi;G1 � pi;G2


 �2
D

;
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where wi is the quality of node i (defined externally or based on the network structure),
pi;G1 and pi;G2 are the rankings of node i in graphs G1 and G2, and D is a normalized

coefficient that limits the maximum value of the fraction to 1. This study will use the
PageRank score as the quality of each node.

Apart from nodes statistics, one can measure the similarity between two graphs G1 and
G2 in terms of graphs statistics. Typical graph statistics may include the degree
distribution, the distance distribution, the clustering coefficient distribution, graphlets
statistics, etc. In other words, each graph is characterized by a set of features or
distributions that is used to measure their similarity. Next, the author presents some
measures that are based on this approach. Note that these models are invariant to nodes
labeling, thus, they allow to compare graphs of different nature or graphs with unknown
labels.

13. Degree Jenson–Shannon divergence (degreeJSD) (Carpi et al., 2011)

The degreeJSD model measures the distance between two graphs using Jenson–
Shannon divergence between two degree distributions P1 and P2, i.e.,

d G1;G2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J P1; P2ð Þ

p
:

14. Portrait divergence (POR)

The measure is proposed in Bagrow & Bollt (2019). Instead of directly comparing
networks G1 and G2, the model computes their portraits B1 and B2 that represent
information about number of nodes who have k nodes at distance l, 0 � k � N � 1,
0 � l � d, d—diameter of the network. Portraits B1 and B2 are further converted into two
distributions P1 and P2, which describe the probability on the two randomly chosen nodes
being connected at distance l and having k neighbors for one of them by equation

P k; lð Þ ¼ kB k; lð ÞP
c
n2c

;

where nc is the total number of nodes in the component c of graph G.
As a result, the portrait divergence is defined using Jenson-Shannon divergence between

two probability distributions P1 and P2, that describe distribution for all rows of portraits
B1 and B2,

d G1;G2ð Þ ¼ J P1; P2ð Þ:

One should note that, similarly to the degreeJSD measure, the portraits divergence takes
into account nodes degree distribution, however, it also considers the connectivity of the
graph. The computational complexity is proportional to the complexity of the shortest-
paths problem.
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15. Communicability sequence entropy (CSE)

Communicability sequence entropy, which is initially designed for unweighted
undirected graphs, compares two networks with respect to the communicability among the
nodes (Chen et al., 2018). First, it transforms the initial adjacency matrix A of graph G into
the communicability matrix C based on the number of shortest paths between two nodes
of different length, i.e.,

C ¼
X1

k¼1

1
k!
Ak ¼ eA ¼ Cij

� �
N�N :

Since matrix C is symmetric, the communicability sequence is formed by flattening the
upper triangular of C, which is then normalized into [0,1] interval to create the
communicability distribution P. As a result, the similarity of networks G1 and G2 is
computed using Jenson–Shannon divergence between two sorted degree distributions P1
and P2.

16. NetSimile measure

NetSimile measure, which is proposed in Berlingerio et al. (2012), is based on three
steps: feature extraction, feature aggregation, and comparison. First, it computes a pre-
defined set of numerical features for each node that capture the topology of the graph. For
instance, these features include the total number of neighbors of node v, its clustering
coefficient, the average number of neighbors of node v’s neighbors, their average clustering
coefficient, etc. Second, such information is transformed into a “signature” vector that
contains aggregated information (e.g., median, mean, standard deviation, skewness,
kurtosis) of each feature. Finally, two graphs G1 and G2 are compared with respect to the
Canberra Distance of “signature” vectors, i.e.,

dCan G1; G2ð Þ ¼
X
ij

sG1
ij � sG2

ij

			 			
sG1
ij þj jsG2

ij

			 			 ;
where sG1

ij —is j-th component of a “signature” vector of feature i in graph G1.

17. Onion spectrum (OnionS)

The onion spectrum is based on the idea of k-core which is the maximal induced
subgraph such that all nodes have degree no less than k. To find k-core, it is necessary to
eliminate sequentially nodes with degree less than k and recalculate the degree of remained
nodes. The process of k-core decomposition is similar to the peeling of an onion while all
nodes can be marked with respect to the elimination stage (layers). Similarly, the onion
spectrum of a network is defined as the fraction of all nodes which are found in a given
layer of the k-core decomposition (Hébert-Dufresne, Grochow & Allard, 2016). Overall, the
distance between two graphs is calculated with respect to the onion spectrum of each graph

Shvydun (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1371 14/35

http://dx.doi.org/10.7717/peerj-cs.1371
https://peerj.com/computer-science/


(e.g., compute Jenson-Shannon divergence between two onion spectrum). One should note
that this model can be enriched by considering some additional features like nodes degrees,
edges characteristics, etc.

18. dk-series

Another way of measuring topological structure of graph is discussed in Orsini et al.
(2015). It is based on the concept of dk-distributions which is defined as a collection of
distributions of G’s subgraphs of size d ¼ 0; 1; . . . ; N in which nodes are labelled by their
degrees in G. For instance, 0k-distribution corresponds to the average degree of G, 1k-
distribution is a standard degree distribution, 2k-distribution computes the number of
subgraphs of size two between nodes of degrees k1 and k2, etc. As a result, dk-distributions
are constructed for graphs G1 and G2 and the distance is calculated using the Jensen–
Shannon divergence. Note that for d ¼ 1 the measure is identical to degreeJSD. In this
article, 2k-series is considered.

Spectral distances
Next, the article presents graph distance models based on spectral properties of two graphs.
Contrary to models based on nodes correspondence, these modes are invariant to nodes
labelling. Therefore, they are more focused on global structural properties of a graph
because node labels do not play any role. Spectral distances can be used to compare graphs
of different size and nature.

19. λ-distances

The distance between networks can be also computed with respect to their spectrum
(Wilson & Zhu, 2008). Let �G ¼ �G

1 ; �
G
2 ; . . . ; �

G
n

� 
be the eigenvalues of the matrix that

represent graph G. There are different ways how the matrix can be defined: adjacency
matrix A, Laplacian matrix L ¼ D� A whereD is the degree matrix, normalized Laplacian
matrix L ¼ I � D�1=2AD�1=2, etc. Since spectrum of matrix captures topological
properties of the network, the distance between the graphs can be computed as

d G1; G2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�G1
i � �G2

i


 �2s
:

Similarly to Koutra, Vogelstein & Faloutsos (2013), the author considers three models
that compares the spectrum of adjacency matrix (λ-d Adj.), Laplacian matrix (λ-d Lap.)
and normalized Laplacian matrix (λ-d N.L.). In Banerjee (2012) eigenvalues are used to
construct a spectral density function for each graph while the distance is measured with
respect to these distributions. The implementation of the latter method for normalized
Laplacian matrix using the JS divergence is denoted by “Lap.JS”. Some other spectral
distances are described in Jurman, Visintainer & Furlanello (2011).

Shvydun (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1371 15/35

http://dx.doi.org/10.7717/peerj-cs.1371
https://peerj.com/computer-science/


20. Ipsen–Mikhailov (IM) distance.

The Ipsen–Mikhailov (IM) distance employs spectral density of eigenvalues from
Laplacian that provide a powerful invariant characterization of graphs (Ipsen &Mikhailov,
2002). The definition of the metric follows the dynamic interpretation of a N-nodes
network as a N-particles molecules connected by identical elastic strings. This dynamical
system is described by a set of differential equations €xi þ

PN
j¼1 Aij xi � xj


 � ¼ 0 for
i ¼ 1; . . . ;N where A is an adjacency matrix and xi is a coordinate of a particle. The
vibration frequencies of such a molecule can be described by the spectra of the graph.

The authors introduce the spectral density q xð Þ for a graph as a sum of narrow Lorentz
distributions

q xð Þ ¼ C
XN�1

k¼1

c
x� xkð Þ þ c2

;

where xk ¼
ffiffiffiffiffi
�k

p
is vibrational frequencies that are given by the eigenvalues of the

Laplacian matrix, C is the normalization constant and c is a bandwidth parameter.
The spectral distance between networks G1 and G2 with densities q1 xð Þ and q2 xð Þ can

be defined as

d G1;G2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ þ1

0
q1 xð Þ � q2 xð Þ½ �2dx

s
:

21. Hamming–Ipsen–Mikhailov (HIM) distance.

The HIM distance is based on two features. First, it computes the Hamming distance
H G1;G2ð Þ that indicates the difference for the edges in both networks (see GED distance).
Second, it computes Ipsen–Mikhailov IM G1;G2ð Þ distance, which is measured as the
square-root of the squared difference of the Laplacian spectrum for each network. As a
result, the Hamming-Ipsen-Mikhailov (HIM) distance is computed as

HIM G1;G2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H G1;G2ð Þ2 þ a 
 IM G1;G2ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p ;

where a is an arbitrary parameter that balances the trade-off between global (IM) and local
(H) information in networks. If a ¼ 0, the HIM distance is identical to the Hamming
distance while a ! 1 approaches the HIM distance to the Ipsen–Mikhailov distance.
Note that the HIM distance takes values in [0, 1].

22. NetLSD measure

The Network Laplacian Spectral Descriptor (NetLSD) is proposed in Tsitsulin et al.
(2018) while the idea is similar to the graph diffusion distance. First, it computes the
normalized Laplacian matrix L ¼ I � D�1=2AD�1=2 for each graph. This normalized
Laplacian matrix, as opposed to the unnormalized version, has a bounded spectrum and
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satisfy some important theoretical properties. Next, the authors consider a heat diffusion
process in a network that can be defined using a heat equation

v0 tð Þ ¼ �Lv tð Þ:

The closed-form solution of this equation is given by the kernel matrix Ht ¼ e�tL that
represents the amount of heat transferred among the nodes at time t. By controlling t, one
can obtain representations of varying degrees of locality (t ! 0 for the local and t ! 1
for the global structure of the network). However, as the heat matrix involves pairs of
nodes, the NetLSD measure computes a collection of heat traces tr Htð Þ at different time t.
As a result, the distance between the graphs can be measured as the Frobenius norm of heat
traces.

23. Non-backtracking spectral distance (NBD)

Another spectral approach is proposed in Torres, Suárez-Serrato & Eliassi-Rad (2019).
The NBD is designed for undirected, unweighted networks and relies on the idea of non-
backtracking cycle of a graph which is a closed walk that does not retrace any edges
immediately after traversing them. Backtracking edges are not taken into account as they
are trivial for undirected graphs while non-backtracking cycles may capture some
important topological features of a graph such as hubs and triangles.

The model consists of three steps. First, it transforms graph G into a non-backtracking
matrix B that can be interpreted as a transition matrix of a random walker that does not
perform backtracks. To simplify the calculations, it also iteratively removes the nodes of
degree one from the graphG as it does not change the trace of the non-backtracking matrix

B. Moreover, for computational efficiency it considers a matrix B0 ¼ A I � D
I D

� �
which

share the same eigenvalues as matrix B. Second, it computes r largest eigenvalues of a
matrix B0 which capture information about non-backtracking cycles in a graph. Since
matrix B is not symmetric and eigenvalues may be complex, one can identify them as
points in R2 by using their real and imaginary parts as coordinates. Finally, non-
backtracking spectral distance between two graphs is computed as the distance (e.g.,
Euclidean, Wasserstein, Hausdorff, etc.) between r largest eigenvalues of corresponding
non-backtracking matrices.

The authors also proved that NBD is a pseudo-metric as it may provide zero distance for
two distinct graphs. However, it is also mentioned that the proposed model satisfies non-
negativity, symmetry, the triangle inequality.

24. Distributional non-backtracking spectral distance (d-NBD)

The measure is proposed in Mellor & Grusovin (2019). Similarly to NBD, d-NBD is
based on non-backtracking matrix B of size 2n� 2n. However, instead of comparing
eigenvalues, it compares their distribution. After computing r largest eigenvalues of a

Shvydun (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1371 17/35

http://dx.doi.org/10.7717/peerj-cs.1371
https://peerj.com/computer-science/


matrix B0, it rescales them such that they lie exclusively in the disk of radius 1 and then
construct the empirical cumulative spectral density function F r; hð Þ as

F r; hð Þ ¼ 1
2n

X2n
i

1 b�i		 		� r
� 1

0� arg b�i
 �� h
� ;

where r 2 0; 1½ �; h 2 0; p½ �, b�i are rescaled eigenvalues, arg b�i

� �
is the argument of b�i and 1

is the indicator function. As a result, the d-NBD measures the distance between graphs G1

and G2 with respect to their spectral densities F1 and F2, i.e.,

d G1;G2ð Þ ¼ 1
p

Z 1

0

Z p

0
F1 r; hð Þ � F2 r; hð Þð Þ2drdh

� �1=2
:

InMellor & Grusovin (2019) it is mentioned that d-NBD is also pseudo-metric as it may
provide zero distance for two distinct graphs.

25. Quantum Jensen–Shannon divergence (QJSD)

The Quantum Jensen-Shannon divergence (QJSD) is a generalization of JS divergence
that is proposed inMajtey, Lamberti & Prato (2005). For the networks, De Domenico et al.
(2015) define it through the square root of the Jensen–Shannon divergence between the
eigenvalues of the normalized Laplacian matrix (De Domenico et al., 2015; De Domenico &
Biamonte, 2016).

d G1;G2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sq

qþ r
2

� �
� 1
2

Sq qð Þ þ Sq rð Þ
 �r
;

where q and r are density matrices and q is the order parameter, while Sq qð Þ is computed
as

Sq qð Þ ¼ 1
1� q

log2
X

�k qð Þq;

where �k qð Þ ¼ e�b�k Lð ÞP
e�b�l Lð Þ ; �k Lð Þ indicates the kth eigenvalue of Laplacian matrix of a

network Gi, b is an arbitrary parameter for diffusion propagator. The QJSD measure is
symmetric and takes values in [0, 1]. Although the properties of QJSD measure are
discussed in multiple studies (see Lamberti et al. (2008); Briët & Harremoës (2009)), it is
not proved in general that QJSD measure is a distance metric. According to Carpi et al.
(2019), the main drawbacks of this measure are the lack of local information and the
number of isospectral networks with different topological features.

Hybrid measures
Next, hybrid graph distance measures are discussed. Contrary to previous models, these
models compares two networks with respect to various aspects: statistics of nodes, edges or
even the whole network.

26. Signature similarity (SimHash) (Papadimitriou, Dasdan & Garcia-Molina, 2008, 2010)
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The method is based on SimHash algorithm which is applied to document comparison
(Charikar, 2002). Suppose that each graph is characterized by a set of weighted features
L ¼ ti;wið Þf g where ti is a token ( = feature) and wi is its weight. For instance, such
features can represent the quality of nodes, edges or the whole network. Features with
small weights play a less important role than features with large weights.

Each token can be randomly encoded as a multidimensional binary vector~ai of size b
using a hash function. Then one can define a vector~hG of the graph G as

P
ti
~ai 
 wi and

then transform each entry to 1 if it is positive and to 0 otherwise. Then the signature
similarity between graphs G1 and G2 is computed as

simSimHash G1;G2ð Þ ¼ 1�
Hamming ~hG1 ;

~hG2

� �
b

;

where Hamming ~hG1 ;
~hG2

� �
is the Hamming distance which is defined as the number of

positions for which the corresponding entries of binary vectors are different. One should
note that if all the features are some graphs statistics, the model becomes invariant to graph
labeling. This article follows the original article and considers centrality of nodes
(PageRank) and importance of edges with respect to VS algorithm as features of the graph.

27. D-measure

In Schieber et al. (2017) the authors propose D-measure which compares the
dissimilarity of two networks with respect to their network’s distance distributions, to their
node’s distances distributions, and to the analysis of the alpha centrality. The key concept
is the network node dispersion (NND), which is a measure of the heterogeneity of a graph
G in terms of connectivity distances. NND is computed as the normalized Jensen–
Shannon divergence of node’s distances distributions and the average of the N
distributions in graph G, i.e.,

NND Gð Þ ¼ J P1; . . . ;PNð Þ
log d þ 1ð Þ ¼

1
N

X
ij

pi jð Þ log pi jð Þ
l jð Þ

� �
log d þ 1ð Þ ;

where d is the network’s diameter, pi jð Þ is the fraction of nodes that are connected to node i

at distance j and l jð Þ ¼
PN

i¼1 pi jð Þ
N

is the average distribution.

As a result, D-measure between graphs G1 and G2 is computed as the difference between
the graphs averaged node-distance distributions (network’s distance distribution), l1 and
l2 as well as between the α-centrality values of the graphs and their complements, i.e.,

D G1;G2ð Þ ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J l1; l2ð Þ

log2

s
þ w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NND G1ð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NND G2ð Þ

p			 			
þ w3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J P/G1 ;P/G2ð Þ

log2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J P/�G1

;P/�G2


 �
log2

s0@ 1A;
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where w1, w2 and w3 are arbitrary weights of the terms where w1 þ w2 þ w3 ¼ 1 (by
default, w1 ¼ w2 ¼ 0:45; w3 ¼ 0:1), P/G1 ; P/G2 , P/�G1

; P/�G2
are the distributions of the α-

centrality values in graphs G1, G2 and their complements �G1; �G2. It is also proved in
Schieber et al. (2017) that NND Gð Þ < 1 for any graph and, consequently,
0 � D G1;G2ð Þ < 1. If two graphs are identical, the D-measure is equal to 0. However, the
authors also mention that D Gi;Gj


 � ¼ 0 if two graphs have the same graphs distance
distribution, the same NND and the same α-centrality vector, which might be true for non-
isomorphic networks. Finally, D-measure for sparse graphs can be adapted for large-scale
sparse graphs if the α-centrality comparison is avoided (w3 ¼ 0).

An adaptation of D-measure to weighted networks is discussed in Jiang et al. (2021).

28. Layer difference (LD) measure

D-measure can be adapted to the networks with the same nodes sets. In Carpi et al.
(2019) the authors propose a novel approach to assess the similarity of layers in a multiplex
network, however, it can be defined to measure the similarity of different graphs as well.
The proposed LDmeasure is based on the node distance distributionNG

i of node i in graph
G, which indicates the fraction of nodes that are at distance d (shortest path) from node i
and the transition matrix TG

i , which shows the probability of visiting each node in one step
from node i. Thus, the similarity of node i is computed in terms of their local
neighborhood and connectivity paths using the Jensen–Shannon divergence, i.e.,

Di G1;G2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J NG1

i ;NG2
i


 �q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J TG1

i ;TG2
i


 �q
2
ffiffiffiffiffiffiffiffi
log2

p
With this definition, Di G1;G2ð Þ ¼ 0 if node i has the identical connectivity paths in

networks G1 and G2 while Di G1;G2ð Þ ¼ 1 indicates that node i is not connected (not
present) in one graph, while there are paths connecting i to all nodes in the other graph. As
a result, the LD measure is computed as the average value ofDi G1;G2ð Þ over all the nodes,
i.e.,

D Gi;Gj

 � ¼PiDi G1;G2ð Þ

Vi [ Vj

		 		 :

One should note that Carpi et al., 2019 extended LD measure to assess the diversity in
multiplex networks.

29. SLRIC similarity

In Aleskerov & Shvydun (2019) the authors propose a model that evaluates the distance
between two networks in terms of their structure and sets of central elements. In other
words, two graphs are similar if they have comparable topological structure as well as the
set of the most important nodes. Thus, the SLRIC similarity measure is designed for
complex systems where nodes influence is essential for the analysis of the network
evolution.
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To compare the centralities of nodes, the authors adapt an idea of interval orders
(proposed in Wiener (1914)) and construct a matrix R ¼ rij

� �
for each graph G, which

represents information about relative ranking of nodes, as

rij ¼ 1; ci � cj > e;
0; otherwise;

�
where ci and cj is a centrality of nodes i and j, e � 0 is a pre-defined constant which can be
set to deal with inaccuracy of initial data.

The distance between two rankings for networks G1 and G2 can be evaluated as the
normalized Hamming distance, i.e.,

d R1;R2ð Þ ¼
Pn

j6¼k r
G1
ij � rG2

ij

			 			
n 
 n� 1ð Þ ;

where n is the total number of nodes in networks G1 and G2. The distance between two
rankings varies from 0 (the same ranking of nodes) to 1 (the opposite ranking of nodes).

Similarly, the distance in terms of the network topology for networks G1 and G2 is
calculated as

d ~C1; ~C2

 � ¼Pn

j;k ~c
G1
ij � ~cG2

ij

			 			
n2 
 c ;

where ~C1 ¼ ~cG1
ij

h i
and ~C2 ¼ ~cG2

ij

h i
are the matrices of indirect influence of nodes from

networks G1 and G2. These matrices can be obtain using SRIC or LRIC modes which are
discussed in Aleskerov, Meshcheryakova & Shvydun (2017) and Aleskerov, Shvydun &
Meshcheryakova (2021). A distinctive feature of these models is that they identify
significant edges while insignificant edges are not taken into account. Finally, a single value
for the distance between the networks G1 and G2 can be computed as Euclidian norm
between two-dimensional vector d R1;R2ð Þ; d ~C1; ~C2


 �
 �
or according to the formula

d G1; G2ð Þ ¼ a 
 d R1;R2ð Þ þ 1� að Þ 
 d ~C1; ~C2

 �

;

where parameter a 2 0; 1½ � corresponds to relative importance of the ranking distance.
One should note that the properties of the model in Aleskerov & Shvydun (2019), as well as
the optimal values of additional parameters, have not been studied in detail.

Table 1 presents a list of selected graph distance/similarity measures and provides their
characterization.

In the next Section, 39 graph distance methods are considered: weighted and
unweighted versions of Jaccard Index (JI), normalized and unnormalized versions of graph
edit distance (GED), vertex/edge overlap (VEO), 1-,2- and 3-hop nodes neighborhood (k-
hop NN), maximum common subgraph distance (MCS), normalized, unnormalized and
weighted versions of Frobenius distance (FRO), vector similarity algorithm (VS),
DELTACON, polynomial dissimilarity (POL), graph diffusion distance (GDD), resistance
perturbation (RP), vertex ranking (VR), degree Jenson-Shannon divergence (degreeJSD),
portrait divergence (POR), communicability sequence entropy (CSE), NetSimile, onion
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spectrum (OnionS), dk-series (d = 2), 4 versions of λ-distances (λ-d Adj., λ-d Lap., λ-d N.
L., Lap.JS), Ipsen–Mikhailov (IM) and Hamming–Ipsen–Mikhailov (HIM) distances,
network Laplacian spectral descriptor (NetLSD), non-backtracking spectral distance
(NBD) and distributional NBD (d-NBD), quantum Jensen–Shannon divergence (QJSD),
signature similarity (SS), D-measure, LD-measure and SLRIC similarity (SLRIC-sim). One
should note that unweighted versions of Frobenius distance and graph edit distance are
identical by their definition.

Table 1 Graph distance/similarity measures.

№ Name Idea Network type Invariant to node
labeling

Undirected Directed Unweighted Weighted

1 Jaccard index (JI) Sets
comparison

+ + + + –

2 Graph edit distance (GED) + + + – –

3 Vertex/edge overlap (VEO) + + + – –

4 k-hop nodes neighborhood (k-hop NN) + + + – –

5 Maximum common subgraph distance (MCS) + – + – –

6 Frobenius distance (FRO) Matrix
distances

+ + + + –

7 Vector similarity algorithm (VS) + + + + –

8 DELTACON + + + + –

9 Polynomial dissimilarity (POL) + + + – –

10 Graph diffusion distance (GDD) + + + + –

11 Resistance perturbation (RP) + + + + –

12 Vertex ranking (VR) Nodes
statistics

+ + + + –

13 Degree Jenson-Shannon divergence (degreeJSD) Graph
statistics

+ + + – +

14 Portrait divergence (POR) + + + – +

15 Communicability sequence entropy (CSE) + + + – +

16 NetSimile measure + + + + +

17 Onion spectrum (OnionS) + – + – +

18 dk-series + – + – +

19 λ-distances Spectral + + + – +

20 Ipsen–Mikhailov (IM) distance + + + – +

21 Hamming–Ipsen–Mikhailov (HIM) distance + + + – +

22 NetLSD measure + + + – +

23 Non-backtracking spectral distance (NBD) + + + – +

24 Distributional non-backtracking spectral distance
(d-NBD)

+ + + – +

25 Quantum Jensen-Shannon divergence (QJSD) + + + – +

26 Signature similarity (SimHash) Hybrid + + + + ±

27 D-measure + + + + +

28 Layer difference (LD) + + + – –

29 SLRIC similarity + + + + –
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VALIDATION
“Graph Distance Measures” discusses graph distance measures which are based on
different notions of similarity. Unfortunately, some models cannot be applied to large
networks due to their computational complexity. Therefore, there is a need to compare
these models in order to understand their correlation.

“Validation” provides a comparison of the discussed models. First, the author examines
small graphs and presents the main difference among the graph distance measures.
Second, experiments on synthetic networks are conducted: one can generate a graph and
then perform abrupt changes of its structure in order to evaluate the correlation between
distance measures. Next, the performance of distance measures on some real temporal
networks is compared. Finally, the runtime of graph distance measures is evaluated.

The comparison of the models is performed in Python. Note that some distance
measures are computed using the Python software package, netrd (McCabe et al., 2021).

Comparison of the models on small graphs
Let us consider some small graphs in order to understand the difference between the
distance measures. To perform such an experiment, the author examines graphs from
Koutra, Vogelstein & Faloutsos (2013) and Schieber et al. (2017). Note that all these graphs
are undirected and unweighted, as many models cannot be applied to weighted/directed
networks.

The graphs are presented in Fig. 1. The interpretation of the examples is provided
below:

� Example 1 considers a complete graph with five nodes (G1). For G2 and G3, one and
two edges have been removed.

� Example 2 examines a circle graph with five nodes (G1). In graph G2 an edge between
nodes 4 and 5 is removed. Graph G3 is disconnected.

� Example 3 studies three graphs with the same number of nodes and edges: G1 and G2
are connected while graph G3 contains three identical disconnected components.

� Example 4 considers two complete graphs with five nodes, which are connected by an
edge. For graphs G2 and G3, an edge was removed from the graph.

� Example 5 studies three graphs with the same number of nodes and edges. Only graphs
G1 and G2 are connected.

� Example 6 examines a complete graph with five nodes which is connected to a chain
with four nodes. In graphs G2 and G3 an edge was excluded.

Intuitively, graphs G1 and G2 are more similar than G1 and G3 (test 1). Similarly, the
distance between G1 and G2 should be less than the distance between G2 and G3 (test 2).

Table 2 provides the results of the experiment. An empty cell in the table denotes tests
that could not verified using ‘netrd’ package. According to the results, there are only two
graph distance measures (deltacon, IM) that passed all the tests. CSE, NetSimile, NetLSD
passed 11 of 12 tests. As it is expected, most simple models that rely on short connections
(JI, GED,VEO, FRO) did not satisfy most of the tests. Interestingly, OnionS provided a
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poor performance. Furthermore, examples 3 and 5 have the largest amount of tests that
graph distance measures did not pass. Overall, it is observed that 21 graph distance
measures have passed more than 50% of tests.

Comparison of the models on artificial time-evolving networks
To compare graph distance measures on more complex structures, the author conducts the
following experiment. First, there were generated 1,000 Erdős–Rényi random graphs with
n ¼ 100 nodes where edges appear with probability p ¼ 2= n� 1ð Þ. The value of p is
chosen to keep the graph sparse and ensure that most nodes correspond to the giant
component. Second, there were performed abrupt changes in the structure of the graph to
simulate its evolution. At every iteration some random edges are randomly removed and

Figure 1 Small artificial graphs. Full-size DOI: 10.7717/peerj-cs.1371/fig-1
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added to the graph (the total number of iterations is 100). Finally, the author computes
various graph distance measures and evaluates the correlation coefficient among them.
Note that all these graphs are undirected and unweighted in order to compare all graph
distance measures.

Table 2 Comparison of graph distance measures on small graphs.

Model Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

JI + + + + – – – + – – – +

GED + + + – – – – + – – – +

GED norm + + + + – – – + – – – +

VEO + + + + – – – + – – – +

1-hop NN + – + – – – – + – – + +

2-hop NN – – + + + + + + + + + +

3-hop NN – – + + + + + + + + + +

MCS – – + + + + + + + + + +

FRO + + + – – – – + – – – +

VS + + + + – + + + – – + +

deltacon + + + + + + + + + + + +

POL + – + – – – – + – – + +

GDD – + + + + + + – – + + +

RP + +

VR + – + – – + + + + + + +

DegreeJSD + – + – + – + + + + – –

POR + – + – + – + + + + + +

CSE + – + + + + + + + + + +

NetSimile + + + – + + + + + + + +

OnionS – – – – – – – – + – – +

dk-series + – + + – – + + + + – –

λ-d Adj. + – + – + + + + + + – +

λ-d Lap. + – + – + + + + + + – +

λ-d N.L. + – + – + + + + + + – +

Lap.JS + + – – + + – – + – + +

IM + + + + + + + + + + + +

HIM + + + – + – + + – – – +

NetLSD + + + + + – + + + + + +

NBD + – + + + –

d-NBD + – + – + + – – – –

QJSD + + + – – – – + – – + +

SS + + – – + – + + + + + +

d-measure + –

LD-measure + –

SLRIC-sim – – + + – – + + + – + +
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Next, the author provide information about Kendall correlation (Kendall, 1970), that
counts the number of pairwise disagreements between two ranking lists. It is observed that
among 630 possible pairs of graph distance measures 144 pairs indicate a very strong
correlation (>0.8) and 217 pairs have a weak correlation (<0.4). Overall, it can be
concluded that although graph distance measures are based on different concepts of
similarity, there exist many measures that have a good correspondence to each other (see
Fig. 2). It should be noticed that graph distance measures have been also compared with
respect to Spearman and Pearson correlation coefficients, however, these results are not
provided in the article because of their high similarity to Kendal correlation.

Since some graph distance measures are strongly correlated to each other, one can
combine them in clusters. In this work, the agglomerative clustering algorithm is applied
and uses correlation coefficient is used as the distance between different graph similarity
models. The results are provided in Fig. 3.

According to Fig. 3, 36 graph distance models have been combined in 12 groups. There
are six clusters that contain only one instance: MSC, d-NBD, SS, OnionS, POR, NetSimile.
These models did not provide strong correlation with other distance measures on time-
evolving random graph models. The remaining six clusters contain eight, six, five, five and
four graph distance measures. Some of the clusters include methods that are based on the
same idea. For instance, there is a cluster with five spectral methods (λ-d Adj., λ-d Lap.,
NBD, IM, HIM). There is also a group of methods with a very strong correlation (>0.92)
between each other: FRO, QJSD, GED, POL, FRO (norm). Interestingly, the experiments
on random graph models demonstrate that models of different nature are well correlated
and that some comprehensive methods are agreed well to simple models.

Comparison of the models on real networks
In this subsection, graph distance measures are compared on the real network that evolves
over time. In this work, the author performs the comparison using the crowdsourced air
traffic data from the OpenSky Network (Strohmeier et al., 2021) during 2019–2021. The
choice of the dataset can be explained by the fact that air transportation suffered major

Figure 2 Histogram over Kendall. Full-size DOI: 10.7717/peerj-cs.1371/fig-2
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losses during the pandemic and, thus, there were large structural changes in the network
due to imposed lockdowns and travel restrictions.

The air traffic data include information about the origin and destination airports for
each flight as well as the date of the last airborne message received by the OpenSky
Network. It is updated monthly and contains information about 81,954,814 flights seen by
the OpenSky Network from January 2019 to December 2021. This article aggregates all the
flights into the monthly level in order to construct 36 networks that correspond to air
traffic network between countries at a particular month and then perform their pairwise
comparison. Each network includes from 93 to 102 nodes while the graph density is
relatively dense (0.23–0.31).

Figure 3 Correlation matrix (absolute value) between graph distance measures on random graph models. Red rectangles denote clusters with
respect to agglomerative hierarchical clustering algorithm. Full-size DOI: 10.7717/peerj-cs.1371/fig-3
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According to the air traffic data, the largest decrease in the total number of edges
occurred in April 2020 (>25% drop). It can be explained by the spread of the pandemic
(the World Health Organization declares COVID-19 a pandemic in March 2020) that led
to subsequent lockdowns and travel restrictions. Thus, one can suppose that the largest
dissimilarity should be between air transportation network of April 2020 and the network
of some other period. Interestingly, only 17 graph distance measures consider the network
of April 2020 as one of the most dissimilar networks while other measures mark June 2021
(11), July 2021 (five) and some other periods. More details are provided in Table 3.

Finally, information about Kendall correlation between graph distance measures in
provided in Fig. 4. Similarly to the previous experiments on random graphs, it can be
observed that some graph distance measures can be grouped in clusters because of the
strong correlation between them. Overall, the results have a good correspondence with the
previous experiments on random graphs. However, due to dense and weighted structure of
the network, some models formed separate clusters (e.g., deltacon) or moved to another
groups (e.g., 2-hop NN, 3-hop NN).

Performance of the graph similarity models
An important aspect of the graph similarity models is their scalability. Many real networks
may contain billions of nodes and edges and are evolving almost instantly. Thus, there is a

Table 3 Most dissimilar air transportation networks.

Network 1 Networks 2 Graph distance measure (Total)

2020-04 2021-06 JI, GED, GED norm, 1-hop NN (5)

2021-07 VS, IM, λ-d Adj., NBD (4)

2019-10 λ-d Lap. (1)

2021-05 NetSimile (1)

2021-08 GDD (1)

2021-04 CSE (1)

2020-01 POR (1)

2021-12 d-NBD (1)

2019-07 2021-06 FRO, FRO (norm), HIM, POL (4)

2019-02 2020-10 2-hop NN, SLRIC-sim (2)

2020-05 SS (1)

2019-10 2019-02 FRO weighted (1)

2021-07 dk-series (1)

2021-05 2020-05 NetLSD (1)

2019-04 DegreeJSD (1)

2020-08 2021-08 QJSD (1)

2021-04 Deltacon (1)

2019-01 2020-10 3-hop NN (1)

2021-01 MSC(1)

2021-06 2019-09 Lap.JS (1)

2021-03 VR (1)
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need to find an appropriate measure that is applicable to large networks and captures
global information about network.

To compare the average runtime of the models, there have been generated various graph
structures. The experiment is performed on Erdős-Rényi random graphs of the same
density (p = 0.05) that contain from 100 to 3,000 nodes. Due to the computational
complexity, the runtime of each model is averaged across 500 iterations for graphs with
less than 1,000 nodes and across 10 iterations for larger graphs. It should be mentioned
that the article considers existing Python implementations of the methods, however, in
theory, some of these algorithms can be further optimized.

Figure 4 Correlation matrix (absolute value) between graph distance measures on air traffic data. Red rectangles denote clusters with respect to
agglomerative hierarchical clustering algorithm. Full-size DOI: 10.7717/peerj-cs.1371/fig-4
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The results are provided in Fig. 5. For a better visualization, the graph distance measures
have been divided into four groups with respect to their runtime. Group 1 (top left)
contains measures with a low computational complexity (<0.4 s on graphs with 3,000
nodes). These graph distance measures can be applied to large graphs; however, they
consider only the local structure of the network such as direct links. Group 2 (top right)
contains measures with relatively low computational complexity (<40 s on graphs with
3,000 nodes), thus, they can be applied to networks with thousands of nodes. The group
includes some local measures (e.g., Frobenius distance) but there are also some promising
models that employs indirect connections (e.g., deltacon, NetLSD, 2-hop NN) or graphs
eigenvalues (e.g., Lap.JS, λ-d Adj.). Next, the graph similarity measures in group 3 (bottom
left) consider the global structure of the network, however, their application is limited to
relatively small networks with hundreds of nodes. Finally, group 4 (bottom right) includes
graph distance measures that can be applied to small networks (<500 nodes) as they are
based on the nodes pairwise comparison (e.g., SLRIC-sim) or the shortest paths
computation (e.g., D-measure).

Figure 5 The runtime of graph similarity models on random networks. The x-axis corresponds to the number of nodes in the network, and the
y-axis corresponds to the average runtime (in seconds). Full-size DOI: 10.7717/peerj-cs.1371/fig-5
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CONCLUSION
Graph similarity is one of the most important problems that can gain a comprehensive
insight into network evolution and identify structural phase transitions in graphs or detect
anomalies in real systems. As evaluating graph similarity is an ill-defined problem, there
has been proposed numerous approaches to measure the distance between graphs.
Therefore, it is important to perform the comparison of such models and give guidance on
their use.

The article presents established views of the main aspects of the problem and provided a
comprehensive comparison of 39 graph distance measures on simple graphs, random
graph models and real networks. To the best of the author’s knowledge, this is the first
study that analyzes such a large set of models.

The graph distance measures have been grouped into six categories based on the
underlying idea of computing the distance: sets comparison, matrix distances, nodes
statistics, graph statistics, spectral distances and hybrid measures. Models, which are based
on the comparison of sets, matrices or node statistics, are mostly designed for temporal
and multilayer networks. On the contrary, similarity models, which computes graph
statistics or graph spectrum, are invariant to nodes labelling and allow to compare graphs
of different size and nature. Furthermore, most of the models can be applied to both
directed and undirected graphs but only a few of them can be adapted to weighted graphs.

The comparison of the models on small graphs has shown that deltacon, IM, CSE,
NetSimile and NetLSD provide the best correspondence to the intuitive understanding of
what graphs are more similar. Although this analysis is rather subjective (there might be as
well other examples of graphs), it might offer some insights into the weaknesses of the
models.

The experiments on random graphs and real networks demonstrate that graph
similarity measures of different nature are surprisingly well correlated and well agreed with
simple models. For instance, the polynomial dissimilarity (POL) has a strong correlation
with Frobenius distance both on random and real graphs. The Quantum Jensen–Shannon
divergence (QJSD) strongly correlates with Frobenius distance on random graphs. The
Hamming–Ipsen–Mikhailov (HIM) distance has a good correspondence to other spectral
methods. It is also observed that all models based on sets comparison are well correlated
with each other. As a result, some comprehensive models can be substituted by simpler
ones on large graphs. In addition, the observations can be used as the basis for further
comparison of the models.

The graph distance measures have been divided into four groups with respect to their
performance. Models that capture the global structure of the network have a larger
computational complexity compared to other models that consider only direct
connections. However, the key finding is that there exist some models (e.g., NetLSD,
deltacon, HIM and some spectral methods) that capture the global structure of the
network and provide the output in a reasonable time. Finally, the author provides an
implementation in Python of all graph similarity measures that are discussed in the article
The Python code is also available on GitHub: https://github.com/SergSHV/.
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It is necessary to point out that the article is no aimed to identify the best graph
similarity model as the definition of similarity is not well defined and there is no single
benchmark to evaluate the models. However, it is strongly believed that the results of the
study can be used for the choice of appropriate graph similarity measure and for further
development of new models.
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