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ABSTRACT
Code smells are poor code design or implementation that affect the code maintenance
process and reduce the software quality. Therefore, code smell detection is important
in software building. Recent studies utilized machine learning algorithms for code
smell detection. However, most of these studies focused on code smell detection using
Java programming language code smell datasets. This article proposes a Python code
smell dataset for Large Class and Long Method code smells. The built dataset contains
1,000 samples for each code smell, with 18 features extracted from the source code.
Furthermore, we investigated the detection performance of sixmachine learningmodels
as baselines in Python code smells detection. The baselines were evaluated based on
Accuracy and Matthews correlation coefficient (MCC) measures. Results indicate the
superiority of Random Forest ensemble in Python Large Class code smell detection by
achieving the highest detection performance of 0.77 MCC rate, while decision tree was
the best performing model in Python Long Method code smell detection by achieving
the highest MCC Rate of 0.89.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Software Engineering
Keywords Python, Code smell, Detection, Machine learning, Large class, Long method

INTRODUCTION
During the software development process, several technical debts and design issues may
occur while delivering the deadlines andmeeting the new requirements. Technical debts are
considered as one of the software terms, which refers to sacrificing one of the development
criteria in order to achieve another one (e.g., sacrificing the software quality to reach the
deadline) (Zazworka et al., 2011). Code smells are considered as one of the code debts
that may affect the software quality negatively. Code smells are poor code designs or
implementations, such as writing complex code or implementing a very large class (Güzel
& Aktas, 2016). The code smell can lay under different levels, class-level, method-level, or
statement-level. However, code smells do not impact the system’s functionality but affect
its quality. Therefore, detecting code smells in the early stages of designing is important to
enhance the quality and performance of the code, and the whole system (Leopold, Mendling
& Polyvyanyy, 2014). Code smells can be detected either in source code or system design
manually or automatically. Themain approaches of code smell detection are metrics-based,
rule-based, and machine learning-based. The metrics-based approach evaluates the source
code by defining code metrics (e.g., lines of code) and a threshold value for each metric.
Thus, the threshold value is the main factor that affects code smell detection accuracy.
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However, identifying the proper threshold is not a trivial task because there are no standard
threshold values leading this approach to be unreliable (Lacerda et al., 2020; Menshawy,
Yousef & Salem, 2021). In a rule-based approach, software engineer experts optimize
a rule to define each code smell. Rules defining is done manually sometimes and has
no standardization (Moha et al., 2009). Since these two approaches require effort from
software engineers, Machine Learning (ML) algorithms were utilized recently in code
smell detection to automate the detection process by building a complex mapping between
the metrics and predictions. Moreover, ML algorithms have the capability to detect more
complex code smells (Al-Shaaby, Aljamaan & Alshayeb, 2020). Based on the latest SLRs,ML
algorithms demonstrated high code smells detection performance. However, most recent
studies focus on code smell detection in Java object-oriented programs. Therefore, this area
needs further studies to investigate code smell detection written in other programming
languages (e.g., Python) (Al-Shaaby, Aljamaan & Alshayeb, 2020; Azeem et al., 2019).

The main objective of this study is to fill the gap by creating a labeled Python code smells
dataset and then utilizing conventional ML models as baselines for Python code smell
detection. Our research objective will be achieved by investigating the following research
questions.

• RQ1: How can we construct a labeled Python code smell dataset suitable for supervised
learning and validate its quality?
• RQ2: What is the detection performance of Machine Learning models in Python code
smell datasets?

This study has twomain contributions. Firstly, create a Python code smell dataset for two
different code smells from different code levels, which are Large Class and Long Method
code smells. The dataset will be labeled into smelly and non-smelly samples with different
code metrics as features. Secondly, utilize the created dataset in performing an empirical
study to investigate the detection performance of baseline MLmodels in Python code smell
detection, and they are decision trees (DT), random forest (RF), logistic regression (LR),
support vector machines (SVM), multi-layer perceptron (MLP) and stochastic gradient
descent (SGD).

The rest of this article is organized as follows: The section ‘Related Work’ summarizes
related work on building code smell datasets and summarizes the studies that used ML
in code smell detection. The section ‘Python Code Smell Dataset’ presents the process
of building the dataset. The section ‘Empirical Study Design’ presents the design of
our empirical study. The section ‘Results and Discussion’ presents the study results. The
section ‘Threats to Validity’ presents the threats to validity. Finally, the section ‘Conclusion’
concludes the work with future work.

RELATED WORK
This section will demonstrate the studies that built code smell datasets to find the gap in
the existing research. Then, studies that used ML models in code smell detection will be
summarized to define the efficiency of ML models in this field and follow them to validate
the dataset that will be built in this study.
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Dataset building
Based on the literature, some studies built code smells datasets to enrich the field and
facilitate the process of code smells detection. Walter, Fontana & Ferme (2018) created a
Java code smells dataset using 92 open-source projects from the Qualitas Corpus (Tempero
et al., 2010). Then, they validated the created dataset, which contained 14 code smells using
six different detectors. As well, Qualitas Corpus is used by Fontana et al. (2016) to identify
four code smells using five automated code smells detectors. The authors used at least two
detectors for each code smell. Then, the data was validatedmanually by threeMSc students,
and they found 1,160 out of 1,986 instances were classified incorrectly. Finally, they created
a dataset of 140 and 280 positive and negative instances, respectively for each code smell
(total of 420 instances per code smell). Later, Di Nucci et al. (2018) found limitations in
this datasets and merged them to be more realistic. As a result, the author found the area
of code smell detection still needs more research and more realistic datasets.

Lenarduzzi, Saarimäki & Taibi (2019) created a Technical Debt dataset that was collected
from33 Java projects using different tools. Then, it was evaluated through a set of automated
quality-evaluation and code smell detection tools. The authors detected all code smells
automatically without any manual validation. Sharma & Kessentini (2021) published
QScored a large quality metrics and code smells dataset of 55,000 Java and 31 C# GitHub
repositories containing 1.1 billion lines of codes. This dataset was developed automatically
using code smells detection tools. The code quality information of QScored dataset includes
several types of detected architecture smells, 20 types of design smells, and eleven types of
implementation smells.

Palomba et al. (2018) developed a dataset with 243 instances of five kinds of code smells.
The dataset was collected from 20 open-source Java software projects. After data collection,
a systematic procedure was followed to validate the code smell dataset as follows: At the
beginning, one author identified the five code smells in the projects. Then, the other author
validated the identified smells by discarding any false positives. Hence, the likelihood of
positive instances that are correctly classified will be increased.

Another dataset was created by Madeyski & Lewowski (2020), which is MLCQ dataset
that contains 15,000 code samples of four code smells. MLCQ dataset was produced by
expert software developers who analyzed industry-relevant, semi-industry relevant, and
industry-irrelevant Java open-source projects.

Finally, Chen et al. (2016) implemented a tool for Python smell detection called Pysmell.
They published a Python code smell dataset for several Python code smells. However,
the published dataset contained labels (smelly or non-smelly) with a limited number of
features. For instance, the Large Class dataset contained only the count lines of codes
(CLOC) metric.

Code smell detection using machine learning
Based on the literature, ML algorithms have been used in various code smells detection
and demonstrated successful detection performance (Al-Shaaby, Aljamaan & Alshayeb,
2020). Kreimer (2005) proposed decision tree algorithm to detect the Big Class and Long
Method code smells and achieved high accuracy. Then, Amorim et al. (2015) confirmed the
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effectiveness of the decision tree algorithmon fourmedium-scale open-source projects with
12 different code smells. Whereas Tian, Lo & Sun (2012) used SVM to detect God Class,
Spaghetti Code Instances, Functional Decomposition, and Swiss Army Knife. Further,
Arcelli Fontana et al. (2016) detected Data Class, Large Class, Feature Envy, and Long
Method code smells using 16 machine learning algorithms with 1986 code smell samples.
As a result, they found machine learning algorithms demonstrated high performance while
the highest accuracy was obtained by J48, which is above 99%. Later, Kim (2017) detected
six code smells (God Class, Feature Envy, Data Class, Lazy Class, and Parallel Inheritance)
using Multilayer Perceptron (MLP) and achieved 99.25% accuracy. Khomh et al. (2011)
and Vaucher et al. (2009) proposed Bayesian Belief Networks (BBN) for detecting God
Class while Wang et al. (2012) proposed the same algorithms for detecting duplicated
code. Yadav, Dewangan & Rao (2021) used six different machine learning algorithms
(Naive Bayes, KNN, MLP, DT, RF and LR) to detect Data Class, God Class, Feature Envy,
and Long Method Java code smells and they achieved high accuracy. As well, Dewangan &
Rao (2022) applied different ML models for code smell detection and found that random
forest model achieved the highest accuracy in feature-envy code smell detection with
99.12% accuracy.

Further, ensemble learning has been proposed in a number of code smell detection
studies. Aljamaan (2021) used voting ensemble learning to investigate the performance of
detecting different code smells from class-level and method-level code smells and found
that voting ensemble learning achieved consistent performance among all code smells. In
addition, Alazba & Aljamaan (2021) applied three different stacking ensembles learning
for Java code smell detection with three different meta-classifiers (LR, SVM, and DT).
As a result, constant high detection performance was obtained in both class-level and
method-level detection with the stacking ensemble with LR and SVMmeta-classifiers. Jain
& Saha (2021) conducted several experiments to conclude that random forest and logistic
regressionmodels performbest in code smell detection. Further, stacking ensemble learning
has always produced superior outcomes than using individual classifiers.

All previous studies used ML models to detect a single type of smell in the code element.
However, Guggulothu & Moiz (2020) used multi-label classification algorithms to detect
multiple code smells. The researchers detected two code smells which are Long Method
and Feature Envy with respect to the correlation between the code smells.

From the summarized studies, it is clear most of the studies built code smell datasets
for Java programming language and one study for C#. As well the ML models are used
to detect code smells for the same programming languages. However, Vavrová & Zaytsev
(2017) created a tool for automatic Python design defects detection, andWang et al. (2021a)
proposed a strategy for Python code smell refactoring, but the ML for code smell detection
studies still focused on the other programming languages. Based on our observation of the
existing gaps, more research is needed to examine the ML performance in detecting code
smells for code written in other programming languages (e.g., Python). Therefore, more
datasets must be built for different programming languages with extracted code features to
assist supervised ML models in code smell detection. Since recent studies did not focus on
Python smells detection using ML models, more datasets are needed for this programming
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language. In this study, we will build a Python code smells dataset and utilize baseline ML
models for Python code smells detection.

PYTHON CODE SMELL DATASET
Since most existing code smells datasets focus on the Java programming language, we
built Python code smell datasets due to Python adoption as the popular language in Data
Science and Machine Learning applications (Srinath, 2017). Fowler et al. (2002) identified
and categorized a list of bad code smells. However, Python is a dynamic programming
language with different code patterns than other programming languages, and it supports
flexible grammatical structures. Thus, Python programming language has some unique
code smells. Chen et al. (2016) presented 11 Python code smells based on the Python
references (Beazley, 2009; Lutz, 2009). For instance, complex list comprehension (CLC) is
a Python code smell that refers to a very complex list comprehension. List comprehension
is a Python syntax to define a new list based on an existing list. On the other hand, there
are Java code smells that have no potential to occur in Python. For example, the switch
statement code smell in Java hence Python does not support the switch statements (Wang et
al., 2021b). In addition, researchers started investigating the utilization of transfer learning
(TL) in code smell detection to enhance the performance of detecting common code smells
among different programming languages (Sharma et al., 2021). Using TL, we can detect
code smells in different programming languages without creating a language-specific smell
detection model from scratch. Therefore, it is crucial to produce new open access labeled
Python code smells datasets for the same code smells in different programming languages
to support this line of research. Therefore, in this study, we will build a dataset for two
code smells based on the following criteria:

• Select code smells from different granularities (class-level and method-level) smells.
• Select the most investigated code smells in Java, since the existing literature mainly
focuses on Java code smell datasets.

Based on the above, we selected Large Class and Long Method smells for the Python
code smells dataset, since they are from different granularity levels and according to recent
systematic literature reviews, they are the most investigated Java code smells (Azeem et
al., 2019; Al-Shaaby, Aljamaan & Alshayeb, 2020). The definition of these code smells as
follows (Alazba & Aljamaan, 2021):

• Large Class: is a class level code smell refers to a class that has become excessively huge
and contains many lines.
• LongMethod: is a method level code smell that refers to a long method that is hard to
understand and implemented with many code lines.

At the beginning, Python source codes were selected and downloaded for each code
smell. Then, the features were extracted for each instance of code using Radon tool
(https://pypi.org/project/radon). Finally, each instance was labeled based on the published
labeled PySmell dataset. The resulting dataset will contain 18 different features labeled
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Figure 1 Dataset building steps.
Full-size DOI: 10.7717/peerjcs.1370/fig-1

smelly and non-smelly for each code smell. Figure 1 summarizes the followed steps for
dataset building and creation. In the next subsections, we describe these steps in detail.

Code sources selection
Our Python code smell dataset was built using four open-source Python libraries:
Numpy-V1.9.2, Django-V1.8.2, Matplotlib-V1.4.3, and Scipy-V0.16.0b2. Python codes
were selected based on the following criteria:

• The code must be written in Python programming language.
• The code must be open source.
• The code must be labeled (i.e., smelly or non-smelly) by the PySmell dataset.

To determine the number of samples, we surveyed the most used Java code smell
datasets (Fontana et al., 2016) and found their size to be 420 instances for each code smell.
We choose a higher number of samples for our constructed Python code smells for better
constructed supervised machine learning models. Then, we followed random sampling
technique for instances selection, where we selected 1,000 samples from around 10,000
samples for the Large Class and about 40,000 samples for the Long Method. However, the
number of smelly labeled instances is limited; only 200 samples were labeled as smelly for
the Large Class and around 900 for the Long Method. Therefore, we limit the maximum
number of smelly instances to 200. Finally, we determined the ratio to be 20% smelly
and 80% non-smelly because the dataset should be imbalanced based on the code smell
detection problem nature (Di Nucci et al., 2018).

Features extraction
In order to build the Python code smell dataset, 18 different features were extracted for each
code smell. The extracted features are code metrics measuring the software characteristics
(e.g., lines of code, number of comments, or bugs). The extracted code metrics can be
classified into two types. The first type is raw metrics, which measure the general metrics
that do not need complex calculations, such as the number of code lines. The second type is
Halstead complexity metrics created by the late Maurice Halstead to extract a quantitative
measure of complexity from the operators and operands in a code (Yu & Zhou, 2010).
Table 1 presents all extracted metrics to build the dataset. Radon tool was used for metrics
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Table 1 The extracted code metrics for each code smell.

Metric type Rawmetrics Halstead complexity metrics

Metrics The number of lines of code (LOC),
the number of logical lines
of code (LLOC),
the number of source lines
of code (SLOC),
the number of comment lines,
the number of lines which
represent multi-line strings,
the number of blank lines.

The number of distinct operators,
the number of distinct operands,
the total number of operators,
the total number of operands,
program vocabulary,
program length,
calculated program length,
volume, difficulty,
effort, time required to program,
number of delivered bugs.

extraction from the source code. Radon is a well-known Python tool that analyzes and
reports the codes to extract different code metrics, including: raw metrics, Cyclomatic
Complexity, Halstead metrics, and maintainability metrics.

Dataset labeling
After collecting the Python code sources and extracting their metrics, each class andmethod
instance was labeled smelly and non-smelly based on PySmell dataset labeling. Pysmell is
a tool for Python code smell detection (Chen et al., 2016). PySmell researchers published
a labeled dataset in GitHub, which was used to test their detection tool. The dataset was
labeled into smelly and non-smelly for ten different Python code smells: Large Class,
Long Base Class List, Long Lambda Function, Long Message Chain, Long Method, Long
Parameter List, Long Scope Chain, Long Ternary, Conditional Expression, and Multiply
Nested Container. Each code smell dataset contains one to three features based on the code
smell (i.e., code metrics). PySmell dataset was labeled by software engineer experts. While
PySmell dataset has a limited number of features that could not support ML models, we
combined the PySmell labels with the 18 extracted features to build a new labeled Python
code smells dataset withmore code features. For dataset labeling, we implemented a Python
code that assigns PySmell labels to our dataset based on the library (e.g., Numpy) and the
method or class name.

Dataset validation
In order to ensure the quality of the built Python code smell dataset, we considered the
following criteria.

• Using a verified tool for feature extraction to ensure the quality of the code metrics. We
used the Radon tool, which is an accredited Python tool.
• Using a validated and published Python code smell dataset to extract the labels. We
used the Pysmell dataset, which was validated by experts.

Dataset distribution
After labeling the class and method instances, a dataset of 1,000 instances was constructed
for each code smell (i.e., Large Class and LongMethod) (https://zenodo.org/record/7512516#
.ZEg3EnbMLIU). Table 2 summarizes the distribution of the Python code smells dataset.
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Table 2 The built Python dataset distribution.

Dataset Code smell # of
features

# of smelly
samples

# of non-smelly
samples

Total
samples

Dataset 1 Large Class 18 200 800 1,000
Dataset 2 Long Method

We visualized the data with scatter plots to determine whether the dataset is linear or
non-linear (i.e., linearly separable or not) and choose the appropriate ML models. For
both datasets, each feature was plotted against the other feature with respect to the class
label. In order to get better results, the data visualization was done after feature scaling and
selection, which will be discussed in the next section. As a result, we found the datasets are
non-linearly separable. Figure 2 shows a sample of data representation for each dataset.
The figures present the LLOC feature against the other features for each dataset.

Box 1.

RQ1 Answer: To create a Python code smells dataset, we collected open-source
Python codes and extracted code metrics as features using Radon tool. Then, we
utilized the labeled Pysmell published dataset instances to label our dataset. To
validate the constructed dataset and ensure its quality, we labeled it based on a well-
established dataset labeling, which was validated by Pysmell experts. However, we
added independent features to make the dataset appropriate as input features for
supervised ML models.

EMPIRICAL STUDY DESIGN
Goal
The main goal of this study is to investigate the detection performance of ML models
in detecting Python code smells using our constructed dataset. The goal is formulated
using the GQM (Basili & Rombach, 1988) template as the following: evaluate machine
learning models from different classification families for the purpose of Python code
smells detection with respect to their detection performance measured in Accuracy and
MCC from the perspective of both software engineers and researchers within the context
of Large Class, and Long Method Python code smells.

Data pre-processing
In order to enhance the ML models’ detection performance, two pre-processing steps were
conducted on the collected dataset. The two steps are feature scaling and feature selection
which will be explained below.

Feature scaling
It is a pre-processing method that aims to normalize the range of data features by making
the contribution equivalent for each feature. Feature scaling is a common pre-processing
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Figure 2 Sample of scatter plots representation for LLOC feature against the other features for both
datasets. (A) Large class dataset, (B) long method dataset.

Full-size DOI: 10.7717/peerjcs.1370/fig-2

practice before building machine learning models. It is known to improve data quality
and ML models performance as shown in several binary classification problem studies
in different domains (Chicco, Warrens & Jurman, 2021). Therefore, we applied it to
improve the code smell detection performance. In this study, we followed the max-min
normalization (MMN)method for feature scaling.MMN transforms the feature values into

Sandouka and Aljamaan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1370 9/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1370/fig-2
http://dx.doi.org/10.7717/peerj-cs.1370


the range [0-1] where theminimumandmaximumvalues will be 0 and 1, respectively, while
the other values will be in-between. Singh & Singh (2020). The max-min normalization is
presented in the following equation:

xscaled =
x−min(x)

max(x)−min(x)
.

Feature selection
It is a pre-processing method to reduce the number of features by discarding irrelevant
ones and keeping only the most relevant features. Applying feature selection will increase
the reliability and improve the performance of the ML models. In this study, we followed
the gain ratio feature selection method. In this method, each feature will be given a gain
score ranging from 0 to 1. After that, the features with a score lower than the mean gain
score will be considered irrelevant and discarded from the set of features (Karegowda,
Manjunath & Jayaram, 2010).

After applying feature selection, the number of features decreased based on the feature
importance value, which is the gain ratio. The number of features was reduced from 18
to 12 in the Large Class dataset. The selected features are difficulty, SLOC, LOC, effort,
time, volume, bugs, LLOC, number of comments, blanks, number of single comments,
and calculated program length. For the Long Method dataset, the number of features was
reduced from 18 to eight features: SLOC, LLOC, effort, time, bugs, volume, difficulty, and
calculated program length. Figure 3 presents the gain ratio for each selected feature from
highest to lowest for both Python code smells.

Baselines
In this empirical study, we selected six ML models from different classification families
as baselines to evaluate our Python code smells datasets. The used baselines are decision
trees (DT), random forest (RF), logistic regression (LR), support vector machines (SVM),
multi-layer perceptron (MLP), and stochastic gradient descent (SGD).

Experiment setup
All experiments were implemented using Python because it has diverse libraries that
can help with data preprocessing and developing the models. ML baseline models
were built using Scikit-Learn library. It is an ML library built in Python to perform
clustering, regression, and classification algorithms. Scikit-Learn has default settings of
hyperparameters for each ML model. However, we fine-tuned some of them in our
experiments to enhance the models’ performance. Also, Matplotlib and Seaborn libraries
were used for results visualization.

Hyperparameter optimization
ML algorithms have a set of hyperparameters that affect the algorithm’s performance.
The hyperparameters of each algorithm vary based on the training dataset. In order to
determine the best hyperparameters’ values, different values and combinations for each
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Figure 3 The gain ratio for each selected feature. (A) Large class dataset selected features. (B) Long
method dataset selected features.

Full-size DOI: 10.7717/peerjcs.1370/fig-3

algorithm should be examined (Mhawish & Gupta, 2020). In this study, we applied the
random search technique for hyperparameter optimization. Random search is one of the
most popular techniques for hyperparameter optimization that involves selecting values
randomly from a restricted range of hyperparameter values. The algorithm finds the
hyperparameter combination that yields the highest performance after fitting the model
for each combination of values using several extractions (Bergstra & Bengio, 2012). Table 3
shows the optimized hyperparameters, value ranges, and the best values selected based on
the MCC metric. The tuning range was selected based on the experiments and previous
work in code smell detection (Yadav, Dewangan & Rao, 2021; Yu et al., 2023).

Model validation
ML baselines were validated using stratified 10-fold cross validation repeated ten times (10
splits and 10 repeats). In cross-validation process, the dataset is divided randomly into ten
equivalent subsets. Then, nine folds were used for building the model, while the remaining
fold was used for testing. Each fold is used exactly once as a testing dataset by swapping it
with one of the training folds. This process was repeated ten times, and the obtained results
of the iterations were averaged to get the final result. While repeated-cross-validation
repeats the cross-validations process several times and addresses the performance based on
the average of all folds and repeats, it can generate more accurate results and efficiently deal
with overfitting with low variance to produce more reliable model performance estimates
(Tantithamthavorn et al., 2016).

Detection performance measures
Our study investigates Python code smells detection as a binary classification problem.
ML models aim to classify code instances into smelly and non-smelly codes. In order to
evaluate the models, two different evaluation measures were used: Accuracy and Matthews
correlation coefficient.

Accuracy
It is one of the most used measures in code smell classification problems. Accuracy is the
ratio of the correctly predicted samples over all data points, measured as shown in the
following equation:

Sandouka and Aljamaan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1370 11/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1370/fig-3
http://dx.doi.org/10.7717/peerj-cs.1370


Table 3 The tuned parameters for eachML classifier.

Classifier Hyper
parameter

Default Tuning range Best parameter value
(Large Class)

Best parameter value
(LongMethod)

DT max_depth None (1, 100) + [None] 1 1
RF n_estimators 100 [100, 200, 300] 200 200
LR C 1.0 (0,1) 0.99 0.99
SVM C 1.0 [.01, .1, 1, 5, 10, 100] 5 5

gamma 1 / (n_features * X.var()) [0, .01, .1, 1, 5, 10, 100] 100 10
MLP hidden_layer_sizes 100 [4, 8, 16, 32, 64, 100] 100 100

Accuracy =
TP+TN

TP+FP+TN +FN
×100.

The higher accuracy indicates that themodel achieved the highest performance in classifying
the code smells into smelly and non-smelly.

Matthews correlation coefficient (MCC)
It is a reliable statistical measurement that produces a high score when the prediction
achieves high performance in the four confusion matrix categories (true positives, false
negatives, true negatives, and false positives). It returns score values between +1 and −1,
where +1 indicates a perfect model,−1 indicates a perfect misclassification, and 0 indicates
random prediction. Further, MCC is considered an ideal measure for imbalanced datasets
because it provides high performance when the majority of each class is classified correctly.
Therefore,MCC is recommended for imbalanced datasets classificationmore than F1-score
and other measurements (Chicco & Jurman, 2020; Chicco, Warrens & Jurman, 2021). Since
our Python code smell dataset is unbalanced (1/4 ratio between smelly and non-smelly),
we used MCC as an evaluation metric to get accurate and stable ML model detection
performance. The following equation calculates the MCC rate:

MCC =
TP×TN −FP×FN

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

.

The higher MCC rate indicates that the model achieved the highest performance in
classifying the code smells into smelly and non-smelly.

Statistical test
To investigate the significance of detection performance differences between ML baselines,
we employed the Wilcoxon signed-rank statistical test to compare the six used ML models.
In order to examine if one model significantly outperforms another model, a hypothesis
test is performed. The null hypothesis states, ‘‘There is no significant difference between
the classifiers.’’. We set the α value to 0.05. and examined if the p-value is less than 0.05,
then the null hypothesis will be rejected. Otherwise, we will fail to reject the null hypothesis.
After rejecting the null hypothesis, each model will be compared against the other model
and the model with the highest performance will be the winner.
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Table 4 Code smells detection performance results.

Large class Longmethod

Classifier Accuracy MCC Accuracy MCC

DT 90.4 0.70 95.9 0.90
RF 92.7 0.77 95.5 0.88
LR 87.7 0.57 85.3 0.55
SVM 92.5 0.76 93.7 0.82
MLP 91.8 0.73 90.2 0.71
SGD 91.4 0.70 90.9 0.73

In this study, the models were compared against each other within each code smell
dataset based on MCC scores over 100 iterations (10 Stratified CV repeated 10 times).
Wilcoxon signed-rank was used since it is a non-parametric test and our results are not
normally distributed (Demšar, 2006).

RESULTS AND DISCUSSION
Table 4 presents our empirical study results (accuracy and MCC scores) for ML baselines
detection performance in detecting Python Large Class and Long Method code smells.
RF model achieved the highest detection performance in Large Class code smell, while
DT achieved the highest performance in Long Method code smell. In Large Class smell
detection, SVM achieved the second-highest performance with marginal differences from
DT, MLP, and SGD. In Long Method smell detection, RF achieved the second highest
performance. On the other hand, LR had the lowest accuracy and MCC rate scores in
detecting both Python code smells.

Furthermore, boxplots were plotted for each code smell to examine the baseline models’
accuracy and MCC scores distribution, as shown in Fig. 4. By visually analyzing the
boxplots, the models’ overall performance in detecting LongMethod smell was higher than
the Large Class smell. Large Class smell detection was more challenging for ML models
by observing accuracy and MCC boxplots. RF model outperformed all other models in
detecting Large Class code smell, while DT outperformed all other models in detecting
Long Method code smell. In addition, we can observe that the RF model had more stable
detection performance, as indicated by the shorter boxes and whiskers. However, it has
fewer outliers in the Long Method code smell. DT and SVM models competed for the
second highest MCC rate in Large Class code smell, and RF achieved the second highest
performance in Long Method smell detection. On the other contrary, LR was the least
performing model in terms of accuracy and MCC scores stability due to the long box
and whiskers compared to other models. Finally, we can observe that most ML models’
performance in code smell detection varies from one smell type to another.

After discussing the accuracy and MCC boxplot results, we conducted the non-
parametric Wilcoxon statistical test to test whether there are significant MCC rate
differences between the ML models. Wilcoxon signed-rank test is a non-parametric
test to compare data by analyzing the matched-pair data based on differences (Woolson,
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Figure 4 Machine learning models detection accuracy andMCC score boxplots over code smells. (A)
Accuracy results for large class dataset. (B) Accuracy results for long method dataset. (C) MCC results for
large class dataset, (D) MCC results for long method dataset.

Full-size DOI: 10.7717/peerjcs.1370/fig-4

2008). Table 5 presents the results of Wilcoxon statistical test after performing the pairwise
comparison over both datasets. A pairwise comparison outcome could be a win if the first
model outperforms the second model, which makes the second model a loser and the first
model a winner. Outcome can be a tie if no significant difference was found between the
two models (i.e., fail to reject the null hypothesis) with α set to 0.05. To apply the pairwise
comparison test, five comparisons were conducted for each machine learning model in
each code smell dataset. Thus the total number of comparisons is 10. The rows of the table
include numbers that represent the number of wins for each model against the other model
represented in the column. In contrast, the columns of the table include the number of
losses against each model represented in the row. The last two columns show the total
number and the percentage of wins for each model against all other models. The last two
rows show the total number and the percentage of losses for each model. As we can observe
from the table, RF model won eight times against all other models (i.e., 80% wins from the
possible 10 comparisons). On the other hand, LR lost ten times against all other models,
showing 100% losses in all pairwise comparisons over both datasets. While Wilcoxon
test emphasized the difference between models’ performance based on MCC metric, we
calculated the effect size to assess the difference between the models. The effect size (r)
value varies from 0 to 1. Whereas 0.1< r < 0.3 (small effect), 0.3≤ r < 0.5 (moderate
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Table 5 Statistical pairwise comparison results.

Classifier DT RF LR SVM MLP SGD Wins Wins%

DT & 1 2 1 1 1 6 60%
RF 1 2 1 2 2 8 80%
LR 0 0%
SVM 1 2 2 2 7 70%
MLP 2 1 3 30%
SGD 2 2 20%
Losses 2 1 10 2 6 5
Losses% 20% 10% 100% 20% 60% 50%

Table 6 Wilcoxon effect size results.

Large class

DT RF LR SVM MLP SGD

DT Small Large Small Moderate Moderate
RF Small Large Large Large Large
LR Large Large Small Small Large
SVM Small Large Small Large Large
MLP Moderate Large Small Large Large
SGD Moderate Large Large Large Large

Longmethod

DT RF LR SVM MLP SGD

DT Large Large Large Large Large
RF Large Large Large Large Large
LR Large Large Small Small Small
SVM Large Large Small Large Large
MLP Large Large Small Large Moderate
SGD Large Large Small Large Moderate

effect) and r ≥ 0.5 (large effect) (Tomczak & Tomczak, 2014). Table 6 shows that RF model
has large effect size against all other models for both large class and long method datasets.
These results prove that the RF model outperforms the other models except DT in the
Large Class dataset. On the other hand, LR was the least performing model. However, it
has a small effect size against SVM and MLP in the Large Class dataset and a small effect
size against SGD in the Long Method dataset.

From the results, RF model achieved the highest performance in detecting Large Class
smell and DTmodel was the highest achiever in Long Method smell detection based on the
accuracy and MCC measures. Furthermore, the Wilcoxon test confirmed the results and
showed a significant difference between the models. RF achieved the highest percentage
of wins over all other models. Lastly, Large Class smell detection was more challenging to
our ML baselines to achieve high detection performance compared to Long Method smell
detection.
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Box 2.

RQ2 Answer:We used a number of ML models as baselines to examine their detec-
tion performance of Python code smells. RF model was the best performing model in
detecting Large Class code smells while DT model was the best performing model in
detecting Long Method dataset with a marginal difference over the RF model. The sec-
ond best was a competition between SVM and DT. LR was the least performing model
in Python code smells detection.

THREATS TO VALIDITY
In this section, we discuss all threats to the validity of the conducted experiment including
threats to external, internal, and conclusion validity.

Internal validity
The Python code smells dataset built in this study was constructed with different code
metrics as independent variables. However, there could be more effective metrics that can
be utilized as features for detecting Python code smells. We selected themetrics for building
the dataset based on the affordable metrics by Radon tool. Then, we refined the metrics
selection using the gain ratio selection technique to validate the relationship between the
independent variables (code metrics) and the dependent variable (smelly or non-smelly).
We used only the metrics with a high gain ratio in our code smell detection experiments.
Further, dataset labeling has been done based on PySmell dataset labels which were labeled
smelly and non-smelly by experts, which could be a threat since there is no confidence
degree for the labels.

External validity
A threat to external validity is the ability to generalize our findings on the used dataset and
ensure the experiment will obtain similar classification performance with different Python
code smells datasets. However, we tried to mitigate this thread by collecting the dataset
from four Python libraries and increasing the number of dataset instances compared to
the existing Java code smells dataset.

Conclusion validity
For conclusion threat to validity, the Python code smells dataset is considered an imbalanced
dataset which could be considered as a thread that affects the experiment results. To
mitigate this thread, we used Matthews correlation coefficient (MCC) metric for the
models’ evaluation because it is recommended for imbalanced datasets classification.
Moreover, we used Wilcoxon statistical test to examine whether the difference in detection
performance between each model is significant.

CONCLUSION
In this work, a labeled Python code smells dataset was built for two different code smells:
Large Class and Long Method. Each dataset contains 1,000 samples labeled as 80%

Sandouka and Aljamaan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1370 16/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1370


non-smelly and 20% smelly. Each dataset included 18 different code metrics as features.
Datasets were created by collecting source code from four Python libraries: Numpy,
Django, Matplotlib, and Scipy. After collecting the sources, the features extracted by Radon
tool. Finally, the dataset was labeled based on the published PySmell dataset labels. After
building the dataset, we preprocessed both datasets by data scaling and feature extraction.
Following that, the built datasets were utilized to build ML detection models using six
baseline models and evaluated their accuracy and MCC measures. Furthermore, Wilcoxon
signed-rank test was conducted to examine if there are significant differences between the
models or not. RF model achieved the highest performance in detecting Large Class code
smell, and the DTmodel achieved the highest performance in detecting Long Method code
smell. The achieved accuracy was 92.7% and 95.9%, while the MCC rate was 0.77 and 0.90
for Large Class using RF model and Long Method smells using DT model, respectively.
Moreover, RF achieved 80%wins after applying the pairwise comparison among all models
in both datasets. Lastly, we observed that detecting Large Class smell was more challenging
than Long Method based on the variety of models’ performance with each code smell.

While building Python code smell datasets, we found limitations in the tools that extract
the metrics of Python codes as well as tools that identify the Python code smells. These tools
could help build larger datasets with more features and enhance ML models’ performance
in code smells detection. As a future work, we need to build more datasets to cover more
Python code smells. Furthermore, our dataset can be increased in size by increasing the
number of samples and features. Finally, more ML models could be utilized to examine
their performance in Python code smells detection.
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