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ABSTRACT
The dynamic recommender system realizes the real-time recommendation for users
by learning the dynamic interest characteristics, which is especially suitable for the
scenarios of rapid transfer of user interests, such as e-commerce and social media. The
dynamic recommendation model mainly depends on the user-item history interaction
sequence with timestamp, which contains historical records that reflect changes in the
true interests of users and the popularity of items. Previous methods usually model
interaction sequences to learn the dynamic embedding of users and items. However,
these methods can not directly capture the excitation effects of different historical
information on the evolution process of both sides of the interaction, i.e., the ability of
events to influence the occurrence of another event. In this work, we propose aDynamic
Graph Hawkes Process based on Linear complexity Self-Attention (DGHP-LISA) for
dynamic recommender systems, which is a new framework for modeling the dynamic
relationship between users and items at the same time. Specifically, DGHP-LISA is built
on dynamic graph and uses Hawkes process to capture the excitation effects between
events. In addition, we propose a new self-attention with linear complexity to model
the time correlation of different historical events and the dynamic correlation between
different update mechanisms, which drives more accurate modeling of the evolution
process of both sides of the interaction. Extensive experiments on three real-world
datasets show that our model achieves consistent improvements over state-of-the-art
baselines.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Recommender systems, Dynamic graph, Hawkes process, Self-attention

INTRODUCTION
Dynamic recommendation is an important application of big data methods, which has
been successfully applied in many fields, such as e-commerce, social media, health and
medical services. In addition, dynamic recommendation can be implemented for public
safety, such as predicting security events in a specific area (Liu et al., 2016b;Wu et al., 2016;
Liu, Wu &Wang, 2017).

The real-world dynamic recommender system predicts the item that the user may
interact with in the future by mining the time series information of the interaction between
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users and items. The two types of entities, users and items, can cover a variety of notions,
e.g., users could be customers in an ecommerce system, or accounts on social media; items
could be products, posts, media produced or consumed by users. In real world scenarios,
both user interest and item popularity may shift and evolve along with time. Besides, the
historical interaction information (Hidasi et al., 2015; Li et al., 2017; Liu et al., 2016a; Wu
et al., 2017) and the historical collaborative interaction information (Rendle, Freudenthaler
& Schmidt-Thieme, 2010; Koren, 2009; Rendle et al., 2012) of users or items are proved
powerful in making recommendation. The historical interaction information here refers
to the historical interaction item (or user) sequence of the user(or item), and the historical
collaborative interaction information refers to the second-order historical interaction
node sequence obtained by using the high-order connectivity of the graph structure.
Consequently, the key to building a dynamic recommender system is how to effectively
combine the dynamic changes of users and items with their historical information.

At present, several approaches have been proposed to predict future items a user is
likely to interact with, providing encouraging results (Hidasi et al., 2015; Wu et al., 2017;
Covington, Adams & Sargin, 2016; Dai et al., 2016; Kumar, Zhang & Leskovec, 2019; Tan,
Xu & Liu, 2016; Wang et al., 2020; Wu et al., 2019b; Xu et al., 2019). Often, however, the
focus is on modeling users, while the historical interaction dynamics that provide a richer
signal is overlooked (Wang et al., 2019). Therefore, recurrent neural networks (RNN) and
other models suitable for sequences (Hidasi et al., 2015; Li et al., 2017; Liu et al., 2016a;Wu
et al., 2017) are used to model the long-term dependencies of item sequences. Recently,
some studies have shown that significant improvements to traditional methods can be
achieved by building a user-item bipartite graph and modeling two types of entities at the
same time (Dai et al., 2016; Kumar, Zhang & Leskovec, 2019). Unlike previous methods,
JODIE (Kumar, Zhang & Leskovec, 2019) and other dynamic evolution models (You et al.,
2019;Wang et al., 2016;Wu et al., 2019a) have employed mutually recursive RNNs that are
more capable to model the user-item interaction dynamics. Dynamic graph collaborative
filtering (DGCF) (Li et al., 2020) also uses the graph structure to model the collaborative
information between nodes. However, thesemethods often ignore the influence of different
historical interaction information and historical collaborative interaction information on
the evolution process of the current interaction. Nonetheless, the Hawkes process can
effectively capture this effect (Hawkes, 1971; Mei & Eisner, 2017), which assumes that
historical events will increase the probability of future events to some extent, and this effect
will decay with time. Therefore, the evolution process of user or item embedding can be
effectively modeled by using this property. In this process, the users or items involved in the
interaction when each link is formed can be considered to be determined by the influence
of recent events. For example, in a product recommendation network, a particular product
that has attracted a large number of buyers recently may attract more buyers in the near
future.

Therefore, to effectively model the user or item embedding evolution process on the
dynamic graph, we propose a Dynamic Graph Hawkes Process based on Linear complexity
Self- Attention (DGHP-LISA) for dynamic recommender systems. First, we propose a
new dynamic graph embedding update framework based on the Hawkes process, which
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can not only inherits the previous embeddings during the node embedding update, but
also explicitly model the excitation effects of the evolution process of both sides of the
current interaction through historical interaction information and historical collaborative
interaction information. In addition, we design a new self-attention mechanism with linear
complexity (LISA), which is efficient enough to be the backbone component of a deep
network. Therefore, we add the LISA module in the time encoding of neighbor nodes and
the feature fusion of node embeddings to capture the time correlation of different historical
events and the dynamic correlation between different update mechanisms respectively. We
evaluate the effectiveness of DGHP-LISA on three public datasets through experiments,
and the results show that DGHP-LISA achieves the most advanced performance.

RELATED WORK
Different from static recommendation models such as matrix factorization (MF) and
Bayesian personalized ranking (BPR), the main task of dynamic recommendation
models is to capture the dynamic changes of users and items from historical and current
interactions, so as to accurately predict the embedding trajectory of users or items over
time to recommend items that users may interact with in the future. In the field of
dynamic recommendation, traditional methods use a vanilla deep neural network (DNN)
architecture to integrate manually designed or learned features into the recommendation
model. For example, Covington, Adams & Sargin (2016) divided the recommender system
of YouTube into two stages: recall and sorting, and the two-stage model used DNN with
similar structure to provide personalized recommendations for a large number of users in
millions of candidate videos.

As recurring patterns in user-item interactions are considered to be critical in
recommending or predicting future activities, RNNs and its variants have been widely
used in interaction prediction. Specifically, Hidasi et al. (2015) creatively applied RNN to
session-based recommendation problems. The model predicts the next item clicked by
the user according to the click sequence information of the user’s current session. As a
variant of RNN, Wu et al. (2017) used long short-term memory (LSTM) to build a model
to capture the dynamic changes of users and movies. Beutel et al. (2018) proposed the
LatentCross model based on the gated recurrent unit (GRU), which incorporates multiple
types of contextual information into the model by taking the dot product of the contextual
features and the hidden states in the GRU.

Since activities that are close to an event in time are more likely to trigger such event
than the ones that are far apart, encoding the time interval between activities is helpful
for improving the performance of the recommender system. However, standard RNNs
and its variants cannot handle the time intervals between historical events. Therefore,
driven by the above requirements, many works have extended RNNs and their variants
to fully account for time intervals (Zhang, 2019; Zhu et al., 2017). For example, Zhu et al.
(2017) designed a time gate for LSTM, so that the model can not only effectively deal with
serialized data, but also model time information very well.

However, all the above methods only simulate the changes of users’ interests through the
user’s historical interaction sequence, while ignoring the evolution of the item. In order to
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solve this problem, many works have leveraged point process models and RNNs to jointly
learn the dynamic embedding of users and items. Dai et al. (2016) applied the temporal
point process to dynamic recommendation and design learnable intensity functions to
model the dynamic impact between users and items. Kumar, Zhang & Leskovec (2019)
defined embedding update operation and embedding projection operation to learn the
dynamic embedding of users and items from a series of time interactions. Li et al. (2020)
introduced dynamic graph into dynamic recommendation task for the first time, and
extended JODIE by considering the second-order neighborhood information of dynamic
interaction networks.

Our DGHP-LISA is inspired by the above work. However, these latest works do not
take into account the impact of different historical interaction information and historical
collaborative interaction information on the evolution of both sides of the interaction.
Overall, the main contributions of the proposed model to dynamic recommendation
scenarios are as follows:
1. We introduce Hawkes process and dynamic graph into dynamic recommendation

scenarios at the same time to model the dynamic interaction and evolution between
users and items;

2. We design a new self-attention with linear complexity and introduce it into the node
embedding update framework based on dynamic graph Hawkes process. On the one
hand, when time-encoding neighbor nodes, the LISA module can effectively model the
time decay effects of different historical events on current events. On the other hand,
when fusing features generated by different update mechanisms, the LISA module
can effectively model the importance between update mechanisms by dynamically
allocating weights;

3. Extensive experiments have been carried out on three public datasets. The experimental
results show that, comparedwith themost advanced baseline, ourDGHP-LISA achieves
the best results.

PRELIMINARIES
Dynamic graph recommendation
In this work, the goal of dynamic recommendation is to learn the representation of
users and items from current interactions and history, and then predict the items that
users are most likely to be interested in in the future. This ‘‘interest’’ is the relationship
between the user and the recommended item. The graph is the basic data structure to
express this relationship, which can well describe the relationship between users and items.
Therefore, the graph structure is used to solve many problems in the field of dynamic
recommendation (Li et al., 2020; Trivedi et al., 2019). Since a dynamic graph can naturally
and effectively represent the interaction between users and items over time, we use a
dynamic graph structure to model a dynamic recommendation problem.

Definition
1

Dynamic graph. In essence, the dynamic graph here is a bipartite graph. Both
the user and the item are nodes, and all interactions are located between
the user and the item node. If the user interacts with the item at the time
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t ∈R+,∀t ∈ [0,T ], it forms a dynamic graph Gt =
(
U
⋃
V ,Et

)
. Where U

and V represent the set of users and items, respectively, and U
⋃
V is a

finite set of all users and items. Et is a finite set of interactions in Gt , i.e., a
set of all interactions between users and items before time t. The dynamic
graph Gt 0=

(
U
⋃
V ,Et 0

)
of the initial time t0 consists of isolated nodes or

snapshots of the dynamic graph, and the initial embeddings of users and
items are initial feature vectors or random vectors.

Definition
2

User-item interaction events. In dynamic recommendation, the user-item
interaction event is a triple (u,v,t ), which represents the formation of
interaction (u,v)∈ Et between user node u∈U and item node v ∈V at time
t. Therefore, a dynamic graph can also be defined as a chronological sequence
of user-item interaction events I =

{
(u,v,t )n : n= 1,2,...,|ET |

}
.

Definition
3

Static and dynamic embeddings. To encode long-term static properties and
temporal dynamic characteristics of entities, all users and items are assigned
static and dynamic embeddings. On the one hand, we denote the static
embeddings of user u and item v at time t as ū∈Rn and v̄ ∈Rn, which do not
vary with time. Following previous proposals (Zhu et al., 2017; Baytas et al.,
2017), we use one-hot vectors as static embeddings for all users and items.
On the other hand, we assign dynamic embedding represented by u(t )∈Rd

and v(t )∈Rd to each user u and item v at the time t, which can model the
behavior and attributes that change over time. While a new interaction joins
the graph, user and item embeddings are updated by DGHP-LISA.

Hawkes process
The Hawkes process is a linear self-excited point process, which assumes that historical
events will have the excitation effects on current events. Its behavior is typically modeled
by a conditional intensity function λ(t ), the rate of event occurring at time t given the past
events.

The conditional intensity function of Hawkes process can be expressed as follows:

λ(t )=µ(t )+η
∫ t

−∞

κ(t− s)dN (s) (1)

where µ(t ) is a constant greater than zero, which represents the base intensity at time t
and does not change with the change of historical information. κ(·) is the kernel function
of Hawkes process. Generally speaking, kernel functions have a variety of forms, including
exponential kernel function, Gaussian kernel function and so on. Different kernel functions
will affect the decay rate of the model to historical events, thus affecting the prediction
ability of the model. For example, in the exponential kernel function, with the increase
of time, the influence of historical events on current events gradually decreases. In the
Gaussian kernel function, the decay rate becomes smoother with the increase of time.N (t )
indicates the number of events that occurred before time t. η is a constant greater than
zero, which is used to control the influence of the basic intensity and historical events.
Since the Hawkes process is able to model the excitation effects between events to capture
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Figure 1 Overall architecture of the DGHP-LISA.
Full-size DOI: 10.7717/peerjcs.1368/fig-1

the influence of historical events on current events, it is well suited for modeling user and
item representation in dynamic graph.

PROPOSED APPROACH
Figure 1 shows the overall architecture of the proposed model. The interactions between
users and items form a dynamic graph over time. When a new user-item interaction event
is observed, DGHP-LISA first learns the current embedding of the user and the item on
the basis of the dynamic graph Hawkes process simultaneously. Secondly, inspired by
the Kalman filter (Julier & Uhlmann, 1997; Hou & Bu, 2021), we capture the previously
updated status and elapsed time through the projection and prediction layer to predict the
future embedding of users and items. Thirdly, we calculate the L2 distance between the
predicted item embedding and all other item embeddings, and then recommend items with
the smallest distance to the predicted item embedding. Finally, we use the loss function
to jointly optimize the dynamic embedding of users and items to make a more accurate
prediction for the next item recommendation.

Embedding update mechanism based on Hawkes process
Hawkes process on dynamic graph
The Hawkes process on the dynamic graph can model the dynamic embedding of users
and items. Specifically, whether the user u or the item v participates in the formation of the
interaction (u,v) at the time t can be quantified by the conditional intensity of this event.

λu(t )=µu(t )+α
∑

(u,v ′,t ′)∈Hu(t )

γhv ′(t ′)κ(t− t ′)+β
∑

(u′,v,t ′)∈Cu(t )

γcu′(t ′)κ(t− t ′) (2)

λv(t )=µv(t )+α
∑

(u′,v,t ′)∈Hv (t )

γhu′(t ′)κ(t− t ′)+β
∑

(u,v ′,t ′)∈Cv (t )

γcv ′(t ′)κ(t− t ′) (3)
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where µu(t ) and µv(t ) are the basic intensity of the interaction events formed by nodes u
or v at the time t, respectively, which are not influenced by historical events on u or v. The
basic intensity determines the basic level of the current event, and it can also be understood
as the expected probability of the event at the time t. The reasonable setting of the basic
intensity can improve the prediction ability and explanation of the model. α and β are
positive constants that control the influence of the basic intensity and historical events. If
these two parameters are larger, then the impact of historical events on subsequent events
will be more lasting. In practical application, we can balance the importance of historical
events and the latest events by adjusting α and β.

Hu(t )={(u,v ′,t ′)∈ I : t ′≤ t } andHv(t )={(u′,v,t ′)∈ I : t ′≤ t } are the sets of historical
interaction events of nodes u or v with respect to time t, respectively. Where v ′ is the
historical interaction neighbor of u, and u′ is the historical interaction neighbor of v.
γhv ′(t ′) and γhu′(t ′) respectively represent the influence degree of the historical interaction
neighbor v ′ or u′ on the current event at time t ′.Cu(t )= {(u′,v,t ′) ∈ I : t ′ < t } and
Cv(t )= {(u,v ′,t ′)∈ I : t ′< t } are the sets of historical collaborative interaction events of
node u or v with respect to time t, respectively. Where u′ is the historical cooperative
interaction neighbor of u, v ′ is the historical cooperative interaction neighbor of v.
γcu′(t ′) and γcv ′(t ′) respectively represent the influence degree of the historical cooperative
interaction neighbor u′ or v ′ on the current event at time t ′. In the Hawkes process, the
time decay effect of historical events on current events is modeled by kernel functions. The
kernel function describes the decay process of the excitation effect of historical events with
time. Therefore, the influence of historical events on the interaction probability of current
events can be explained as the weighted sum of the excitation effect of historical events in
time, in which the weight of time is determined by the kernel function. In the DGHP-LISA
model, we use the kernel function κ(·) to model the time decay effect of historical events
on current events, which can control the decay rate of historical events with time.

Next, combined with dynamic graph representation, the conditional intensity in Eqs.
(2) and (3) is materialized. LISA(·) is a self-attention module with linear complexity,
which can effectively model the importance between update mechanisms by dynamically
allocating weights to different embedding update mechanisms. The conditional intensity
can be generated from a transfer function f (Mei & Eisner, 2017; Panzarasa, Opsahl &
Carley, 2009), i.e.,

λu(t )= f (LISA(u(t−),1t−u ,uh(t
−),uc(t−))) (4)

λv(t )= f (LISA(v(t−),1t−v ,vh(t
−),vc(t−))) (5)

where u(t−) and v(t−) are the latest embeddings of u or v before time t, respectively.
1t−u and1t−v respectively represent the time interval between current time t and previous
interaction time t− of the node u or v. For dynamic graph, the node to be updated firstly
inherits the influence of the previous state and elapsed time, which is used as the basic
intensity to learn the embedding of users and items.
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uh(t−) and vh(t−) represent the aggregate embedding of the historical interaction
neighbors of u or v before the time t, respectively. The proposed model establishes a
dynamic bipartite graph to simulate the interaction between user and item nodes, which
means that the user’s historical interaction neighbors are the items that he or she has
interacted with, and vice versa. In dynamic recommendation scenarios, the item that a
user interacts with reflects the user’s recent interest to some extent. Correspondingly, users
who are interested in a specific item can be regarded as a part of the item’s properties.
Therefore, it is necessary to use the historical interaction neighbors of the user or item to
learn its embedding.

uc(t−) and vc(t−) represent the aggregate embedding of the historical collaborative
interaction neighbors of u or v before the time t, respectively. In the model, the historical
collaborative interaction neighbors of the user or item node are the historical interaction
neighbors of the other node involved in the interaction, which capture the collaborative
relationship between users and items. Specifically, for a specific item, it may have been
purchased by multiple users before the current interaction, and now a new user has
purchased the item. It can be assumed that this new user has a collaborative relationship
with the users who previously purchased the specific item. Therefore, the update of node
embedding in dynamic graph takes into account not only the self-information and historical
interaction of nodes, but also the structural information between nodes.

To sum up, the historical interaction aggregation embedding and historical collaborative
interaction aggregation embedding of users or items before time t reflect the impact of
historical events on current events, which is the key to simulate the excitation effect caused
by historical events, combined with the basic intensity to learn the embedding of users and
items.

Neighbor aggregation mechanism
It can be seen from Eqs. (4) and (5) that using the Hawkes process on the dynamic
graph to model the dynamic embedding of users and items needs to consider the aggregate
information of their historical interaction neighbors and historical collaborative interaction
neighbors. To aggregate such information, let:

uh(t−)= ∂(v(t−),H ′u(t )) (6)

uc(t−)= ∂(u(t−),C ′u(t )) (7)

vh(t−)= ∂(u(t−),H ′v(t )) (8)

vc(t−)= ∂(v(t−),C ′v(t )) (9)

where ∂(·) is the aggregator function.H ′u(t ) andH ′v(t ) represent the historical interaction
neighbor embedding set of nodes u or v with respect to time t, respectively. C ′u(t ) and
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C ′v(t ) represent the historical collaborative interaction neighbor embedding set of nodes
u or v with respect to time t, respectively.

H ′u(t )={v ′′h(t ′)|v ′′h(t ′)= LISA(v ′(t ′)+h(t ′)),(u,v ′,t ′)∈Hu(t )} (10)

H ′v(t )={u′′h(t ′)|u′′h(t ′)= LISA(u′(t ′)+h(t ′)),(u′,v,t ′)∈Hv(t )} (11)

C ′u(t )={u′′c(t ′)|u′′c(t ′)= LISA(u′(t ′)+h(t ′)),(u′,v,t ′)∈Cu(t )} (12)

C ′v(t )={v ′′c(t ′)|v ′′c(t ′)= LISA(v ′(t ′)+h(t ′)),(u,v ′,t ′)∈Cv(t )} (13)

where h(t ′) represents the time embedding of time t ′.v ′′h(t ′) and u′′h(t ′) represent the
historical interaction neighbor embedding of nodes u or v at time t ′ after time encoding,
respectively. u′′c(t ′) and v ′′c(t ′) represent the historical collaborative interaction neighbor
embedding of nodes u or v at time t ′ after time encoding, respectively. As shown in Fig. 2,
in order to enable the model to make full use of time information and capture the time
decay effects of different historical events on current events, we add time embedding to all
neighbor embedding and model the time correlation of different historical events through
the LISA module.

For aggregator function ∂(·), we provide the following two candidate aggregator
functions for use in neighbor aggregation:
1. Mean aggregator: It is a simple operator to calculate the average value of central node

embedding and neighbor node embeddings, which can be regarded as a variant of GCN
method (Hamilton, Ying & Leskovec, 2017; Kipf & Welling, 2016).

uh(t−)=
1

1+|H ′u(t )|
(v(t−)+

∑
v ′′h(t ′)∈H ′u(t )

v ′′h(t ′)) (14)

uc(t−)=
1

1+|C ′u(t )|
(u(t−)+

∑
u′′c (t ′)∈C ′u(t )

u′′c(t ′)) (15)

vh(t−)=
1

1+|H ′v(t )|
(u(t−)+

∑
u′′h(t ′)∈H ′v (t )

u′′h(t ′)) (16)

vc(t−)=
1

1+|C ′v(t )|
(v(t−)+

∑
v ′′c (t ′)∈C ′v (t )

v ′′c(t ′)) (17)

2. Attention aggregator: Inspired by the GAT (Veličković et al., 2017) model, it uses the
attention mechanism to weighted summation of neighbor nodes.
uh(t−)=

∑
v ′′h(t ′)∈H ′u(t )

αh(t ′)v ′′h(t ′) (18)

αh(t ′)=
exp(LeakyRelu(Wα[v(t−)||v ′′h(t ′)]))∑

v ′′h(t ′)∈H ′u(t )exp(LeakyRelu(Wα[v(t−)||v ′′h(t ′)]))
(19)
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uc(t−)=
∑

u′′c (t ′)∈C ′u(t )

αc(t ′)u′′c(t ′) (20)

αc(t ′)=
exp(LeakyRelu(Wα[u(t−)||u′′c(t ′)]))∑

u′′c (t ′)∈C ′u(t )exp(LeakyRelu(Wα[u(t−)||u′′c(t ′)]))
(21)

vh(t−)=
∑

u′′h(t ′)∈H ′v (t )

α′h(t ′)u′′h(t ′) (22)

α′h(t ′)=
exp(LeakyRelu(Wα[u(t−)||u′′h(t ′)]))∑

u′′h(t ′)∈H ′v (t )exp(LeakyRelu(Wα[u(t−)||u′′h(t ′)]))
(23)

vc(t−)=
∑

v ′′c (t ′)∈C ′v (t )

α′c(t ′)v ′′c(t ′) (24)

α′c(t ′)=
exp(LeakyRelu(Wα[v(t−)||v ′′c(t ′)]))∑

v ′′c (t ′)∈C ′v (t )exp(LeakyRelu(Wα[v(t−)||v ′′c(t ′)]))
(25)

where || is the concatenation operation andWα ∈R2d is a weight matrix.
In practical dynamic recommendation scenarios, due to the huge amount of data,

neighbor aggregation needs to cost a high computational cost. Therefore, we select a fixed
number of neighbors for aggregation and call the number of neighbor nodes selected as
aggregator size.

Self-attention mechanism with linear complexity
Let Ei ∈Rm×din and Eo ∈Rm×dout represent the input and output embedding of the LISA
module respectively. m represents the number of embedding. din and dout represent the
dimensions of input and output embedding respectively. Let Q= EiWq, K = EiWk and
V = EiWv denote the Query, Key and Value matrices generated by linear transformation
on input embedding, respectively. Where Wq ∈Rdin×dk , Wk ∈Rdin×dk and Wv ∈Rdin×dout

are all weight matrices. The LISA module generates output embedding using the following

Hou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1368 10/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1368/fig-2
http://dx.doi.org/10.7717/peerj-cs.1368


self-attention operations based on linear complexity:

Eo=Q(ρ(K>)V ) (26)

where K> denotes the matrix transpose of K, and ρ(·) denotes the operation of applying
softmax normalization for each row separately. The self-attention operation can be
interpreted as first aggregating the features in the V matrix into dk context vectors using
the weights in the ρ(K>), and then reassigning the context vectors back to m using the
weights in the Q matrix. The computational and memory complexities of this operation
are O(m).

This self-attention operation is similar to the attention operation used by Chen et
al. (2018) or Shen et al. (2021), but we do not use softmax standardization for Q matrix.
NormalizedQmatrix constrains the output embedding to a convex combination of context
vectors, which may limit the expression ability of the self-attention mechanism. Therefore,
we remove the softmax normalization of Q matrix, which allows the output embeddings
to span the entire subspace of the dk global context vectors.

Transfer function
The key to materialize the conditional intensity is to fit a transfer function f to the Hawkes
process on the dynamic graph. In the past, softplus function and its variants are generally
used as transfer function in the study of Hawkes process. To ensure that the output of the
transfer function is positive, we instantiate f on the basis of Eqs. (7) and (8) as:

λu(t )=ReLU(SUM(LISA(u(t−),1t−u ,uh(t
−),uc(t−)))) (27)

λv(t )=ReLU(SUM(LISA(v(t−),1t−v ,vh(t
−),vc(t−)))) (28)

where the activation function uses ReLU. SUM(·) means that the features generated by
different embedding update mechanisms are fused in a simple addition way.

The connection between transfer function and conditional intensity
A well chosen transfer function f , taking the dynamic graph representations of the node
as input, is equivalent to the conditional intensity of the Hawkes process in Eqs. (2) and
(3). In this section we formally show the connection.

First, we define the base intensity as a function of the self-information:

µu(t )= fu(u(t−),1t−u ) (29)

µv(t )= fv(v(t−),1t−v ). (30)

Next, we define the influence of different historical events on current events as a function
of historical interaction neighbors and historical collaborative interaction neighbors.∑
(u,v ′,t ′)∈Hu(t )

γhv ′(t ′)κ(t− t ′)= fγ (uh(t−)) (31)
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∑
(u′,v,t ′)∈Cu(t )

γcu′(t ′)κ(t− t ′)= fγ (uc(t−)) (32)

∑
(u′,v,t ′)∈Hv (t )

γhu′(t ′)κ(t− t ′)= fτ (vh(t−)) (33)

∑
(u,v ′,t ′)∈Cv (t )

γcv ′(t ′)κ(t− t ′)= fτ (vc(t−)). (34)

Given these building blocks, we rewrite the conditional intensity in Eqs. (2) and (3) as:

λu(t )= fλ(u(t−),1t−u ,uh(t
−),uc(t−)) (35)

λv(t )= fπ (v(t−),1t−v ,vh(t
−),vc(t−)) (36)

where fλ is a composite function of fu, fγ and the summation, and fπ is a composite function
of fv , fτ and the summation. By choosing the right transfer function f , we further rewrite
fλ and fπ as the composition of f and the LISA module.

Finally, the conditional intensity can be expressed as follows:

λu(t )= (f ◦LISA)(u(t−),1t−u ,uh(t
−),uc(t−))= f (LISA(u(t−),1t−u ,uh(t

−),uc(t−)))(37)

λv(t )= (f ◦LISA)(v(t−),1t−v ,vh(t
−),vc(t−))= f (LISA(v(t−),1t−v ,vh(t

−),vc(t−))). (38)

Next item prediction
Project and predict the next item embedding
As shown in Fig. 1, in dynamic recommendation, user u interacts with item v at time t,
and then interacts with item i at time t +1tu. Our task is to predict items that the user
are most likely to interact with before time t+1tu, which is an analogy to link prediction
problem in dynamic graph. Specifically, after updating the user and item embedding of
time t by using the Hawkes process on the dynamic graph, the DGHP-LISA calculates
the projected embedding û(t +1tu) of user u and the predicted embedding ĩ(t +1tu) of
item i through the projection layer and prediction layer in turn. Then, we calculate the L 2
distance between the predicted item embedding and all other item embeddings, and then
recommend items with the smallest distance to the predicted item embedding.
1. Projection layer: According to the method suggested in LatentCross (Beutel et al.,

2018), based on the embedding u(t ) of user u at time t and the elapsed time 1tu, we
incorporate time into the projected embedding viaHadamard product. The formula is
as follows:
û(t+1tu)= u(t )� (1+Wpro1tu) (39)
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where Wpro is used to convert 1tu into a time-context vector. We initialize Wpro by a
0-mean Gaussian. The vector 1+Wpro1tu is used to scale the past user embedding.
When 1tu= 0, the projected embedding is the same as the input embedding vector.
The larger the value of 1tu, the more the projected embedding differs from the input
embedding and the projected embedding drifts over time.

2. Prediction layer: After obtaining the projected embedding û(t+1tu) of user u, we use
the prediction layer function to learn the future embedding of item i represented as
ĩ(t +1tu). We make this prediction based on the current user u and its interaction
item v immediately before time t+1tu. The formula is as follows:
ĩ(t+1tu)=Wpre[û(t+1tu)||ū||v(t )||v̄]. (40)
As shown in Eq. (40), we use both the static and dynamic embeddings to predict the
static and dynamic embedding of item i at time t+1tu, andWpre represents the weight
matrix.

Loss function
DGHP-LISA is trained to minimize the L2 distance between the predicted item embedding
and the ground truth item’s embedding at every interaction. The loss function is as follows:

L=
∑

(u,v,t )∈I

∥∥ṽ(t )−[v(t−)‖v̄]∥∥2+λu∥∥u(t )−u(t−)∥∥2+λv∥∥v(t )−v(t−)∥∥2. (41)

The first loss term minimizes the predicted embedding error. Since the items’ and users’
properties tend to be stable in a short time, the last two terms are added to regularize the
loss and prevent the consecutive dynamic embeddings of a user and item to vary too much,
respectively. I is a sequence of user-item interaction events in chronological order. λu and
λv are scaling parameters, which are used to ensure the losses are in the same range.

Optimization and training
In model training, we used a gradient-based Adam optimizer to optimize the parameters
and use the same method of constructing batches as in Kumar, Zhang & Leskovec (2019)
to speed up the training process. All interactions in each batch created by this method
do not share any common nodes. DGHP-LISA works iteratively between the selection
and removal steps. In the selection step, the method creates a new batch by selecting the
largest set of edges at the earliest time. In the removal step, the previously selected edges are
removed from the dynamic graph. Thus, each batch built by this method is parallelizable
and maintains the sequential dependencies of all interactions.

Figure 3 shows a dynamic graph of four users interacting with three items over time,
where each dotted line represents the interaction associated with time.
As can be seen from Fig. 3, a total of three batches are constructed using this batch
construction method, which is 50% less than when a single interaction is assigned to a
batch. It is worth noting that each batch satisfies:
1. Each user and item appears at most once in every batch;
2. For the same user or item, earlier interactions are assigned to earlier batches.
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Figure 3 Batch construction in dynamic graph.
Full-size DOI: 10.7717/peerjcs.1368/fig-3

Table 1 The details of datasets.

Data Users Items Interactions Action
repetition

Yelp 9,081 1,000 77,546 0.5%
LastFM 1,000 1,000 1293,103 8.6%
GTD 566 744 99,043 22.7%

EXPERIMENTS
Dataset and preprocessing
In order to evaluate the performance of DGHP-LISA, we conduct experiments on three
public datasets. The details of the datasets are shown in Table 1.
1. Yelp: This dataset is a subset of Yelp’s businesses, reviews, and user data for use in

personal, educational, and academic purposes. We first selected top 1,000 businesses
with most number of reviews and users who made at least five reviews on the selected
businesses. This resulted in 9,081 users and 77,546 interactions. In Yelp, a user interacts
with the same business consecutively only in 0.5% interactions. In the experiment,
this dataset is divided into training set, verification set and test set according to the
proportion of 80%, 10% and 10%.

2. LastFM: This dataset is a widely used dataset that contains one month’s song listening
information (Hidasi & Tikk, 2012). We selected all 1,000 users and the 1,000 most
listened songs, resulting in a total of 1,293,103 interactions. Note that users only
listened to the same song continuously in 8.6% of the interactions. The training set,
validation set, and test set are divided in the same proportion as the Yelp dataset.

3. GTD: The global terrorism database is considered to be the most comprehensive
database covering terrorist incidents in the field of global terrorism so far, including
more than 200,000 terrorist incidents committed by about 3,000 terrorist organizations
around the world since 1970. In order to provide early warning of terrorist attacks
and reduce risks, we use DGHP-LISA to predict the next province or state where
terrorist organizations may attack at a specific time. In the experiment, we deleted all
events with uncertain dates, as well as events with unknown organization and location
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of the terrorist attacks. At the same time, we remove all the terrorist organizations
with fewer than ten occurrences and all the locations where were attacked with less
than ten occurrences. Finally, a total of 99,043 events were screened, of which a
terrorist organization interacts with the same location of attack consecutively in 38%
interactions. In the experiment, the data is split by time, and we train all models on
the first 70% interactions, validate on the next 10%, and test on the last remaining
interactions.

Experimental setup
Evaluation metrics
We use the following two evaluation metrics for experiments:
1. Mean Reciprocal Rank (MRR) is the average of the reciprocal rank of the first positive

example in all user recommendation lists. This indicator can measure the performance
of the model with respect to the ranking list of items. Higher MRR score means the
ground truth item tends to have higher rank positions in the predicted item lists. In
some scenarios, such as ranking search results for specific users, the improvement
of MRR can significantly improve the user experience, especially for items with high
importance in ranking results. To calculateMRR, we use equation:

MRR=
1
|I |

∑
i∈I

1
ranki

(42)

where i∈ I represents traversing all interactions and ranki represents the location of
the ground truth item in the recommendation list for the i-th interaction.

2. Recall@k is the fraction of interactions in which the ground truth item is ranked in the
top k. Thismetrics paysmore attention to the integrity and diversity of recommendation
results, and it is more suitable to be used in the recommendation system. Because the
recommendation system needs to ensure that it covers as many items as possible in
the user’s area of interest, so as to improve user satisfaction and participation. In
some scenarios, such as e-commerce and news recommendation, the improvement of
Recall@k can significantly improve the actual effect of the recommendation system,
increase sales or user stickiness and so on. Formally, Recall@k is defined as:
Recall@k=

nhit
|I |

(43)

where nhit is the number of ground truth items that are among the top-k
recommendation list, and |I | is the number of all test cases.

Parameter setting
We use Pytorch to implement DGHP-LISA, and the hyper-parameters are determined
by the performance of the model on the verification set. For all algorithms, we use 128-
dimensional dynamic embeddings and randomly initialize user and item embeddings with
a Gaussian distribution with mean 0 and variance 1. Adam optimizer with learning rate
1e−3, L2 penalty 1e−5 is adopted in our model. Static embeddings all use one-hot vectors.
The scaling parameters λu and λv in loss function are set to 1. All algorithms run for 50
rounds, and the corresponding test set is selected according to the best verification set. All
experiments are run independently in the same experimental environment with Intel(R)
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Xeon(R) Gold 5118 host and NVIDIA Tesla V100-SXM2-32GB GPU. For comparison
methods, we mostly use the default hyperparameters of the original paper.

Baselines
To evaluate DGHP-LISA, we compare it with the following six baselines:

• LSTM (Hochreiter & Schmidhuber, 1997): It is a special RNN that captures long-term
dependencies.
• Time-LSTM (Zhu et al., 2017): It adds two time gates to the standard LSTM to model
the impact of time intervals on users’ current and long-term behavior.
• RRN (Wu et al., 2017): Based on the idea of matrix decomposition, it uses RNN to learn
the dynamic embedding of users and items.
• DeepCoevolve (Dai et al., 2016): It is based on co-evolutionary point process algorithms.
According to (Kumar, Zhang & Leskovec, 2019), 10 negative samples are used in each
interaction.
• JODIE (Kumar, Zhang & Leskovec, 2019): It is a coupled RNN model that is used to
learn the dynamic feature representation of users and items.
• DGCF (Li et al., 2020): It is a state-of-the-art model in dynamic recommendation
problem, which is a new framework that utilizes dynamic graph to capture the
collaborative and historical sequence relationships between users and items.

Next item prediction experiment
For next item prediction, Table 2 compares the results of DGHP-LISA with six baselines
on three datasets. In the experiment, DGHP-LISA uses a attention aggregator with an
aggregator size of 20. The bold and underlined numbers mean the best and second-best
results on each dataset and metric, respectively. ‘‘Improvement’’ denotes the performance
improvement of DGHP-LISA over the best baseline.

From the experimental results, it can be observed:
1. DGHP-LISA outperforms all baselines on both metrics of the three datasets. Especially

on the Yelp dataset, compared with the best baseline, the improvement of DGHP-LISA
on MRR is 14.3% and the improvement on Recall@10 is 23.6%. Also, compared with
state-of-the-art baseline DGCF, the improvements on GTD, LastFM, and Yelp are in an
increasing order, which are consistent with the repetitive action pattern in the datasets.
The main reason for the improvement may be that DGHP-LISA explicitly captures the
historical interaction information and historical collaborative interaction information.
For example, users in Yelp datasets tend to comment on different businesses with
similar categories, which results in a low action repetition. In this case, our model can
consider both the historical interaction sequence of users and the similar interaction
sequence of other users. The results show that DGHP-LISA can well deal with low
action repetition situation.

2. DGHP-LISA performs significantly better than DeepCoevolve on three datasets. It
shows that DGHP-LISA has a more appropriate conditional intensity function, which
can better model the impact of historical events on the embedding update process of
users or items.
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Table 2 Performance comparison of different methods on three datasets.

Models Yelp LastFM GTD

MRR Recall@ 10 MRR Recall@ 10 MRR Recall@ 10

LSTM 0.006 0.011 0.062 0.119 0.124 0.211
Time-LSTM 0.008 0.019 0.068 0.137 0.267 0.452

RRN 0.013 0.023 0.089 0.182 0.402 0.643
DeepCoevolve 0.004 0.009 0.019 0.039 0.051 0.085

JODIE 0.046 0.082 0.195 0.307 0.496 0.764
DGCF 0.077 0.144 0.321 0.456 0.509 0.785

DGHP-LISA 0.088 0.178 0.328 0.474 0.510 0.803
Improvement 14.3% 23.6% 2.2% 3.9% 0.2% 2.3%

Notes.
The bold and underlined values indicate the best and second-best results on each dataset and metric, respectively.

3. DGHP-LISA and DGCF are superior to other baselines on three datasets, which
indicates that the modeling of topological structure information is critical for learning
dynamic graphs.

4. Considering the low density of user-item matrix in the three datasets, DGHP-LISA has
certain advantages in dealing with the problem of data sparsity in the field of dynamic
recommendation. First of all, the method makes use of the dynamic interactive
information between the user and the item in the time series bipartite graph to make
recommendations. This dynamic interactive information can provide more feature
information and increase the accuracy of model prediction, so as to make up for the
lack of data sparsity. Secondly, the DGHP-LISA models the changes of users’ interests
and the evolution of item attributes at the same time by introducing Hawkes process,
so as to better depict the co-evolution between users and items. It can be proved by
experiments that this method can further enhance the representation of learning nodes
in order to make full use of the limited data and make better recommendations.

Experimental analysis and discussion
Ablation study
To verify the effectiveness of each module in the model, we implemented several variants of
DGHP-LISA and conduct the next itemprediction task on three datasets. In the experiment,
DGHP-LISA uses a attention aggregator with an aggregator size of 20. First of all, we use
only the basic intensity in the node embedding update framework based on the dynamic
graph Hawkes process, and then gradually add the excitation effect of historical events,
the time embedding of neighbor nodes, and the LISA module to form DGHP-LISA. The
specific process is described as follows:

• variant a (basic intensity): We only use basic intensity to model in the node embedding
update framework based on dynamic graph Hawkes process.
• variant b (+excitation effect of historical events): We add the modeling of the influence
of different historical interaction events and historical collaborative interaction events
on the current events.
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• variant c (+time embedding of neighbor nodes):We add time embedding to all historical
interaction neighbors and historical collaborative interaction neighbors.
• variant d (+ LISA): LISA module is added to the time encoding of neighbor nodes and
the feature fusion of node embeddings.

Table 3 presents that the key modules in DGHP-LISA are effective for the next item
prediction task. Specifically, modeling the influence of historical events on current events in
the node embedding update framework based on dynamic graph Hawkes process is helpful
to capture the excitation effects of different historical events. We add time embedding
to all historical interaction neighbors and historical collaborative interaction neighbors,
which is helpful to capture the time decay effect of different historical events on current
events. We add the LISA module to the time encoding of neighbor nodes, which effectively
captures the time correlation of different historical events. At the same time, we add the
LISA module to the feature fusion of node embeddings , which effectively models the
importance between update mechanisms. In conclusion, the ablation experiment presents
the effectiveness of each module in our model.

Impact of different aggregator functions
In order to study the impact of different aggregator functions on the performance of the
model, we test the effectiveness of mean and attention aggregator functions respectively.
In the experiment, the size of the aggregator is 20. It can be seen from Table 4 that the
attention aggregator is better than the mean aggregator on three datasets. It is proved that
the attention aggregator can update the user or item embedding by selecting the information
which is more beneficial to the prediction task in multiple historical interaction neighbors
or historical collaborative interaction neighbors. However, the mean aggregator has the
sameweightwhen aggregating neighbor information, whichmay ignore themost influential
nodes.

Impact of different aggregator sizes
In order to verify the impact of different aggregator sizes on the model performance, we
use attention aggregator to set different aggregator sizes to evaluate the model. In the
experiment, DGHP-LISA uses a attention aggregator, and the aggregator size is set to 20,
40, 60 and 80, respectively. As shown in Table 5, as the size of the aggregator increases, the
performance of the model on three datasets decreases at first and then increases. When the
size of aggregator is 20, the performance of the algorithm is the best. This shows that the
increase of aggregator size may bring a lot of neighbor information redundancy, which is
not helpful to modeling. Therefore, the accuracy of the model and the speed of training
can be improved by reducing the size of the aggregator.

CONCLUSIONS
Wepropose a new dynamic graphHawkes process based on linear complexity self-attention
and successfully apply it to the next item prediction problem. This model proposes an
effective method to model the dynamic embedding of users and items in dynamic graph.
Specifically, on the node embedding update framework based on Hawkes process, we
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Table 3 Comparison of different variant models.

Variants Yelp LastFM GTD

MRR Recall@ 10 MRR Recall@ 10 MRR Recall@ 10

a 0.077 0.149 0.322 0.460 0.508 0.795
b 0.079 0.161 0.324 0.461 0.508 0.796
c 0.081 0.163 0.325 0.462 0.509 0.798
d 0.088 0.178 0.328 0.474 0.510 0.803

Table 4 Impact of different aggregator functions.

Aggregator Yelp LastFM GTD

MRR Recall@ 10 MRR Recall@ 10 MRR Recall@ 10

Mean 0.087 0.176 0.326 0.472 0.509 0.802
Attention 0.088 0.178 0.328 0.474 0.510 0.803

Table 5 Impact of different aggregator sizes.

Aggregator size Yelp LastFM GTD

MRR Recall@ 10 MRR Recall@ 10 MRR Recall@ 10

20 0.088 0.178 0.328 0.474 0.510 0.803
40 0.086 0.176 0.327 0.474 0.508 0.802
60 0.087 0.175 0.326 0.473 0.509 0.801
80 0.088 0.177 0.328 0.474 0.510 0.802

add time embedding to all neighbor nodes to capture the time decay effects of different
historical events on current events and model the excitation effects of different historical
events. At the same time, we add LISA module to the time encoding of neighbor nodes
and the feature fusion of node embeddings respectively, which effectively captures the time
correlation of different historical events and the dynamic correlation between different
update mechanisms. Finally, extensive experiments are carried out on three real-world
datasets to prove that DGHP-LISA achieves the most advanced performance. In the future
research work, a non-recursive network structure can be designed to further improve the
training speed without affecting the accuracy of the model. Another direction of innovation
is to explore the combination of other dynamic graph structure and recommender system
except bipartite graph In addition, it is also possible to explore how to consider the impact
of negative historical events on current events in DGHP-LISA to more accurately reflect
user interest changes and item attribute evolution.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China-China
State Railway Group Co., Ltd. Railway Basic Research Joint Fund (Grant No.U2268217)

Hou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1368 19/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1368


and the Scientific Funding for China Academy of Railway Sciences Corporation Limited
(No.2021YJ183). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Natural Science Foundation of China-China State Railway Group Co., Ltd.
Railway Basic Research Joint Fund: No.U2268217.
The Scientific Funding for China Academy of Railway Sciences Corporation Limited:
No.2021YJ183.

Competing Interests
Xiaojun Lv is employed by China Academy of Railway Sciences Corporation Limited.

Author Contributions
• Zhiwen Hou conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Xiaojun Lv performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.
• Yuchen Zhou analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.
• Lingbin Bu analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.
• Qiming Ma conceived and designed the experiments, prepared figures and/or tables,
and approved the final draft.
• Yifan Wang performed the experiments, prepared figures and/or tables, and approved
the final draft.
• Fanliang Bu conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data and code are available in the Supplemental Files.
Publicly available datasets were analyzed in this study. We evaluated our algorithm on

three datasets: Yelp, LastFM, and GTD:
- https://www.yelp.com/dataset;
- http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html;
- https://www.start.umd.edu/gtd.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1368#supplemental-information.

Hou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1368 20/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1368#supplemental-information
https://www.yelp.com/dataset
http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
https://www.start.umd.edu/gtd
http://dx.doi.org/10.7717/peerj-cs.1368#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1368#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1368


REFERENCES
Baytas IM, Xiao C, Zhang X,Wang F, Jain AK, Zhou J. 2017. Patient subtyping via

time-aware LSTM networks. In: Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining. New York: ACM, 65–74.

Beutel A, Covington P, Jain S, Xu C, Li J, Gatto V, Chi EH. 2018. Latent cross: making
use of context in recurrent recommender systems. In: Proceedings of the eleventh
ACM international conference on web search and data mining. New York: ACM,
46–54.

Chen Y, Kalantidis Y, Li J, Yan S, Feng J. 2018. A2̂-nets: double attention networks.
In: Advances in neural information processing systems. Redhook: Curran Associate,
350–359.

Covington P, Adams J, Sargin E. 2016. Deep neural networks for youtube recommenda-
tions. In: Proceedings of the 10th ACM conference on recommender systems. New York:
ACM, 191–198.

Dai H,Wang Y, Trivedi R, Song L. 2016. Deep coevolutionary network: embedding user
and item features for recommendation. ArXiv preprint. arXiv:1609.03675.

HamiltonW, Ying Z, Leskovec J. 2017. Inductive representation learning on large
graphs. ArXiv preprint. arXiv:1706.02216.

Hawkes AG. 1971. Spectra of some self-exciting and mutually exciting point processes.
Biometrika 58(1):83–90 DOI 10.1093/biomet/58.1.83.

Hidasi B, Karatzoglou A, Baltrunas L, Tikk D. 2015. Session-based recommendations
with recurrent neural networks. ArXiv preprint. arXiv:1511.06939.

Hidasi B, Tikk D. 2012. Fast ALS-based tensor factorization for context-aware
recommendation from implicit feedback. In: Flach PA, De Bie T, Cristianini
N, eds.Machine learning and knowledge discovery in databases. ECML PKDD
2012. Lecture Notes in Computer Science, vol 7524, Berlin, Heidelberg: Springer
DOI 10.1007/978-3-642-33486-3_5.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation
9(8):1735–1780 DOI 10.1162/neco.1997.9.8.1735.

Hou Z, Bu F. 2021. A small UAV tracking algorithm based on AIMM-UKF. Aircraft Engi-
neering and Aerospace Technology 93:579–591 DOI 10.1108/AEAT-01-2019-0013.

Julier SJ, Uhlmann JK. 1997. New extension of the Kalman filter to nonlinear systems.
In: Signal processing, sensor fusion, and target recognition VI, vol. 3068. Bellingham:
SPIE, 182–193.

Kipf TN,WellingM. 2016. Semi-supervised classification with graph convolutional
networks. ArXiv preprint. arXiv:1609.02907.

Koren Y. 2009. Collaborative filtering with temporal dynamics. In: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining. New
York: ACM, 447–456.

Kumar S, Zhang X, Leskovec J. 2019. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In: Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. New York: ACM, 1269–1278.

Hou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1368 21/23

https://peerj.com
http://arXiv.org/abs/1609.03675
http://arXiv.org/abs/1706.02216
http://dx.doi.org/10.1093/biomet/58.1.83
http://arXiv.org/abs/1511.06939
http://dx.doi.org/10.1007/978-3-642-33486-3_5
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1108/AEAT-01-2019-0013
http://arXiv.org/abs/1609.02907
http://dx.doi.org/10.7717/peerj-cs.1368


Li J, Ren P, Chen Z, Ren Z, Lian T, Ma J. 2017. Neural attentive session-based rec-
ommendation. In: Proceedings of the 2017 ACM on conference on information and
knowledge management. New York: ACM, 1419–1428.

Li X, ZhangM,Wu S, Liu Z,Wang L, Philip SY. 2020. Dynamic graph collaborative
filtering. In: 2020 IEEE international conference on data mining (ICDM). Piscataway:
IEEE, 322–331.

Liu Q,Wu S,Wang D, Li Z, Wang L. 2016a. Context-aware sequential recommendation.
In: 2016 IEEE 16th international conference on data mining (ICDM). Piscataway:
IEEE, 1053–1058.

Liu Q,Wu S,Wang L. 2017.Multi-behavioral sequential prediction with recur-
rent log-bilinear model. IEEE Transactions on Knowledge and Data Engineering
29(6):1254–1267 DOI 10.1109/TKDE.2017.2661760.

Liu Q,Wu S,Wang L, Tan T. 2016b. Predicting the next location: a recurrent model with
spatial and temporal contexts. In: Thirtieth AAAI conference on artificial intelligence.
Palo Alto: AAAI,.

Mei H, Eisner JM. 2017. The neural hawkes process: a neurally self-modulating multi-
variate point process. In: NIPS. 6757–6767.

Panzarasa P, Opsahl T, Carley KM. 2009. Patterns and dynamics of users’ behavior
and interaction: network analysis of an online community. Journal of the American
Society for Information Science and Technology 60(5):911–932 DOI 10.1002/asi.21015.

Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L. 2012. BPR: Bayesian
personalized ranking from implicit feedback. ArXiv preprint. arXiv:1205.2618.

Rendle S, Freudenthaler C, Schmidt-Thieme L. 2010. Factorizing personalized markov
chains for next-basket recommendation. In: Proceedings of the 19th international
conference on world wide web. 811–820.

Shen Z, ZhangM, Zhao H, Yi S, Li H. 2021. Efficient attention: attention with linear
complexities. In: Proceedings of the IEEE/CVF winter conference on applications of
computer vision. Piscataway: IEEE, 3531–3539.

Tan YK, Xu X, Liu Y. 2016. Improved recurrent neural networks for session-based rec-
ommendations. In: Proceedings of the 1st workshop on deep learning for recommender
systems. 17–22.

Trivedi R, Farajtabar M, Biswal P, Zha H. 2019. Dyrep: learning representations over
dynamic graphs. In: International conference on learning representations.

Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. 2017. Graph
attention networks. ArXiv preprint. arXiv:1710.10903.

Wang X, He X,WangM, Feng F, Chua T-S. 2019. Neural graph collaborative filtering.
In: Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information retrieval. New York: ACM, 165–174.

Wang Y, Du N, Trivedi R, Song L. 2016. Coevolutionary latent feature processes for
continuous-time user-item interactions. In: Proceedings of the 30th international
conference on neural information processing systems. NIPS’16. Red Hook, NY, USA:
Curran Associates Inc., 4554–4562.

Hou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1368 22/23

https://peerj.com
http://dx.doi.org/10.1109/TKDE.2017.2661760
http://dx.doi.org/10.1002/asi.21015
http://arXiv.org/abs/1205.2618
http://arXiv.org/abs/1710.10903
http://dx.doi.org/10.7717/peerj-cs.1368


Wang Z,WeiW, Cong G, Li X-L, Mao X-L, QiuM. 2020. Global context enhanced
graph neural networks for session-based recommendation. In: Proceedings of the
43rd international ACM SIGIR conference on research and development in information
retrieval. New York: ACM, 169–178.

WuC-Y, Ahmed A, Beutel A, Smola AJ, Jing H. 2017. Recurrent recommender net-
works. In: Proceedings of the tenth ACM international conference on web search and
data mining. New York: ACM, 495–503.

WuQ, Gao Y, Gao X,Weng P, Chen G. 2019a. Dual sequential prediction models linking
sequential recommendation and information dissemination. In: Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining.
New York: ACM, 447–457.

Wu S, Liu Q, Bai P, Wang L, Tan T. 2016. SAPE: a system for situation-aware public
security evaluation. In: Thirtieth AAAI conference on artificial intelligence. Palo Alto:
AAAI.

Wu S, Tang Y, Zhu Y,Wang L, Xie X, Tan T. 2019b. Session-based recommendation
with graph neural networks. In: Proceedings of the AAAI conference on artificial
intelligence, vol. 33. Palo Alto: AAAI, 346–353.

Xu C, Zhao P, Liu Y, Sheng VS, Xu J, Zhuang F, Fang J, Zhou X. 2019. Graph contextu-
alized self-attention network for session-based recommendation. In: IJCAI, vol. 19.
3940–3946.

You J, Wang Y, Pal A, Eksombatchai P, Rosenburg C, Leskovec J. 2019.Hierarchical
temporal convolutional networks for dynamic recommender systems. In: The world
wide web conference. 2236–2246.

Zhang Y. 2019. ATTAIN: attention-based time-aware LSTM networks for disease
progression modeling. In: Proceedings of the 28th international joint conference on
artificial intelligence (IJCAI-2019). Macao, China, 4369–4375.

Zhu Y, Li H, Liao Y,Wang B, Guan Z, Liu H, Cai D. 2017.What to do next: modeling
user behaviors by time-LSTM. In: IJCAI, vol. 17. 3602–3608.

Hou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1368 23/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1368

