
Artificial intelligence-driven malware
detection framework for internet of things
environment
Shtwai Alsubai1,*, Ashit Kumar Dutta2,*, Abdullah M. Alnajim3, Abdul
rahaman Wahab Sait4, Rashid Ayub5, Afnan Mushabbab AlShehri6 and
Naved Ahmad6

1 Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
2 Department of Computer Science and Information Technology, Almaarefa University, Riyadh,
Kingdom of Saudi Arabia

3 Department of Information Technology, College of computer, Qassim University, Buraydah,
Saudi Arabia

4 Department of Archives and Communication, King Faisal University, Al Ahsa, Hofuf,
Kingdom of Saudi Arabia

5 Department of Science Technology & Innovation Unit, King Saud University, Riyadh,
Saudi Arabia

6 Department of Computer Science and Information Systems, College of Applied Sciences,
AlMaarefa University, Ad Diriyah, Riyadh, Kingdom of Saudi Arabia

* These authors contributed equally to this work.

ABSTRACT
The Internet of Things (IoT) environment demands a malware detection (MD)
framework for protecting sensitive data from unauthorized access. The study intends
to develop an image-based MD framework. The authors apply image conversion and
enhancement techniques to convert malware binaries into RGB images. You only
look once (Yolo V7) is employed for extracting the key features from the malware
images. Harris Hawks optimization is used to optimize the DenseNet161 model to
classify images into malware and benign. IoT malware and Virusshare datasets are
utilized to evaluate the proposed framework’s performance. The outcome reveals that
the proposed framework outperforms the current MD framework. The framework
generates the outcome at an accuracy and F1-score of 98.65 and 98.5 and 97.3 and
96.63 for IoT malware and Virusshare datasets, respectively. In addition, it achieves
an area under the receiver operating characteristics and the precision-recall curve of
0.98 and 0.85 and 0.97 and 0.84 for IoT malware and Virusshare datasets,
accordingly. The study’s outcome reveals that the proposed framework can be
deployed in the IoT environment to protect the resources.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Emerging Technologies
Keywords Malware detection, Internet of Things, Industrial IoT, Convolutional neural network,
Deep learning, Machine learning

INTRODUCTION
The Internet of Things (IoT) connects the real and virtual worlds (Mu et al., 2021; Ben
Atitallah, Driss & Almomani, 2022). New business models and global interactions emerge
as people, products, technologies, and the internet become more interconnected (Kumar,
Janet & Neelakantan, 2022). Cybercriminals are increasingly targeting IoT devices because
they are easy targets for exploiting weak authentication, outdated firmware, and malware

How to cite this article Alsubai S, Dutta AK, Alnajim AM, Wahab Sait Ar, Ayub R, AlShehri AM, Ahmad N. 2023. Artificial intelligence-
driven malware detection framework for internet of things environment. PeerJ Comput. Sci. 9:e1366 DOI 10.7717/peerj-cs.1366

Submitted 23 January 2023
Accepted 4 April 2023
Published 29 May 2023

Corresponding authors
Shtwai Alsubai,
Sa.alsubai@psau.edu.sa
Ashit Kumar Dutta,
adotta@mcst.edu.sa

Academic editor
Kathiravan Srinivasan

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.1366

Copyright
2023 Alsubai et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1366
mailto:Sa.�alsubai@�psau.�edu.�sa
mailto:adotta@�mcst.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1366
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

due to the complexity of design and implementation in hardware and software (Khan &
Salah, 2018). The vulnerabilities in IoT applications can damage the entire network. In
recent years, the exponential growth of ML techniques in identifying and categorizing IoT
malware effectively. IoT devices are considered heterogeneous, can be implemented on
various platforms, and have a wide range of requirements (Li et al., 2022). IoT is subject to
the risk of being attacked by malware due to the lack of a practical malware detection (MD)
framework. Malware presents a significant threat to IoT security, and one of the crucial
issues is detecting unknownmalware. Before attempting to implement security solutions, it
is essential to understand that IoT devices have significant constraints, such as limited
battery retention and low computational processing capability (Meira et al., 2022).
Research on IoT security has drawn considerable attention from academic institutions and
government agencies. Several studies have identified cyber threats and proposed
countermeasures (Emil Selvan et al., 2022).

Conventional security approaches have proven ineffective and have failed to deliver
decentralized, robust security for IoT networks (Lan et al., 2022). Transitioning similar
solutions from traditional platforms to IoT may not be cost-effective due to the limitations
of IoT devices (Kan et al., 2021). In addition, IoT platforms allow the integration of
network resources into devices not originally conceived of as part of computer networks.
Consequently, employing conventional security methods is insufficient to provide IoT
systems with MD capabilities (Khan et al., 2020). Due to limited computing resources,
conventional MD approaches failed to provide adequate security to IoT devices (Asam
et al., 2021). The more reliable and promising performance of machine learning (ML)
methods has led to their widespread adoption for MD. With ML algorithms, anti-malware
tools have become more effective (Carrillo-Mondéjar, Martínez & Suarez-Tangil, 2020). In
recent times, software define networks (SDN) offers an interactive architecture for
exchanging the information (Javeed, Gao & Khan, 2021; Javeed et al., 2021; Al Razib et al.,
2022). It consists of three layers including, application, control and data. It facilitates a wide
range of security for the IoT devices. The centralized architecture and intelligence enable
the developers to build an effective MD framework to identify the malware.

In the context of encrypted or compromised malware, static signature-based MD
algorithms have failed (Asam et al., 2022). Application programming interface data is the
most popular feature for building MD models based on sequential behaviours. In contrast,
machine activity data is the most popular feature for depicting malware functioning using
continuous behaviours (Vignau et al., 2021). Additionally, API calls and opcodes are often
employed when developers attempt to determine the common behaviours among malware
groups (Shao, Yuan & Wang, 2021). The behavioural-based method is a potential
alternative to overcome the challenges of its counterparts. However, over-reliance on
behaviours causes the MD models to misclassify a task close to benign functions or mimic
lawful behaviours, resulting in a high false-positive rate.

Image-based MD can overcome the challenges and limitations of the existing MD
models by minimizing the data loss (Falana et al., 2022). Feature engineering is one of the
recent developments in image-based MD. There is a strong correlation between feature
extraction and the effectiveness of the MD and classification procedure (Saxe & Berlin,

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 2/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

2016; Fathurrahman, Bejo & Ardiyanto, 2022). The existing shallow neural networks and
classical ML models demand a higher training duration due to fewer hidden layers (Lirim
Ashiku, 2021). It memorizes the training data and makes it difficult to generalize to a newer
environment. Deep learning (DL) methods have become increasingly applicable to
identifying and analyzing threats with ever-growing malware datasets. Recent studies focus
on employing convolutional neural networks (CNN) to classify malware. Deep CNNs
facilitate the development of detection systems based on malware images. It enables the
MD framework to identify the crucial features of malware.

The features learned at lower layers are strengthened in higher layers. These
characteristics support CNNs in producing an effective outcome (Kumar, Janet &
Neelakantan, 2022). In addition, the computational cost is minimized by limiting the size
of the dataset. The grayscale values ranges from 0 to 255 and gradually shifts between the
two extremes of black and white.

Furthermore, grayscale images can be created using malware binary. The properties
such as texture, intensity, and wavelet can be retrieved from the resulting images (Liu et al.,
2020a). Furthermore, recent studies believe that the RGB image can provide more
information for classifying malware images. The primary difficulty of visualization
methods is computing the texture similarity of a grayscale image. These methods
effectively decrypt obfuscated code. However, they are computationally expensive due to
the complexity of extracting texture features from malware images. Large datasets make
the feature extraction methods less efficient. Malware is constantly evolving, updating, and
producing new versions of itself.

Consequently, improving the performance of the MD framework with low hardware
configuration and extracting relevant information from raw binary data are the primary
motivational factors for this study. The study intends to develop an MD framework using
the CNN model. In addition, it applies efficient image enhancement and object detection
techniques to improve the proposed framework’s performance.

For IoT devices, there is a requirement for intrusion detection systems that are vastly
improved and highly secured. Traditional machine learning algorithms cannot identify
sophisticated cyber breaches because of their static design. DL allows for conducting a
more in-depth network data analysis and spotting anomalies. Recent studies reveal the
crucial role of DL in processing complex images (Falana et al., 2022). Visualizing malware
as a coloured image gives the benefit of differentiating various components of the malware
binary (Naeem et al., 2020; Jian et al., 2021; Falana et al., 2022). Malware programmers
typically modify a small section of the malware codes to develop a new mutant. Thus,
visualizing malware as an image offers the benefit of differentiating different components
of the malware binary. An image-based DL-driven detection method is highly scalable,
flexible, and cost-effective (Naeem et al., 2020; Jian et al., 2021). It can evaluate vast
amounts of data and automatically alter security systems to identify malware or security
breaches with minimum processing resources.

The contributions of the study are:

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 3/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

i) An effective technique to generate images from malware binaries.It overcomes the
challenges of the existing RGB image generation technique. In addition, it reduces
the possibility of data loss during the image generation process.

ii) A feature extraction technique for extracting the key features from the malware
images. It provides the critical features for the CNN models. By presenting a set of
crucial features, the performance of the MD model is improved.

iii) A hybrid CNN model for detecting malware in the IoT environment. It addresses the
limitations of the existing MD techniques by employing an image-based detection
technique. In addition, it demands a minimum hardware and software configuration
compared to the recent CNN models.

iv) The proposed model achieved a significant outcome in detecting malware in IoT
environment compared to the current models in terms of accuracy, precision,
recall, and F1-measure.

The remaining part of this study is organized as follows: “Literature Review” outlines
the recent MD using images and binary files. The study’s methodology is discussed in
“Materials and Methods”. “Results” and “Discussion” highlight the performance analysis
of the proposed framework and compare it with the recent MD frameworks. Finally,
“Conclusion” concludes this study.

LITERATURE REVIEW
The field of image processing extensively employed CNN to generate a practical outcome
(Smmarwar, Gupta & Kumar, 2022). The weight sharing and the convolution kernel
methods were used in CNN to overcome the limitations of neural network techniques
(Asam et al., 2021). Recently, researchers have focused on improving the malware
visualization technique’s performance and reducing computation cost. This section covers
visualization-related studies, including malware identification using statistical similarity
measures, machine learning, and deep learning. Traditional MD techniques primarily
analyse harmful code properties (Conti, Khandhar & Vinod, 2022). These capabilities also
utilize advanced machine learning-based MD techniques to identify new forms of
destructive code. However, these technologies failed to detect new malware variations.

Several malware analysis visualization methods have been suggested recently.
Makandar & Patrot (2017) developed a novel approach for detecting malware using image
features. They generated two-dimensional grayscale graphics from the structure of the
compressed binary executable. Based on the findings, binary texture analysis proved more
precise and efficient. Venkatraman, Alazab & Vinayakumar (2019) proposed an image
based model for detecting malware. Vasan et al. (2020) proposed an approach for
converting raw binaries into colour images and detecting malware families. They
employed data augmentation for processing the imbalanced dataset. Malimg malware and
IoT-android mobile datasets were used for performance evaluation. The outcome shows
that the model can identify hidden code and malware families with limited resources.

Liu et al. (2020b) introduced a reinforcement method that relies on ML to identify
various forms of malware and its variations. Naeem et al. (2020) developed an MDmethod

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 4/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

for the Industrial Internet of Things (IIoT). To track and record information about
incoming and outgoing traffic, the authors developed a sniffer gateway. Awan et al. (2021)
introduced an image–based malware classification. They employed the VGG-19 network
to classify 25 well-knownmalware images. Jian et al. (2021) suggested a unique deep neural
network–based visual MD methodology. They established that three-channel RGB images
are superior to grayscale images for malware identification.

Similarly, Sharma, Sharma & Kalia (2022) proposed an Xception CNN-based MD
framework for classifying malware images. The authors stated that the models achieve a
superior outcome than the current frameworks. Yadav et al. (2022) developed a MD
framework using Andriod malware images. Obaidat et al. (2022) proposed a CNN model

Table 1 Related works.

Authors (year) Dataset Method Results (%) Platform

Makandar & Patrot (2017) Malimg Support vector machine
and Discrete wavelet
transform (DWT)

Average accuracy: 98.2 Non- IoT platform

Venkatraman, Alazab &
Vinayakumar (2019)

Malimg CNN Average accuracy: 98.4 Real-world
application

Vasan et al. (2020) Malimg and IoT
Android

Gated recurrent unit and
CNN

Achieved accuracy of 98.82 on
Malimg and 97.35 on IoT
android

IoT platform

Liu et al. (2020b) Microsoft BIG CNN and GAN Average accuracy: 96.25 Real-world
application

Naeem et al. (2020) Leopard Mobile dataset Deep CNN model Average accuracy: 97.5 Industrial IoT

Awan et al. (2021) Malimg Spatial attention CNN Average accuracy: 97.62 IoT platform

Asam et al. (2021) Malimg Deep boosted feature
space-based malware
classification

Average accuracy: 98.6 Real-world
application

Sharma, Sharma & Kalia (2022) Windows malware
binaries

Xception CNN Average accuracy: 97.5 Real-world
application

Smmarwar, Gupta & Kumar (2022) IoT malware and
Malimg

DWT, GAN and CNN Average accuracy: 99 IoT platform

Conti, Khandhar & Vinod (2022) Windows malware
binaries

Convolutional Siamese
neural network

Average accuracy: 98.5 Real-world
application

Yadav et al. (2022) Android malware
images

SVM and Random Forest Achieved an average accuracy
of 92.9 on multi-class and 100
on binary class

Android

Kumar & Janet (2021) Malimg and Microsoft
BIG

VGG16, VGG19,
ResNet50, and Google’s
inception V3

Average accuracy: 98.92 Real-world
application

Obaidat et al. (2022) Java bytecode CNN Accuracy: 98.4 Real-world
application

Falana et al. (2022) Malevis, Malimg, and
Virusshare

Deep GAN and CNN Average accuracy: 96.77 Real-world
application

Chaganti, Ravi & Pham (2022) IoT malware Bi-directional DL model Average accuracy: 98 IoT platform

Bensaoud & Kalita (2022) Malimg Deep CNN Average accuracy: 97.5 Real-world
application

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 5/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

using Java bytecode. Chaganti, Ravi & Pham (2022) developed a Bi-directional DL
approach for classifying the IoT malware images. Bensaoud & Kalita (2022) employed
Malimg dataset for evaluating the CNN model. In another study, Falana et al. (2022)
developed a technique to convert malware binaries into an image to support the process of
malware classification. A slight variation in an image assists CNN models in identifying
critical malware. They employed three benchmark datasets: MaleVis, Mallmg, and
Virusshare. The findings suggested that the model achieves an average accuracy of 96.77%.
The recent techniques focussed on pattern-based MD. However, it has many drawbacks,
including a high false positive rate that causes many valid activities to be incorrectly
labelled intrusive. There is a demand for more critical training data. In addition, the
existing methods require high-end computation resources to generate an effective
outcome. Table 1 outlines the features of the existing MD frameworks.

MATERIALS AND METHODS
The authors propose a DL based framework to classify malware and benign images based
on the study’s objective. Figure 1 highlights the three phases of the proposed framework. In
phase 1, the authors convert the binaries into an image. The images are pre-processed and
resized as 600 × 600 pixels. The authors employed you look only once (Yolo) V7 to identify
critical features from the images. Phase 2 involves Harris Hawks optimization (HHO) to
fine-tune the DenseNet161 parameters to identify malware from the datasets. Finally,
phase 3 evaluates the performance of the proposed frameworks. The authors utilize two
datasets in this study, including IoT malware and binaries. Two IoT malware datasets
(IoT_malware and Virusshare) are used in this study which is available in the Elmasry
dataset (Malware, 2021) and Virusshare dataset (Virusshare, 2021) respectively.
IoT_malware dataset is a recently developed malware images dataset. It includes the IoT
malware images of categories including benign and malware. The unpacked executable
and linkage format binaries for malware and benign applications were represented in the
image format. In addition, the Virusshare dataset contains instances of multiple malware
families. The description of the datasets is provided in Table 2.

Based on the SDN framework, the researchers framed the network model as shown in
Fig. 2 for implementing the proposed model. In the control layer, the binaries are
converted into images and transformed as RGB images. Yolo V7 extracts the crucial
objects. Finally, the fined tuned CNN model classifies the malware and benign images.

In phase 1, the authors follow the approaches of Falana et al. (2022) to convert binaries
into an image. Let B1, B2, …, Bn and M1, M2, …, Mn be the benign and malware binaries
set, respectively. Let D be a space to hold benign and malware binaries. Therefore, Di

represents a binary, which may be benign or malicious. Figure 3 shows converting binaries
and grayscale images into RGB images.

The following algorithm presents the algorithm for transforming the binaries (D) into a
grayscale image. During the image pre-processing phase, the grayscale images (G) are
converted into RGB images (RGB). Initially, the luminosity method converts a grayscale
image into an RGB image. Equation (1) represents the conversion process of G into RGB.

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 6/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

RGB ðIÞ ¼ G½ð0:3 � RÞ þ ð0:59 � GÞ þ ð0:11 � BÞ� (1)

Insufficient or non-uniform RGB images contain a significant amount of noise.
Therefore, the authors enhance the RGB image based on Mu et al. (2021). Equation (2)
shows the intensity enhancement of RGB(x,y).

Table 2 Dataset characteristics.

Dataset Files Classification Size (in MB)

IoT_malware 17,186 2 64

Virusshare 30,967 2 73

Figure 1 Proposed malware detection framework. Full-size DOI: 10.7717/peerj-cs.1366/fig-1

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 7/24

http://dx.doi.org/10.7717/peerj-cs.1366/fig-1
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Figure 2 Proposed network model. Full-size DOI: 10.7717/peerj-cs.1366/fig-2

Figure 3 RGB image conversion process. Full-size DOI: 10.7717/peerj-cs.1366/fig-3

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 8/24

http://dx.doi.org/10.7717/peerj-cs.1366/fig-2
http://dx.doi.org/10.7717/peerj-cs.1366/fig-3
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

RGBðx; yÞ ¼ akRGBðx;yÞ þ bk (2)

where ak and bk are linear coefficients.
Equations (3)–(5) outline the process of brightness equalization using adaptive gamma

correction.

RGBðx;yÞ ¼ RGBðx;yÞ[ðx;yÞ (3)

where [ðx;yÞ is the gamma correction.

[ðx;yÞ ¼ RGBðx;yÞþ /
1þ / (4)

/ ¼ 1� 1
cd

Xc

x¼1

Xd

y¼1
RGBðx;yÞ (5)

where / is the adaptively derived mean value of G(x,y), and c, d is the height and width of
RGB(x,y).

Algorithm Grayscale to RGB image.

Input: D

Output: Grayscale Image (I)

Bit_array = 0; // 8 bit array

Pix_arr[0][0] = 0; // A pixel array

I_width = 28

I_height = size of (D)/211

for i = 1 to len (D) – 1 do

for c = 1 to F

if c = 0 or c=1

Bit_array = c

if I % 8 ==0

Continue

endif

endif

endfor

for k = 1 to 255

X[k] = Bit_array[k]

for l = 1 to len(Bit_array)

Pix_arr[k][l] = Bit_array[k]

endfor

endfor

endfor

return pix_arr

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 9/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

In addition, image fusion filters noises from the RGB image. Equations (6)–(8) show the
denoised reflection component (DNI) and enhanced RGB image.

DNI ¼ aiRGBðx;yÞ þ bi (6)

Enhanced RGBðx;yÞ ¼ 1
1þ exp ð�8ðDNI � bÞÞ (7)

b ¼ 1
cd

Xc

x¼1

Xd

y¼1
RGBðx;yÞ (8)

where b is image intensity, and c and d are the images’ height and width.
In this phase, the RGB images are enhanced in order to assist the DenseNet model. The

high—standard deviation in the images are adjusted to reduce the variation in the pixel
value. Image fusion filter is applied to remove the noises by blurring the images. It adjusts
the uneven pixel value and removes the chromatic aberration. In the subsequent step,
Canny edge detection is employed for identifying the ranges of edges. The non-maximum
suppression is used to thin out the edges. The intensity of the images are identified using
Double threshold method. Finally, contrast limited adaptive histogram equalization is
employed to improve the image quality.

Furthermore, the authors employ Yolo V7 (Wang, Bochkovskiy & Liao, 2022) to extract
meaningful features from the images. Yolo V7 achieves a superior outcome with fewer
computational resources. It generates an output faster without any pre-trained weights. It
uses CNN for extracting features and predicting the probability of classes. Yolo V7
overcome the challenges in its previous versions. It contains an extended efficient layer
aggregation network and compound model scaling technique that support the proposed
model for detecting malware images. Yolo V7 architecture includes residual blocks,
bounding box and intersection over union (IoU). It divides the images into multiple grids
(residual blocks) with equal dimensions. Each grid is a region to highlight the object. It
consists of width (w), height (h), class (c), and center (x,y).

Equation (9) represents the bounding box that highlights a region in Fig. 4.

Y ¼ ðPc; bbx; bby; bbh; bbw;CÞ (9)

where Pc is the probability of an object in the bounding box (bb).

Figure 4 Bounding box region. Full-size DOI: 10.7717/peerj-cs.1366/fig-4

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 10/24

http://dx.doi.org/10.7717/peerj-cs.1366/fig-4
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

IoU is a metric for evaluating the performance of Yolo V7. It measures the Yolo V7’s
ability to detect the malware dataset’s features. Equation (10) shows the expression of IoU.

IoU ¼ Area of overlapping of actual and predicted malware feature
Area of union of actual and predicted malware feature

(10)

Yolo V7 computes the IoU score for each object detection process. An IoU score greater
than 0.5 represents the better performance of an object detection model.

In phase 2, the authors optimize the DenseNet161 model using the HHO algorithm.
HHO algorithm is one of the recent optimization algorithms for improving the
performance of the complex models. It tunes the CNN model’s parameters for improving
the classification accuracy. It minimizes the error rate and searches for the optimal
learning rate for identifying the malware and benign images. The architecture of
DenseNet161 comprises an activation function, a pooling layer, a dropout layer, and the
convolutional layer. Each layer acquires information from the previous layer and guides
the subsequent layers. DenseNet161 simplifies the connecting pattern among the layers. It
reuses malware and benign image features and enhances the network’s performance. In
addition, it requires a limited number of parameters compared to its counterparts. The
developmental rate controls the number of data in a layer. Each dense block includes two
convolutions, and each dense layer contains two operations to extract malware and benign
features and reduces its depth. HHO is a familiar swarm-based optimization technique. It
is used to improve the performance of the DenseNet161 model. In the context of MD,
HHO identifies the effective parameters (number of pooling layers, dropout layer, and
convolutional layers) for generating the outcome.

The malware and benign images are considered a rabbit in the HHO searching
environment. The HHO searching strategies support the proposed framework to classify
the images. The exploration and exploitation phases assist the DenseNet161 model in
identifying the malware’s exact location and benign images. Let q be the equal chance
between the DenseNet161 parameters. The HHO exploitation phase for the proposed
framework is modelled in Eq. (11).

Mðt þ 1Þ ¼ MrandðtÞ � Y1jMrandðtÞ � 2Y2MðtÞð Þ; q � 0:5
MmalbenðtÞ �MmðtÞ � Y3 LBþ Y4ðUB� LBÞð Þ; q < 0:5

�
(11)

where M(t+1) is the location of the DenseNet161 parameters in the subsequent iteration,
Mmalben (t) is the location of malware and benign image. M(t) is the present position of
hawks, Y1, Y2, Y3, Y4, and q are arbitrary numbers between 0 and 1, frequently modified
at each iteration. LB and UB are the lower and upper bounds of each variable, Mrand(t) is
an arbitrary DenseNet161 parameter from the present population, and Mm is the average
location of the parameter. Equations (12) and (13) represent the soft besiege of malware
and benign images in the HHO environment.

Mðt þ 1Þ ¼ DMtÞ � E JMmalben ðtÞ �MðtÞj j (12)

DMðtÞ ¼ MmalbenðtÞ �MðtÞ (13)

where DM tð Þ is the difference between the malware and benign image and the present

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 11/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

position in iteration t, E is the parameter to represent the transition between soft and hard
besiege, and J is the jump strength. Hard besiege is described in Eq. (14).

Mðt þ 1Þ ¼ MmalbenðtÞ � E DMðtÞj j (14)

The following algorithm outlines the HHO algorithm for optimizing the Densenet161
parameters.

In phase 3, the authors apply precision, recall, F1-measure, accuracy, Matthews
correlation coefficient (MCC), and Kappa to evaluate the proposed framework’s
performance. The dataset is divided into a train set (70%) and test set (30%). In the MD
environment, precision is the number of malware and benign classification among the
classified images. A recall is a set of classified malware and benign images. F1-score is the
harmonic mean of a number of malware and benign images in the datasets and correctly
detected images. Accuracy is the number of optimally classified malware and benign
images. MCC is the difference between predicted malware and benign images and actual
malware and benign images.

Furthermore, it summarizes the confusion and error matrices. Cohen’s Kappa compares
the classified malware and benign images with the expected accuracy. It addresses the
evaluation bias by providing the chances of generating optimal classification using a
random guess. In addition, the error rate and computation cost are calculated for each
classification.

RESULTS
In this section, the authors highlight the experimental outcome of this study. The proposed
model is implemented in Windows 10 professional environment, i7 processor, GTX 1080
Ti (11 GB). Python 3.9 with Keras (Keras, 2022) library is employed for developing the
proposed framework, Vasan et al. (2020) framework, Jian et al. (2021) framework, Sharma,
Sharma & Kalia (2022) framework, and Falana et al. (2022) framework. In addition,
YoloV7 (Wang, Bochkovskiy & Liao, 2022), DenseNet161 (DenseNet161, 2022) and HHO
(HHO, 2022) are utilized for constructing the model.

The similar hardware and software configuration is followed for the training phase.
During the training phase, the DenseNet161 parameters are supervised by the HHO
algorithm. The authors train the DenseNet161 model with IoT datasets under the HHO
environment to identify critical parameters for generating an optimal outcome. During the
training phase, the proposed MD framework generates an optimal result at the 32nd and
37th epoch for IoT malware and Virusshare datasets, respectively. Furthermore, the
authors extended the training to the 37th and 40th epochs for the IoT malware and
Virusshare datasets. However, there is no significant improvement in the model’s
performance. Thus, epoch values and the dropout ratios of 32 and 41, 0.3 and 0.5, are
assigned for IoT malware and Virusshare datasets, respectively. Based on the outcome of
the hyperparameter optimization, an array of five layers comprised of two fully connected
layers, three dropout layers and an activation function are integrated with the
DenseNet161 model. The hyperparameter tuning process identifies an optimal set of
DenseNet161 parameters to detect malware images from the dataset.

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 12/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Table 3 outlines the performance of the proposed framework. In the testing phase, the
trained DenseNet161 model achieves an average accuracy, precision, recall, F1-measure,
MCC, and Kappa of 98.65, 98.7, 98.3, 98.5, 97.5, and 97.65, respectively, for the IoT
malware dataset. HHO assists the DenseNet161 model in generating optimum results. The
outcome reveals the adequate performance of the proposed MD model. The higher value
of MCC and Kappa indicates that the proposed model classifies the images with optimal
precision on the imbalanced dataset.

Likewise, Table 4 shows the proposed framework’s performance on the Virusshare
dataset. Compared to the IoT malware dataset, the Virusshare dataset contains many files.

Algorithm HHO pseudocode for DenseNet161.

Input: Dataset D and number of iteration (epoch) T

output: Malware image classification and its fitness value

Initialize the population at random Mi (i = 1, 2,…, D)

While (d in D) do

Calculate the fitness value (parameters) of DenseNet161

Set Mmalben as the location of malware and benign images

For each parameter (Mi) do

Update E0 and J // E0 = 2 rand () -1 and J = 2(1-rand ())

update E using E = 2E0
T � t
T

� �

if (Ej j � 1Þ then
Update the location using Eq. (11)

if (Ej j < 1Þ then
if r � 0:5 & Ej j � 0:5ð Þ then
Update the location using Eq. (12)

else if ðr � 0:5 & Ej j < 0:5Þ then
update the location using Eq. (14)

return Mmalben

Table 3 Performance analysis for the IoT malware dataset.

Methods/Measures Accuracy Precision Recall F1-measure MCC Kappa

Training

Malware 98.3 98.1 98.3 98.2 97.8 97.9

Benign 98.6 98.4 98.5 98.45 97.5 98.1

Average 98.45 98.25 98.4 98.33 97.65 98

Testing

Malware 98.7 98.6 98.1 98.35 97.6 97.5

Benign 98.6 98.8 98.5 98.65 97.4 97.8

Average 98.65 98.7 98.3 98.5 97.5 97.65

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 13/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Moreover, the image conversion model supports the proposed framework for converting
the binaries into an RGB image. The proposed model achieves an optimal accuracy on the
Virusshare dataset. The feature extraction process assists the proposed model in
identifying the crucial features of the images. Figures 5A and 6B illustrate the performance
of the proposed framework on the IoT malware and Virushare datasets. It shows that the
model effectively classifies the malware and benign images. In addition, the proposed
model addresses the overfitting challenges on the IoTmalware and the Virusshare datasets.

Table 5 highlights the comparative analysis’s outcome of the MD framework. The
proposed framework outperforms the recent MD frameworks. The high value of Kappa
suggests the effectiveness of the proposed MD framework on the imbalanced dataset. In
addition, it highlights the importance of the proposed MD framework in handling true and
false positives. However, Falana et al. (2022) framework produces a reasonable outcome on
the IoT malware dataset.

Table 4 Performance analysis for the Virusshare dataset.

Methods/Measures Accuracy Precision Recall F1-measure MCC Kappa

Training

Malware 97.5 97.8 96.3 97.04 95.8 95.4

Benign 97.1 96.5 97.1 96.8 95.7 95.6

Average 97.3 97.15 96.7 96.92 95.75 95.5

Testing

Malware 97.4 96.1 97.2 96.65 95.2 94.8

Benign 97.2 96.7 96.5 96.6 95.3 94.9

Average 97.3 96.4 96.85 96.63 95.25 94.85

Figure 5 Performance analysis outcome of the proposed framework for IoT malware and Virusshare Datasets.
Full-size DOI: 10.7717/peerj-cs.1366/fig-5

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 14/24

http://dx.doi.org/10.7717/peerj-cs.1366/fig-5
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Figure 6 Comparative analysis outcome of malware detection frameworks. Full-size DOI: 10.7717/peerj-cs.1366/fig-6

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 15/24

http://dx.doi.org/10.7717/peerj-cs.1366/fig-6
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Likewise, Table 6 presents the results of the comparative analysis of the Virusshare
dataset. The proposed MD framework obtained a superior MCC and Kappa on the
Virusshare dataset. Yolo V7 and HHO algorithm enables the proposed framework to
produce a superior outcome. In addition, the image enhancement technique offers the
proposed framework to identify the key objects. However, both Falana et al. (2022) and
Vasan et al. (2020) frameworks achieve results similar to the proposed framework.

Figure 6 reflects the performance of the individual MD frameworks on the IoT malware
and the Virusshare datasets, respectively. The proposed feature extraction method offers

Table 6 Comparative analysis of the Virusshare dataset.

Methods/Measures Accuracy Precision Recall F1-measure MCC Kappa

Proposed framework 97.3 96.4 96.85 96.63 95.25 94.85

Jian et al. (2021) framework 95.8 96.2 95.7 95.95 93.1 93.8

Sharma, Sharma & Kalia (2022) framework 96.2 95.1 96.1 95.6 93.5 94.2

Falana et al. (2022) framework 97.1 96.2 95.6 95.9 94.3 93.5

Vasan et al. (2020) framework 96.5 95.8 96.3 96.05 94.6 93.7

Table 5 Comparative analysis of the IoT malware dataset.

Methods/Measures Accuracy Precision Recall F1-measure MCC Kappa

Proposed framework 98.65 98.7 98.3 98.5 97.5 97.65

Jian et al. (2021) framework 97.6 96.8 96.5 96.65 94.3 94.6

Sharma, Sharma & Kalia (2022) framework 97.8 97.4 97.6 97.5 95.2 96.1

Falana et al. (2022) framework 98.2 97.5 97.3 97.4 95.6 96.4

Vasan et al. (2020) framework 97.9 98.1 97.5 97.8 96.4 96.1

Figure 7 AU-ROC and AU-PRC for IoT malware dataset.
Full-size DOI: 10.7717/peerj-cs.1366/fig-7

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 16/24

http://dx.doi.org/10.7717/peerj-cs.1366/fig-7
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

the key features of the DenseNet161 model to classify malware and benign images
effectively.

Figure 7 highlights the area under the Receiver operating characteristics (AU-ROC) and
the MD frameworks’ precision-recall curve (AU-PRC) on the IoT malware dataset. The
proposed framework achieves AU-ROC and AU-PRC values of 0.98 and 0.85, respectively.
On the other hand, the AU-ROC and AU-PRC values of Jian et al. (2021) (0.88 and 0.75),
Sharma, Sharma & Kalia (2022) (0.89 and 0.77), Falana et al. (2022) (0.87 and 0.69) and
Vasan et al. (2020) (0.84 and 0.74), accordingly. The outcome represents the classification
efficiency of the proposed MD. The higher values of AU-ROC and AU-PRC indicates that
the MD model detects the features of malware and benign images, effectively.

Likewise, Fig. 8 displays the AU-ROC and AU-PRC of the MD frameworks. The
proposed framework reaches the AU-ROC and AU-PRC of 0.97 and 0.84, respectively. In
contrast, the remaining frameworks achieve the AU-ROC and AU-PRC of Jian et al.
(2021) (0.92 and 0.77), Sharma, Sharma & Kalia (2022) (0.90 and 0.81), Falana et al.
(2022) (0.92 and 0.73), and Vasan et al. (2020) (0.78 and 0.76), accordingly.

Table 7 outlines the error rate of MD frameworks. The proposed framework produces
fewer errors for IoT malware (14.2%) and Virusshare (15.6%). The feature extraction
phase assists the proposed framework in generating a superior outcome compared to the
other frameworks.

Figure 8 AU-ROC and AU-PRC for Virusshare dataset. Full-size DOI: 10.7717/peerj-cs.1366/fig-8

Table 7 Error rate of CNN models.

Methods/Dataset IoT malware dataset
(%)

Virusshare dataset
(%)

Proposed framework 14.2 15.6

Jian et al. (2021) framework 14.8 16.4

Sharma, Sharma & Kalia (2022) framework 15.3 17.1

Falana et al. (2022) framework 15.7 16.2

Vasan et al. (2020) framework 16.3 15.9

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 17/24

http://dx.doi.org/10.7717/peerj-cs.1366/fig-8
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Finally, Table 8 presents the computational complexities of the MD frameworks in
classifying the malware images. Compared to the existing frameworks, the proposed
framework consumes fewer parameters, learning rate, and computation time.

DISCUSSION
The authors developed an image-based MD framework for identifying malware and
benign files in the IoT environment. An image conversion technique converts malware and
benign binaries into a grayscale image. Furthermore, the grayscale images are enhanced to
RGB images. An object identification technique extracts a key feature from the images.
Yolo V7 is a recent CNN technique for identifying the crucial elements of malware and
benign images. HHO algorithm is used to optimize the DenseNet161 model for classifying
malware and benign images. It identifies the critical parameters of the DenseNet model in
order to detect malware within a limited amount of time. DenseNet161 contains a set of
hyper-parameters that reinforces the model to find the crucial objects from the images.
Predictive accuracy and detection rates are the primary metrics for evaluating MD
frameworks. The primary step in securing a system and gaining control over its further
malware spread is accurately discovering the previously undetected instances. Improving
the detection accuracy of a proposed method may result in false alarms. Attempts to
reduce false alarms may have an unintended negative effect on detection efficiency. As a
result, the proposed model uses dissimilarity by contrasting the harmonic mean of both
factors, known as the F1 measure. In addition, MCC and Kappa are used to measure the
efficiency of the proposed framework.

The image format enables the MD framework to serve multiple types of platforms. In
addition, the CNN model can identify a slight variation in textures and patterns in the
images. Thus, the proposed model supports the SDN framework to offer a protective
environment for the IoT devices. The study uniquely integrates image enhancement, object
detection (Yolo V7), and hyper-parameter tuned CNN model (HHO—DenseNet161).
Image enhancement and object detection reduces the computation overhead of the
proposed model. The hyperparameter optimization tunes the key parameters such as
number of dropout layers and epochs. The fined tuned model classifies the images with
limited resources.

Table 8 Computational complexities of the CNN models.

Methods/Dataset IoT malware dataset Virusshare dataset

No. of parameters Learning rate Testing time
(seconds)

No. of parameters Learning rate Testing time
(seconds)

Proposed framework 6.4 M 1 × 10−4 152.3 7.1 M 1 × 10−5 148.9

Jian et al. (2021) framework 6.8 M 1 × 10−3 167.2 8.4 M 1 × 10−4 153.4

Sharma, Sharma & Kalia (2022) framework 7.4 M 1 × 10−2 154.5 8.7 M 1 × 10−3 161.6

Falana et al. (2022) framework 7.3 M 1 × 10−3 151.6 7.6 M 1 × 10−4 159.5

Vasan et al. (2020) framework 6.5 M 1 × 10−3 150.5 6.9 M 1 × 10−5 161.1

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 18/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Jian et al. (2021) developed a deep neural network architecture called SERLA
(SEResNet50 + Bidirectional Long Short Term Memory (Bi-LSTM) + attention) to
increase the performance of the detection approach. However, the proposed model’s
performance outperforms the Jian et al., model due to the effective image enhancement
and feature extraction techniques. In addition, the computation cost for constructing Bi-
LSTM is higher than the proposed method. The framework of Sharma, Sharma & Kalia
(2022) generated a better outcome; however, the computation cost is higher than the
proposed MD framework. Falana et al. (2022) framework comprised a CNN and
generative neural network for classifying the malware images. However, there is a lack of
feature engineering or extraction process to identify the critical features from the images.
In addition, the complex architecture requires additional computation time to generate the
outcome. In line with the Vasan et al. (2020) framework, the recommended MD
framework applied the HHO algorithm to fine-tune the DenseNet161. Figure 6 reflects the
MD performance on IoT malware and Virusshare datasets. It shows that the proposed MD
outperforms the recently developed image-based MD. In line with the studies (Obaidat
et al., 2022; Yadav et al., 2022; Smmarwar, Gupta & Kumar, 2022), the proposed model
achieves a superior outcome. The significant improvement in the feature extraction and
image classification processes enabled the proposed MD to achieve a better outcome. The
existing models (Chaganti, Ravi & Pham, 2022; Kumar, Janet & Neelakantan, 2022)
generated a reasonable outcome. However, the computation cost was very high comparing
to the proposed MD framework. Tables 7 and 8 reveals the error rates and the
computational complexities of the MD frameworks. It is evident that the proposed model
require less computational resources for detecting the malware. The proposed study’s
outcome follows the studies of Vinayakumar et al. (2018), Su et al. (2018), Rabbani et al.
(2020), Naeem et al. (2020), Javeed, Gao & Khan (2021), Javeed et al. (2021), Anand et al.
(2021), Awan et al. (2021) and Al Razib et al. (2022) for protecting the computational
resources from the malware.

The presently offered MD technologies are only effective on traditional networks. The
implementation of the models are difficult to apply on IoT networks or do not possess the
flexibility and robustness necessary to ensure secure operations. The study’s outcome
reveals that they are appropriate for securing the IoT. It is adaptable, distributed, resilient,
and does not require many computational resources. Many IoT devices, including
temperature and humidity sensors, used in environmental and agricultural applications
are battery-powered and deployed in distant places, necessitating an MD technique that is
both computationally and energy-efficient to extend the battery life of these devices. The
proposed framework can be applied in environmental and agricultural applications to
minimize energy consumption and protect the network. IoT-based systems in smart cities
rely on various devices, such as security cameras, that collect personal information and
need stringent security protocols to prevent unauthorized access. Safeguarding the IoT
system against malware is critical for the well-being of the workforce and the sustained

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 19/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

improvement of the Industrial IoT. Thus, the proposed MD framework can offer an
effective industrial working environment and safeguard crucial computing resources in
industrial settings.

The proposed model yields reliable results and aids in identifying malware in IoT
networks. In future investigations, several limitations should be addressed. CNN’s multiple
layers increase training time and demand a GPU. Nevertheless, the current IoT framework
facilitates the high end software and hardware configuration for implementing a DL based
detection method. In addition, the proposed MD model is a lightweight application
comparing to the recent models. Therefore, the proposed MD model can operate in
multiple IoT platforms. The study’s findings reveal that the proposed MD model require
limited computational resources. The hyperparameter tuned CNNmodel achieved a better
outcome. The existing CNN and recurrent neural network approaches failed to present a
crucial pattern from the malware binaries due to data loss and irrelevant features. Yolo V7
model assists the proposed MD framework by providing the key features of malware. The
proposed image based MD framework overcome the challenges of the existing approaches.

The proposed technique may suffer from the imbalanced dataset. The data pre-
processing is required to improve an image’s quality and deliver high performance. There
is a possibility of losing critical features due to multiple features. The inability to use
coordinate frames might render the graphics unfavorably. The architecture of the
proposed model necessitates a sizable quantity of data to yield an exciting result. However,
the researcher introduced image enhancement and feature extraction to handle the
shortcomings of the CNN model. Incorporating feature selection results into the images’
internal representation can yield positive results.

CONCLUSION
The authors present the image-based MD framework for the IoT environment in this
study. The malware binaries are converted into images to improve the quality of the
malware classification approach. In addition, an image enhancement technique is
employed to convert the grayscale images to RGB images. An object identification method
is used for feature extraction to support the trained convolutional neural network
approach. For classifying the malware images, the authors employed the DenseNet161
model with the support of the Harris Hawks optimization algorithm. The performance
evaluation was conducted on IoT malware and Virusshare datasets. The experimental
outcome shows that the proposed framework is suitable for real-time applications.

Moreover, the framework is lightweight, which demands a low computation cost for
generating effective results. Thus, the framework can be applied to small and large-scale
industries. It performs better on IoT malware and Virusshare datasets. However, there is a
demand for additional experimentation to improve the performance of the proposed MD
framework. In the future, the authors intend to extend the framework with the generative
adversarial network to generalize the proposed framework’s implementation to other
malware image datasets.

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 20/24

http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received support from AlMaarefa University while conducting this research
work. This study is supported via funding from Prince Sattam bin Abdulaziz University
project number (PSAU/2023/R/1444). This work was supported by the Deanship of
Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King
Faisal University, Saudi Arabia [Grant No. 2740]. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
AlMaarefa University.
Deanship of Scientific Research, Prince Sattam bin Abdulaziz University: PSAU/2023/R/
1444.
Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific
Research, King Faisal University, Saudi Arabia: 2740.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Shtwai Alsubai conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.

� Ashit Kumar Dutta conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, and
approved the final draft.

� Abdullah M. Alnajim performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Abdul rahaman Wahab sait conceived and designed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

� Rashid Ayub conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Afnan Mushabbab AlShehri performed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

� Naved Ahmad performed the experiments, prepared figures and/or tables, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The IoT Malware Dataset is available at Kaggle: https://www.kaggle.com/anaselmasry/
iot-malware. The dataset is owned by Anas Aabo.

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 21/24

https://www.kaggle.com/anaselmasry/iot-malware
https://www.kaggle.com/anaselmasry/iot-malware
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

The Virusshare dataset is available at VirusShare: https://virusshare.com. The dataset is
owned by Fosezo Cazade.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1366#supplemental-information.

REFERENCES
Al Razib M, Javeed D, Khan MT, Alkanhel R, Muthanna MSA. 2022. Cyber threats detection in

smart environments using SDN-enabled DNN-LSTM hybrid framework. IEEE Access 10:53015–
53026 DOI 10.1109/ACCESS.2022.3172304.

Anand A, Rani S, Anand D, Aljahdali HM, Kerr D. 2021. An efficient CNN-Based deep learning
model to detect malware attacks (CNN-DMA) in 5G-IoT healthcare applications. Sensors
21(19):6346 DOI 10.3390/s21196346.

Asam M, Hussain SJ, Mohatram M, Khan SH, Jamal T, Zafar A, Khan A, Ali MU, Zahoora U.
2021. Detection of exceptional malware variants using deep boosted feature spaces and machine
learning. Applied Sciences 11:21 DOI 10.3390/app112110464.

Asam M, Khan SH, Akbar A, Bibi S, Jamal T, Khan A, Ghafoor U, Bhutta MR. 2022. IoT
malware detection architecture using a novel channel boosted and squeezed CNN. Scientific
Reports 12:1–12 DOI 10.1038/s41598-022-18936-9.

Awan MJ, Masood OA, Mohammed MA, Yasin A, Zain AM, Damaševičius R, Abdulkareem
KH, Sauveron D. 2021. Image-based malware classification using VGG19 network and spatial
convolutional attention. Electronics 10(19):2444 DOI 10.3390/electronics10192444.

Ben Atitallah S, Driss M, Almomani I. 2022. A novel detection and multi-classification approach
for IoT-malware using random forest voting of fine-tuning convolutional neural networks.
Sensors 22(11):4302 DOI 10.3390/S22114302.

Bensaoud A, Kalita J. 2022. Deep multi-task learning for malware image classification. Journal of
Information Security and Applications 64(1):103057 DOI 10.1016/j.jisa.2021.103057.

Carrillo-Mondéjar J, Martínez JL, Suarez-Tangil G. 2020. Characterizing Linux-based malware:
findings and recent trends. Future Generation Computer Systems 110(2):267–281
DOI 10.1016/j.future.2020.04.031.

Chaganti R, Ravi V, Pham TD. 2022. Deep learning based cross architecture internet of things
malware detection and classification. Computers & Security 120(5):102779
DOI 10.1016/j.cose.2022.102779.

Conti M, Khandhar S, Vinod P. 2022. A few-shot malware classification approach for unknown
family recognition using malware feature visualization. Computers & Security 122(2):102887
DOI 10.1016/j.cose.2022.102887.

DenseNet161 G. 2022. DenseNet161. Available at https://github.com/flyyufelix/DenseNet-Keras/
blob/master/densenet161.py (accessed 10 October 2022).

Emil Selvan GS, Azees M, Rayala Vinodkumar CH, Parthasarathy G. 2022. Hybrid optimization
enabled deep learning technique for multi-level intrusion detection. Advances in Engineering
Software 173(2):103197 DOI 10.1016/j.advengsoft.2022.103197.

Falana OJ, Sodiya AS, Onashoga SA, Badmus BS. 2022. Mal-detect: an intelligent visualization
approach for malware detection. Journal of King Saud University—Computer and Information
Sciences 34(5):1968–1983 DOI 10.1016/j.jksuci.2022.02.026.

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 22/24

https://virusshare.com
http://dx.doi.org/10.7717/peerj-cs.1366#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1366#supplemental-information
http://dx.doi.org/10.1109/ACCESS.2022.3172304
http://dx.doi.org/10.3390/s21196346
http://dx.doi.org/10.3390/app112110464
http://dx.doi.org/10.1038/s41598-022-18936-9
http://dx.doi.org/10.3390/electronics10192444
http://dx.doi.org/10.3390/S22114302
http://dx.doi.org/10.1016/j.jisa.2021.103057
http://dx.doi.org/10.1016/j.future.2020.04.031
http://dx.doi.org/10.1016/j.cose.2022.102779
http://dx.doi.org/10.1016/j.cose.2022.102887
https://github.com/flyyufelix/DenseNet-Keras/blob/master/densenet161.py
https://github.com/flyyufelix/DenseNet-Keras/blob/master/densenet161.py
http://dx.doi.org/10.1016/j.advengsoft.2022.103197
http://dx.doi.org/10.1016/j.jksuci.2022.02.026
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Fathurrahman A, Bejo A, Ardiyanto I. 2022. Lightweight convolution neural network for image-
based malware classification on embedded systems. 2021 International Seminar on Machine
Learning, Optimization, and Data Science, ISMODE 2021:12–16
DOI 10.1109/ISMODE53584.2022.9743111.

HHO G. 2022. Harris hawk optmization. Available at https://github.com/cahitberkay/Harris-
Hawks-Optimization-HHO—Python-Code/blob/master/HHO.py (accessed 25 September 2022).

Javeed D, Gao T, Khan MT. 2021. SDN-enabled hybrid DL-driven framework for the detection of
emerging cyber threats in IoT. Electronics 10(8):918 DOI 10.3390/electronics10080918.

Javeed D, Gao T, Khan MT, Ahmad I. 2021. A hybrid deep learning-driven SDN enabled
mechanism for secure communication in internet of things (IoT). Sensors 21(14):4884
DOI 10.3390/s21144884.

Jian Y, Kuang H, Ren C, Ma Z, Wang H. 2021. A novel framework for image-based malware
detection with a deep neural network. Computers & Security 109(3):102400
DOI 10.1016/j.cose.2021.102400.

Kan X, Fan Y, Fang Z, Cao L, Xiong NN, Yang D, Li X. 2021. A novel IoT network intrusion
detection approach based on adaptive particle swarm optimization convolutional neural
network. Information Sciences 568(5):147–162 DOI 10.1016/j.ins.2021.03.060.

Keras. 2022. KerasCV. Available at https://keras.io/keras_cv/ (accessed 7 July 2022).

Khan MA, Salah K. 2018. IoT security: review, blockchain solutions, and open challenges. Future
Generation Computer Systems 82(15):395–411 DOI 10.1016/j.future.2017.11.022.

Khan A, Sohail A, Zahoora U, Qureshi AS. 2020. A survey of the recent architectures of deep
convolutional neural networks. Artificial Intelligence Review 53(8):5455–5516
DOI 10.1007/s10462-020-09825-6.

Kumar S, Janet B, Neelakantan S. 2022. Identification of malware families using stacking of
textural features and machine learning. Expert Systems with Applications 208(11):118073
DOI 10.1016/j.eswa.2022.118073.

Kumar S, Janet B. 2021. Distinguishing malicious programs based on visualization and hybrid
learning algorithms. Computer Networks 201:108595 DOI 10.1016/j.comnet.2021.108595.

Lan J, Liu X, Li B, Sun J, Li B, Zhao J. 2022. MEMBER: a multi-task learning model with hybrid
deep features for network intrusion detection. Computers and Security 123(2):102919
DOI 10.1016/j.cose.2022.102919.

Li K, Ma W, Duan H, Xie H, Zhu J. 2022. Few-shot IoT attack detection based on RFP-CNN and
adversarial unsupervised domain-adaptive regularization. Computers and Security
121(23):102856 DOI 10.1016/j.cose.2022.102856.

Lirim Ashiku CD. 2021. Network intrusion detection system using deep learning. Procedia
Computer Science 185(1):239–247 DOI 10.1016/j.procs.2021.05.025.

Liu X, Lin Y, Li H, Zhang J. 2020a. A novel method for malware detection on ML-based
visualization technique. Computers and Security 89(1):101682 DOI 10.1016/j.cose.2019.101682.

Liu K, Xu S, Xu G, Zhang M, Sun D, Liu H. 2020b. A review of android malware detection
approaches based on machine learning. IEEE Access 8:124579–124607
DOI 10.1109/ACCESS.2020.3006143.

Makandar A, Patrot A. 2017. Malware class recognition using image processing techniques. 2017
International Conference on Data Management, Analytics and Innovation, ICDMAI 2017:76–80
DOI 10.1109/ICDMAI.2017.8073489.

Malware I. 2021. IoT malware, kaggle. Available at https://www.kaggle.com/datasets/anaselmasry/
iot-malware (accessed 8 August 2021).

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 23/24

http://dx.doi.org/10.1109/ISMODE53584.2022.9743111
https://github.com/cahitberkay/Harris-Hawks-Optimization-HHO---Python-Code/blob/master/HHO.py
https://github.com/cahitberkay/Harris-Hawks-Optimization-HHO---Python-Code/blob/master/HHO.py
http://dx.doi.org/10.3390/electronics10080918
http://dx.doi.org/10.3390/s21144884
http://dx.doi.org/10.1016/j.cose.2021.102400
http://dx.doi.org/10.1016/j.ins.2021.03.060
https://keras.io/keras_cv/
http://dx.doi.org/10.1016/j.future.2017.11.022
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1016/j.eswa.2022.118073
http://dx.doi.org/10.1016/j.comnet.2021.108595
http://dx.doi.org/10.1016/j.cose.2022.102919
http://dx.doi.org/10.1016/j.cose.2022.102856
http://dx.doi.org/10.1016/j.procs.2021.05.025
http://dx.doi.org/10.1016/j.cose.2019.101682
http://dx.doi.org/10.1109/ACCESS.2020.3006143
http://dx.doi.org/10.1109/ICDMAI.2017.8073489
https://www.kaggle.com/datasets/anaselmasry/iot-malware
https://www.kaggle.com/datasets/anaselmasry/iot-malware
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

Meira J, Eiras-Franco C, Bolón-Canedo V, Marreiros G, Alonso-Betanzos A. 2022. Fast anomaly
detection with locality-sensitive hashing and hyperparameter autotuning. Information Sciences
607(10):1245–1264 DOI 10.1016/j.ins.2022.06.035.

Mu Q, Wang X, Wei Y, Li Z. 2021. Low and non-uniform illumination color image enhancement
using weighted guided image filtering. Computational Visual Media 7(4):529–546
DOI 10.1007/s41095-021-0232-x.

Naeem H, Ullah F, NaeemMR, Khalid S, Vasan D, Jabbar S, Saeed S. 2020.Malware detection in
industrial internet of things based on hybrid image visualization and deep learning model. Ad
Hoc Networks 105(1):102154 DOI 10.1016/j.adhoc.2020.102154.

Obaidat I, Sridhar M, Pham KM, Phung PH. 2022. Jadeite: a novel image-behavior-based
approach for Java malware detection using deep learning. Computers & Security 113(1):102547
DOI 10.1016/j.cose.2021.102547.

Rabbani M, Wang YL, Khoshkangini R, Jelodar H, Zhao R, Hu P. 2020. A hybrid machine
learning approach for malicious behaviour detection and recognition in cloud computing.
Journal of Network and Computer Applications 151(4):102507 DOI 10.1016/j.jnca.2019.102507.

Saxe J, Berlin K. 2016. Deep neural network based malware detection using two dimensional
binary program features. 2015 10th International Conference on Malicious and Unwanted
Software, MALWARE 2015:11–20 DOI 10.1109/MALWARE.2015.7413680.

Shao Z, Yuan S, Wang Y. 2021. Adaptive online learning for IoT botnet detection. Information
Sciences 574(7):84–95 DOI 10.1016/j.ins.2021.05.076.

Sharma O, Sharma A, Kalia A. 2022. Windows and IoT malware visualization and classification
with deep CNN and Xception CNN using Markov images. Journal of Intelligent Information
Systems 2022(2):1–27 DOI 10.1007/S10844-022-00734-4.

Smmarwar SK, Gupta GP, Kumar S. 2022. Deep malware detection framework for IoT-based
smart agriculture. Computers and Electrical Engineering 104(1):108410
DOI 10.1016/j.compeleceng.2022.108410.

Su J, Danilo Vasconcellos V, Prasad S, Daniele S, Feng Y, Sakurai K. 2018. Lightweight
classification of IoT malware based on image recognition. Proceedings—International Computer
Software and Applications Conference 2:664–669 DOI 10.1109/COMPSAC.2018.10315.

Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q. 2020. IMCFN: image-based
malware classification using fine-tuned convolutional neural network architecture. Computer
Networks 171(1):107138 DOI 10.1016/j.comnet.2020.107138.

Venkatraman S, Alazab M, Vinayakumar R. 2019. A hybrid deep learning image-based analysis
for effective malware detection. Journal of Information Security and Applications 47(11):377–
389 DOI 10.1016/j.jisa.2019.06.006.

Vignau B, Khoury R, Hallé S, Hamou-Lhadj A. 2021. The evolution of IoT malwares, from 2008
to 2019: survey, taxonomy, process simulator and perspectives. Journal of Systems Architecture
116(5):102143 DOI 10.1016/j.sysarc.2021.102143.

Vinayakumar R, Soman KP, Poornachandran P, Sachin Kumar S. 2018. Detecting android
malware using long short-term memory (LSTM). Journal of Intelligent and Fuzzy Systems
34(3):1277–1288 DOI 10.3233/JIFS-169424.

Virusshare D. 2021.Virusshare dataset.Available at https://virusshare.com (accessed 8 August 2021).

Wang CY, Bochkovskiy A, Liao HYM. 2022. YOLOv7: trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. ArXiv preprint DOI 10.48550/arxiv.2207.02696.

Yadav P, Menon N, Ravi V, Vishvanathan S, Pham TD. 2022. A two-stage deep learning
framework for image-based android malware detection and variant classification.
Computational Intelligence 38(5):1748–1771 DOI 10.1111/coin.12532.

Alsubai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1366 24/24

http://dx.doi.org/10.1016/j.ins.2022.06.035
http://dx.doi.org/10.1007/s41095-021-0232-x
http://dx.doi.org/10.1016/j.adhoc.2020.102154
http://dx.doi.org/10.1016/j.cose.2021.102547
http://dx.doi.org/10.1016/j.jnca.2019.102507
http://dx.doi.org/10.1109/MALWARE.2015.7413680
http://dx.doi.org/10.1016/j.ins.2021.05.076
http://dx.doi.org/10.1007/S10844-022-00734-4
http://dx.doi.org/10.1016/j.compeleceng.2022.108410
http://dx.doi.org/10.1109/COMPSAC.2018.10315
http://dx.doi.org/10.1016/j.comnet.2020.107138
http://dx.doi.org/10.1016/j.jisa.2019.06.006
http://dx.doi.org/10.1016/j.sysarc.2021.102143
http://dx.doi.org/10.3233/JIFS-169424
https://virusshare.com
http://dx.doi.org/10.48550/arxiv.2207.02696
http://dx.doi.org/10.1111/coin.12532
http://dx.doi.org/10.7717/peerj-cs.1366
https://peerj.com/computer-science/

	Artificial intelligence-driven malware detection framework for internet of things environment
	Introduction
	Literature review
	Materials and Methods
	Results
	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

