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ABSTRACT

Aczel-Alsina t-norm and t-conorm are a valuable and feasible technique to manage
ambiguous and inconsistent information because of their dominant characteristics of
broad parameter values. The main theme of this analysis is to explore Aczel-Alsina
operational laws in the presence of the complex interval-valued intuitionistic fuzzy
(CIVIF) set theory. Furthermore, we derive the theory of aggregation frameworks
based on Aczel-Alsina operational laws for managing the theory of CIVIF information.
The CIVIF Aczel-Alsina weighted averaging (CIVIFAAWA), CIVIF Aczel-Alsina
ordered weighted averaging (CIVIFAAOWA), CIVIF Aczel-Alsina hybrid averaging
(CIVIFAAHA), CIVIF Aczel-Alsina weighted geometric (CIVIFAAWG), CIVIF Aczel-
Alsina ordered weighted geometric (CIVIFAAOWG) and CIVIF Aczel-Alsina hybrid
geometric (CIVIFAAHG) operators are proposed, and their well-known properties
and particular cases are also detailly derived. Further, we derive the theory of the
WASPAS method for CIVIF information and evaluate their positive and negative
aspects. Additionally, we demonstrate the multi-attribute decision-making (MADM)
strategy under the invented works. Finally, we express the supremacy and dominancy
of the invented methods with the help of sensitive analysis and geometrical shown of
the explored works.

Subjects Data Science, Optimization Theory and Computation, Scientific Computing and
Simulation

Keywords Complex interval-valued intuitionistic fuzzy sets, Aczel-Alsina aggregation operators,
Decision-making strategy, WASPAS method

INTRODUCTION

MADM strategies aims to identify the best of a few relative other options or positioning
choices as per their importance as far as the assessed objective. The techniques are utilized
for choosing the most acceptable other option/arrangement, because there is no such
option for which all rules’ esteems are awesome. MADM strategy is the sub-part of the
decision-making technique that has been used in the region of discrete fields. However, it
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is massively difficult to apply the MADM technique to the phenomena of fuzzy sets rather
than crisp sets. To achieve this idea in the real scenario, Zadeh (1965) explored the fuzzy
set (FS), which only depends on the supporting grade (SG) M—a €[0,1].

In facilitating that sort of situation, FS suffers from an obvious deficiency for not
describing the data in the shape of yes or no, not addressing expert opinion, namely, non-
SG (NSG). To conquer this imperfection, Atanassov (1986) proposed the methodology of
intuitionistic FS (IFS) with an SG and NSG. The well-known prominent of IFS is as followed:
0< ‘/\Tﬁ—i_'/\_/i < 1. Interval-valued (IV) data is mostly utilized to depict the ambiguity and
problematic occurrences, like the difference in temperature, the vacillation of stock cost,
and the scope of circulatory strain. Besides, the IV information might be gotten from

various areas or sources. For this, the IV intuitionistic FS (IVIFES), was stated by Atanassov
& Gargov (1989) with SG |:MR (xg), Mz (xE)] and NSG [NR (xE),Nij (xE)] such

that 0 < WEU (%) +/\_/§U (xp) < 1.

Based on above discussions, we have obtained the result that the prevailing theories
neglect to manage two-domination data in the shape of SG and NSG, and simultaneously
neglect to survive with inconsistent and fluctuational at a provided phase of time. However,
the data got from “medical research” such that the biometric and facial acknowledgment
data set consistently changes with the entry of the time. Along these lines, Ramiot et al. (2002)
extended the scope of SG from a genuine subset to the unit circle of the complicated plane
and henceforth established the principle of complex FS (CFS). The mathematical structure

of SG in the circumstances of CFS is of the form ME(&) = Mzﬁ(ﬁ;)eizn (M[(&» with

ﬁﬁ(@) ,ﬁf(ﬁ;) € [0, 1]. Since CFS restricts only up to SG and does not take into account
NSG, Alkouri ¢ Salleh (2012) produced the principle of complex IFS (CIES) in the shape

of SG M (%) = MZE(@)eiZ”(V?("NE» and NSG /\T:C(J’C‘E) :/\:fi(a&)eiz”(ﬁfﬁ)), with

0< Mzﬁ(fé) +./\_/'§(ffg) <land0< E(@) +/\:/%(fé) < 1. Recently, Garg ¢ Rani (2019a)
studied the form of CIFS in the interval environment and proposed the mathematical
structure of CIVIFS. Because of its strong ability in dealing with uncertain information,
CIVIEFS has been promoted in many ways, but the results in Aczel-Alsina operational laws
still need to be enriched.

LITERATURE REVIEW

Under the powerful characteristic of FS, many scholars have conducted a lot of extended
research. For illustration, ordered weighted averaging aggregation operators (Yager,
1988), immediate probabilities (Yager, Engemann & Filev, 1995), modeling decision-
making under immediate probabilities (Engemann, Filev ¢ Yager, 1996), mixed uncertain
satisfaction (Yager, 2017), aggregation function (Durante ¢» Ricci, 2018), deviation-based
aggregation (Decky, Mesiar ¢ Stupinanovd, 2018), generalized averaging aggregation
operators (Beliakov et al., 2011; Liu et al., 2016; Yang ¢ Yao, 2021), and analysis of fuzzy
research under bibliometric indicators (Merigd, Gil-Lafuente ¢ Yager, 2015).
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Due to strong data-inclusive features, IFS and IVIFS have been extended in distinct
regions, including bipolar soft sets (Mahmood, 2020), analysis of image quality under
measures (Hassaballah ¢» Ghareeb, 2017), decision-making framework (Gao et al., 2021;
Zeng, Hu & Llopis-Albert, 2023), distance and similarity measures (Garg ¢ Rani, 2021;
Peng, Xiaohe & Jianbo, 2021), hybrid variable approach (Liu et al., 2021; Xue, Deng ¢
Garg, 20215 Zhang et al., 2022), construction of shadowed sets (Yang ¢ Yao, 2021), time-
series mapping (Bas, Yolcu ¢ Egrioglu, 2021), transportation problem (Bharati, 2021), and
combined compromise solution approach (Alrasheedi et al., 2021; Su et al., 2023).

Due to its dominant structure, several scholars have shown their interest in CEFS
and applied it to diverse regions. For convenience, cross-entropy measures (Liu, Ali ¢
Mahmood, 2020), complex fuzzy soft sets (CFSS) (Thirunavukarasu, Suresh ¢» Ashokkumar,
2017), IV CESS (Selvachandran & Singh, 2018; Dai, Bi ¢ Hu, 2019), and complex multi-
fuzzy soft sets (Al-Qudah ¢ Hassan, 2019). Further, Garg & Rani (2019a); Garg ¢ Rani
(2020a) invented the CIVIFS and the advanced aggregation operators under CIFS. Garg
¢ Rani (2020b) modified the theory of robust and geometric aggregation operators under
CIFS. Garg ¢ Rani (2019b) proposed the methodology of aggregation operators under
generalized CIFS. Ali et al. (2021) combined the principle of CIFS and soft set and explored
some aggregation operators. Especially, the statistical metrics evaluated by Menger (1942),
Einstein aggregation operators for IFS invented by Wang ¢ Liu (2012), Archimedean
aggregation operators for IFS stated by Xia, Xu ¢» Zhu (2012), Hamacher aggregation
operators for interval-valued IFS presented by Liu (2013), and so on.

MOTIVATION AND MAIN CONTRIBUTION

CIVIES theory is the modified version of the FS, IES, IVIFS, CFS, and CIFS because of their
valuable and dominant structure. Further, the theory of Aczel-Alsina is also very famous
and reliable because it is the generation of the algebraic t-norm and t-conorm. Moreover,
discovering the theory of aggregation operators in the presence of Aczel-Alsina information
for managing CIVIF values is a very challenging task for new fuzzy scholars, because up to
date no one can derive the theory of Aczel-Alsina aggregation operators for CIVIF values.
Furthermore, deriving the theory of the WASPAS technique (Zavadskas et al., 2012) is also
a very awkward and challenging task for fuzzy researchers.

Keeping the benefits of the above prevailing operators, the major contribution of this
analysis is illustrated below:

(1) To initiate the Aczel-Alsina operational laws and their related results.

(2) To invent the principle of CIVIFAAWA, CIVIFAAOWA, CIVIFAAHA, CIVIFAAWG,
CIVIFAAOWG, and CIVIFAAHG operators, and illustrated their well-known
properties and results.

(3) To derive the theory of the WASPAS method for CIVIFSs.

(4) To demonstrate the MADM strategy under the invented works.

(5) To express the supremacy and dominancy of the invented works with the help of
sensitive analysis and geometrical shown of the explored works.

Presentation of our analysis is implemented in the shape: Section 2 covers all the
prevailing methodologies. In Section 3, we initiate the Aczel-Alsina operational laws and
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Table 1 Representation of the notation used in the proposed work.
Notation meanings Notation meanings Notation Meanings
67(‘” Entry of matrix Mﬁ(a&) Complex Interval-valued truth Nﬁ (%) Complex Interval-valued falsity
grade grade
—L —L
w; Weight vector M= (%F) Lower bound of real part in Nz (%E) Lower bound of real part in falsity
truth grade grade
—U —U
S; Score value M= () upper bound of real partin truth Nz (%f) upper bound of real part in falsity
grade grade
—L —L
°F Scaler M= (xE) Lower bound of imaginary part N= (%F) Lower bound of imaginary part in
in truth grade falsity grade
~ —U —U
Xu Universal set M= (%) upper bound of imaginary part = (Xp) upper bound of imaginary part in
in truth grade falsity grade
— —L —L
Rz, c (XE) Complex Interval-valued Rz (x£) Lower bound of real part in neu- R= (xg) Lower bound of imaginary part in
neutral grade tral grade neutral grade
—U —U
Tk Element of universal set R () upper bound of real part in neu- Rs (xg) upper bound of imaginary part in

tral grade

neutral grade

their related results. Section 4 produces the principle of CIVIFAAWA, CIVIFAAOWA,
CIVIFAAHA, CIVIFAAWG, CIVIFAAOWG, and CIVIFAAHG operators, and illustrates
their well-known properties. In Section 5, we derive the WASPAS method for CIVIFESs.
In Section 6, we demonstrate the effectiveness of the MADM strategy under the invented
works. The conclusion of this study is illustrated in Section 7.

Before starting the proposed work, all variables and indexes used in this study are defined
in Table 1.

PRELIMINARIES

Here, we utilized the weighted sum model (WSM) and the weighted product model
(WPM) to review the concept of the WASPAS method (Zavadskas et al., 2012). Moreover,
the extended WASPAS method was derived from Zavadskas et al. (2013). Some valuable
and effective steps of the WASPAS method are listed below:

Step 1: The input data of the technique is represented in the form of a matrix of
alternatives and attributes, which is based on the data received from the expert.

Step 2: Normalize the decision matrix in the presence of the information in Eq. (1):

¢
2 ificB
Q:Q] = ma.Xl 2 (1)
M ifiec

where B represented the benefit types of data and C stated the cost type of criteria.
Step 3: Compute WSM and WPM of each alternative:

m o
WSM; =Y “W;&c; (2)
j:l
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mo—\Wi
weM;=] | <¢_CJ ) (3)
j=1
Step 4: Calculate the score value by using the theory of WSM and WPM information
referring to the following way:

Si =°F * WSM;+ (1 —°F) WPM;. (4)

There exist some special cases: when °F = 1in Eq. (4), S; = WSM;j; when °F =0, S; = WPM,;.

Step 5: Deriving the best preference by the score value in Step 4.

Next, the algebraic theories of some prevailing principles like CIVIFSs, the concept of
Aczel-Alsina t-norm and t-conorm will be discussed. Of note, the notation X\Z], stated for
universal sets. o

Definition 1: (Garg ¢ Rani, 2019a) The mathematical structure of CIVIES ¢ is shown
in the shape of:

Co={ (Mg N ) : 85 € X | (5)

M = ey o 2 ([ﬁmﬁum])
where the term M@:C(fc}) = |:MR (@)’M_f *5) |e 1M ER )

—L  —U _
-/V}* (XE),/\/,: (xE)]>

% =L  =U _ i27‘[<|: . .
Na(xg) = |:./\/R (xE)’Nf (xE):|e indicate the TD and FD

with 0 < M= (xg) +N§ (*p) <1 and 0 < Mz (%p) +./\/’f (xg) < 1. Moreover,
I —U i <[9f(£p) w (x?)D
=) = |Rg (%p),Rg (955)]6 reeen
o
—L _ —L _ —U _ =—=U _
|:<1—<MR (*p) + Nz (XE))>’(1_(MR (%) + Nz (XE))>i|
—L =L —U —U
27| 1—( M= KB)+N= (%) | ), 1-| M= (KB)+N= (xF
e [< < PR (E)>>( ( T (E)>)] states the neutral grade, and

- ([ o7 @) (7w w])

—=L

—U
==L =V _ | 27| |Ng GB)NE &) .
|:NR (xp) Nz (xE):| ¢ ﬂ([ 5oy D) denotes the complex interval-valued
] 7

intuitionistic fuzzy number (CIVIEN).
Definition 2: (Garg ¢ Rani, 2019a) Suppose there are two CIVIFNs
M‘{(@,M:fu(ﬁ)]em([ﬁf @ (XNE)]),

e | o
K [ﬁ @),EU (@)}izn([ﬁf‘ﬁ)ﬁfu (&)})

,j =1,2, then:

L L I L U U U U
|:MR1 +M§ _Mﬁ Mﬁ ’Mﬁ +M§ _Mﬁ Mﬁ ]

1 —L ——Ll——L ——U —=U

U—=U
M +Me —Mz M } (6)

L I L

_Q:Cl @—€C2 _ 61271’ [Mf +M§ _Mf M

—L——L —U—=U
UeUT i2r [Nf: Yy }
R e 1 1
2

[NR] N N ;
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— U—

[ e — U
I I U Ul 2n [Mﬁ Mi ’Mﬁ 5 ]
ME ./\/li ’ME ME e ,

= = L ——L I—1 —vU U U=—=U
¢ Co, = — N N— N— — _AN— N— 7
RY-IZOR | il vl v vl sl 1 sy g ] (7)

—JL —L —L—L —U —U —U——=U
27 [NI: +NI: _NI: NI: ’NI: +NI: —N= N= ]
e 1 2 1 2 1 2

I 5]

Ys€c, = — _ (8)
. —L¥s —=UVYs
LVs uvs ’z”[Nﬁ I }
TR TR
| ==LYs uvs
LVs uvs | 2| Mg I
— VR
Cc, =

M= :

__\Ts N5 9

(6 ()

Definition 3: (Garg & Rani, 2019b) By taking any two CIVIFNs

— [Mjﬁ (JFE),M:% (:&)]EQ"([M:?L(%)’M:?U (fé)D,
[@ @) N (&)]eiZ”([N:?L(XD 7))

Co = , then the score value (SV) and accuracy
value (AV) are determined by the following formulas:

7

Ry L

_— 1 L I I — U U —U —U
SSV(CCI):Z(M& +Mf _Nﬁ _Nf +Mﬁ +Mf —N= —-N= ), (10)

fr— f— 1 L L L —L U U —U —/U
Hav (QC‘):Z(M& +Mf +N§ +Nf +M§ +Mf +Nﬁ +AG:1 ) (11)

Definition 4: (Garg ¢» Rani, 2019a) By taking any two CIVIFNs @ZC]

. . o | M= () = (5
M @) M e (75 E)D, ,

! j=1,2, then
) T e

[ﬁm) - (xF)] [v )N (m])

o
(1) Ifssv(ccl) S_(Qicz), then €, > oy
2) IfSSV(QCI) S:<thz), then €, < Cq;
(3) Ifﬁ(ezcl):&:‘,(etg), then

(i) IfH_AV(QZ_C]) > H_AV(C_CZ), then CZCI > CZCZ;
(i) IfH_AV(QZ_C]) < ’H_AV(Q:_CZ), then (’::cl < CZCZ;
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(if)) If Hay (e_cl) =Hay (Qi_cz) then C¢, = €.
Definition 5: (Klement & Mesiar, 1997) Suppose Ty : [0,1] x [0,1] — [0,1] states a
TN, then
(1) Trn (8.8 ) =Tow (%) 4.5 € [0,1)
@) Ton (%85 ) < Tow (5.5 ), 65 <5
() Tow (%, Tow (%5") ) =Tow (Tow (8. 5) &)s
(4) Trn (g, 1) =XE.

Definition 6: (Klement ¢~ Mesiar, 1997) Suppose Sty : [0,1] x [0,1] — [0, 1] states a

N—"

(2) Stv (@,3&,) <St~ (5675,552”), if 5 <%
(3) Stv <3€1:3,STN E 75,/>) =S1n (STN (56755675/) ,355”);
(4) Stn (xE,0) = xE.
—
Definition 7: (Aczél ¢ Alsina, 1982) Suppose (']I‘TN A ) states the Aczel-Alsina
¥€[0,00]

TN, its expression is listed as follows:
Ton (. 5) if ¥ =0
il min (%5, K5 if y =00
TNy (xE,xb"): E-7E (12)

1

e—((—log&)“#(—log»&’)’”)w

otherwise

Definition 8: (Aczél & Alsina, 1982) Suppose <STN A ) states the Aczel-Alsina
¥e[0,00]

TCN, the detailed expression is shown as follows:
St (#.4') if ¥ =0
—y , o~ e : _
Stva (5.8 ) = ma (.5 ) i =oo (13)

1

. 67<(—log(lfﬁs) )”(*l"g(l*"?) )w) ' otherwise

ACZEL-ALSINA OPERATIONAL LAWS FOR CIVIFSS

This section mainly introduces the Aczel-Alsina operational laws for CIVIFS that keeps
the benefits of the IV information and explores these elementary properties.
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_ @fmm%ywmwww)
Definition 9: For CIVIFNs &¢, = 5 ’ ,j =1,2, then

[7{ <x7.;),/7;u @)]JhQN:{WE)N:fG)D

] ——\ ——y [(——U U im[ﬁf (ﬁ M— )ﬁf (ﬁbﬁbﬂ
o [STNA (ME ’ME )vSTNA (Mi ’ME )]E I I Iy I s
Ccl @€C2 = (14)

[T (7 ) T () e (5 ) o ()

R

] I\ ——y /—U UN\T i2x [ﬁf (Mf v )ﬁf (MfU,MfUﬂ
. [TTNA <ME ,ME>,TTNA <ME ,ME >]e I ) Iy I ,
Q:Cl ®Q:C2 = (15)

) ] ——1\ ——y [——U ——U
] —1\ ——y [——U ——U\T 2 [s (Nf = )s <Nf = )]
Sty (M= N=).Siwy (V= A= )| LA 75 Joma Ty -,
R R R R

([ L rzn([%"(fgw,”(m}))
.. _— MR: (xg),MR:_ (xg)]e J lj , )
Definition 10: For any two CIVIFNs &, = ! 7 ji=

[ﬁ N @ )] eﬂ”([N:?L @7 @)

1,2, then the following mathematical formulas hold:

(16)
n Ke(<mg<w>>ﬂ<mwrﬁ),(e<<1 () ) ol >>‘”>¢ﬂ
: e“<<>><<>>)(<<>><<>>)l )
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Theorem 1: For any two CIVIFNs Q::C] = ( o ([f(m —v (XN)D

|:M:§L @ ,M:EU (xNE)j| eiZn([M:?L(%)M:iU (’%)]) ) ] _

L —U _
I:NR:' (XE),/\/% (XE)}E
j j

1,2, then we can derive the subsequent mathematic properties:

(1)
(2)
(3)
(4)
(5)

(6)

%, ®Cc, =Le, ®Cc;
Cc, ®Cc, =Cc, ®Cc;
65(Cc, ® e, ) =0sCc, ®OsCes

(05, +6s,) €c, =05, Cc, ®5,Cc5
0s 05 —0s

—0s

(Q::CL(@ €:C2>952 Cc, ®Cc, ;

¢C1 ® €C1 = Q:Cl .

Proof: Next we present the proofs of properties (1), (3) and (5), as we can similarly

complete the proofs of properties (2), (4) and (6).

(1)

@ thibasis of Egs. (16) to (19), then we calculate QZCIEBQI:Q:
eI,

(18)

(19)
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=C, e,

Hence, we investigated €¢, ® €¢, = €, ® €, the property (1) is proved.

(2) Suppose GZS(G_CIEBQ_CZ), then

7@ o)

[

Fang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1362

10/34



https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1362

PeerJ Computer Science

=05Cc, BOsCc,.

Hence, 05 ((’::C]EB(’::CZ) =65Cc, BOsCc,, the property (3) is proved.
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—\0s

(3) Suppose <€:C1®¢_C2) , then

— —\
o, ®Cq, )
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— —

— =\ 0
Hence, (Qﬁcl ® CCZ) g Cc, ®Cc, s, and the property (5) is proved.

ACZEL-ALSINA AGGREGATION OPERATORS FOR CIVIFS

This section proposes a group of aggregation operators by utilizing the Aczel-Alsina
operational laws for CIVIFESs such that CIVIFAAWA, CIVIFAAOWA, CIVIFAAHA,
CIVIFAAWG, CIVIFAAOWG, and CIVIFAAHG operators, and illustrates their well-
known properties.

» — [MR:_'@),MR:_”(@)} ,
Definition 11: For CIVIFNs Cc = ! ! Sp— J=1,...,n,
P ] 2 = (5g).N= (¢
[N%@’AEU@} (| = @)

then the CIVIFAAWA operator is interpreted as:

CIVIFAAWA (ct:C1 [ ?) =W,Cc, ®W,Cc, & DW,Cc, =D, (anetcj) (20)

— — = T —
where 2J = (Qﬂl L0, ..., Qﬂn) means the weight of C;, with a rule Z?:ﬂﬁj =1.
o [Mjf<£E>,M:f”@)}eih([M:?ImM:iu@D,
Theorem 2: For CIVIFNs €. = ! ! Jg=1,...,n,
< v fzn({f(@.ﬁ”(@]) 7
[Nf (XE)J\/% (XE)}E ] ]
then by using Eq. (20), we elaborate

CIVIFAAWA (? e ?)

i v e @y
e‘(ZLﬂ”j(—lOg(ﬁ) )1//)"’ | (e—(Z;’:lQHj(—lOg(NRj ))Vf)w
1 K .
i ef(zf v (M(ﬁ{) >W)W [(Zf" mf(’mg(N:?U) )w)W

Furthermore, we derive the theory of idempotency, boundedness, and monotonicity
for the information in Eq. (21).
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=

([L e {M,: () M= (ﬁ)}))
_— MR: (xE),MR:_ (xE)i|e J i s .
Property 1: For CIVIFNs C¢; = | & ' _ — J=12,....n,

if Q_CJ =, then the detailed expression is shown as:

CIVIFAAWA(CZCI,CZQ ..... @Tﬂ):? (22)
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Similarly, for the upper part, we have
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Therefore, we obtained
¢- < CIVIFAAWA <Q::C1Q::Cz . ?) <.
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p— |:MR: (XE),MR: (XE)i|e J 7 s
Property 3: For CIVIFNs €¢, = ! ’

. J=1,....nif
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€c <& , then
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=L, _ =—=U _
L ——U _ iZW([M,:, (%E).- M= (XE)])
... = [MR:. (), M= (XE):|E i i , )
Definition 12: For CIVIFNs €, = ! ! . . J=1,...,n,
i . fzn([/«,: @) N (&)D
[Nﬁ (xE)’NE (xs):|€ ] ]
then the CIVIFAAOWA operator is invented by:
CIVIFAAOWA (¢, €, .....€c, ) = Wi &c,, @ WCc, ) & ®W,Ce,,, =D, (m-@%)) (25)

— —_— — T —
where 20 = (Qﬂl ,290,,..., Qﬂn> indicates the weight of C;, with Z;':lﬁﬁj = 1, with

parameter ¢ (1),¢(2),...,¢(n) based on QCW) < ch(jfl).
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Theorem 2: For CIVIFNs €, — | J=1m,
then by using Eq. (25), we elaborate
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Idempotency-Property 4: By taking CIVIFNs ch]
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Monotonicity-Property 5: By taking CIVIFNs C_CJ
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Boundedness-Property 6: By taking CIVIFNs
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by using Eq. (30), we elaborate

CIVIFAAHA (T, €, ... T,
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Idempotency-Property 7: By taking CIVIFNs
:7L o .::U G
Q:: I:Mf (@),MR:jb (xNE)]eln([Mg ¢ )MIJ’ ( )D, ) 12 fQ:: E th
= J=12,...,n,if € =€, then
< — fzn([ﬁ}%@)vﬁ?l’ <xz)]) J G

L —v
[Nf (XNE)qNﬁ (XNE)j|E

CIVIFAAHA (ezcl e f) ~C (32)

Monotonicity-Property 8: By taking CIVIFNs

1 =([F e @)
I:Mf (xE)«ME (XE)]E ] ] ,

Cc = SN
i . izn([w,:f@V,:,“(fz)D
|:NR:], (XE)’Ni (XE)]E / ]
—L —U
L= — . ——=U i2ﬂ[mianI:_ ,mianI:_ :|
if¢ = minj M= ,minjM= |e j T4,
R R
L Ui [ N max N
—_— —_— 127 | maxjN= ,maxjN= ]
max;N= ,max;N= |e g f and
R R
—L —U
—+ L —U 27 [manMI:_ ,manMI—f :|
¢ = manMf ,maxj./\/lf e i il
) )

— vk [ A= mi ﬁ“}
L == == 27 | mingN= ,minjN=
|:m1njj\/ ,miniN= i|e i f ),then

= —_— —= e =t
C <CIVIFAAHA (c:cl,ecp...,@cn) <C (33)

Boundedness-Property 9: By taking CIVIFNs
]efz:r([M:{(xz).M:f” (x’z)D ,

J=1,2,...,n, ifQ_CjSC_Cj,then

— | =v _
Me= (x), Mz (%p)
j §

|l

[ﬁ(@w\?”(@}eﬂ”([% @ )
CIVIFAAHA (ezcl [ ?) < CIVIFAAHA (et:cl e Co, ) (34)
18/34

Fang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1362


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1362

PeerJ Computer Science

— ([ @ @] (5 @' @)
Definition 14: By taking CIVIFNs &¢, = ’ ’ ey , then the
[ﬁ(ﬂ),ﬁil] ()?E)]eﬁ"q/\/? (XE)vN? (XE)D

CIVIFAAWG operator is interpreted as:

—_— — — —QUl —Qﬂz QU :ﬁ]
CIVIFAAWG<€C1,€Q ..... cc) ¢ ®C, ®-8%, =o. (¢ (35)

([ 0 7 )|
1

[g e fzn([M;(Ew, mD
. == Mz (%), Mz (XE)]E i i ,
Theorem 4: By taking CIVIFNs €¢; = ’ ’ ‘ , then by
[ﬁ()ﬁu] (%

using Eq. (35), we elaborate

CIVIFAAWG (c

= —\ L 1 (36)
(b)) [, () ™)
l1—e 1—e
)Y ek
MHM(EJI«EMJ))W [, e ]]
e
— [W:L@),M:%(fm}h([% WA m])’
Definition 15: For CIVIFNs €¢, = ! ' et —y J=1...,n
[ﬁ(@ﬂ\?”@}em([ﬁ @7 @)
then the CIVIFAAOWG operator is interpreted as:
CIVIFAAOWG (QZQQ::Q ..... ?)
W, ——, W, —;
=€ ®Cg, ©®®&,, = ®J’Ll (CC“’O) ) o7
where QII (%1 Ez ..... EO ' indicates the weight of C;, with a rule Z]’?ZIE]- =1, with
parameter ¢ (1), (2),..., @(n) basedon €c o) = <¢&c¢ 1)
N [MR:. ), M (x?}e ([M?L(@M:?U@)}>,
Theorem 5: For CIVIFNs €, = ’ 7 e J=1.., n,
[ﬁ(a&mf:;u (&)}'2”(% @7 @)

then we elaborate
CIVIFAAOWG (¢:c1€:c2 ..... ?)

Fang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1362 19/34


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1362

PeerJ Computer Science

e

(s ()™

o] % W, %
, _(Z}’:‘ (_I%(M’w@ )) ) (ZJ ‘( l°g< "
2| |e sle
ﬁ

1
v

_ e ., (38)
v\ v
_(Z]’LI (—1og(1—NRW)L>) ]) (Z) ( 1og w(])
1—e 1—e
I o ¥ Y, ¥
7(2“(71%(17%L)) J) 7(2’ 1( l°g<l oo )) J)
i2r| | 1—e 1—e
e L
Idempotency-Property 10: By taking CIVIFNs
S (| M () M= (5F)
Q::_ [Mf (’CNE)’MR:jU("NE):Ie ([Mlj MIj ]) 1 fQ::—E h
TN o e(Feme) [Tl =T then
[NR:_ &%), Nz (x})}e g b
] 7
CIVIFAAOWG (Q:_clc_cz@) —¢ (39)
Monotonicity-Property 11: By taking CIVIFNs Q_q
o (| = () M= (5
[Mjﬁ(m,/v{:{'@)}e’ ([MG )M (E)D, . '
= _ <[ J=12,...,n,if
— _ ==U _ ] (| N= (xF)N (‘E)])
[Ni (XE),Nﬁ (xE)i|e i
—_ . L . —=U i27r|:minj./\/l71:. ,mian:I:‘U] —L —U
¢ = mmj./\/lR:j ,mijR:j e j i maXJNE ,man/\/R:j
—L —U
iZn[manNI; ,maxﬂ\f]; :| =+ —L —U
e i i and ¢ = manMf ,max]'/\/lf
) )
‘z[ M= /\TU] —1 U '2['/\? /\TU]
27 | max; M= ,max; M= — — 27 | minjN= ,min; N=
e 7 Al |:m1n]/\/' minj/\/f ]e 7 g ),then
= —_— — fr— =+
¢ <CIVIFAAOWG (% o, ccn) <C (40)
Boundedness-Property 12: By taking CIVIFNs
. _ o | T () M= ()
[ [Mﬁ (ﬁ)’M%({E) ‘ ([MIj o E]) i=1,2,....,n if€:<¢:/ then
ST e n( [ 0 7 ) J= S B EEG 256G
Nz (&) Nz (XE):|‘5 J j
[ i i
CIVIFAAOWG (Q_CIQ_CZQ) < CIVIFAAOWG (e_cl T, E) (41)
Fang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1362 20/34


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1362

PeerJ Computer Science

= [M:R:_L@,M:fu @}'“([M:?L@‘M:?U@]),
Definition 16: For CIVIFNs (’ZC]. = i i

i =L, y77=V ~ 9] ]-7- an)
I:NZEL(JCNE),/\??U (xNE):|e1 ”([A% ("E)-Ng (Xﬁ)])
then the CIVIFAAHG operator is shown as:
CIVIFAAHG (QZCI e ?)
=%, ®%q, ®-0C,, =0_|%,, (42)

— — — =\ T _—
where 20 = (Qﬂl 0, ..., Qﬂn> indicates the weight of C;, with a rule Z]’.l:lﬁﬂj =1, with

parameter ¢ (1),¢(2),...,¢(n) based on CC;] 0= @Cw'(jfl). Additionally, CC;) 0= nm}/ QC;;(J-)
with Z}'zlﬂﬂ;f =1.

L fzn([M:f"@),M:f”@)D
Mﬁ (XE)’ME (xs)}e ] J ,

Theorem 6: For CIVIFNs QZCJ = [ o ({f i (XN)D

J=1,...,mn
—1  —U _
[Nf (xE)vNE (xE)i|e
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Idempotency-Property 13: By taking CIVIFNs
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Monotonicity-Property 14: By taking CIVIFNs
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— — 27 | max; N= ,max;N=
max;N= ,max;N= |e £ g and
] R; 7 R;
—L —U
—+ I U iZH[max]'MI:_ ,max]-/\/lf j|
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Boundedness-Property 15: By taking CIVIFNs
. tzn([M:,:_‘(@)AM:fU(x’z)D ,
T |l ) T < then
] [J\?%(xb,f\?ﬁu(ﬁ)}eiu([ﬁ%@% @) Y

CIVIFAAHG (Czcl Co... ?) < CIVIFAAHG (c::Cl Ce, e Co ) (46)

WASPAS METHOD FOR CIVIFSS

The main theme of this section is to illustrate the WASPAS method for CIVIFSs and verify
the validity of the proposed method with the help of some numerical examples.

Some valuable and effective steps of the WASPAS method are listed below:

Step 1: The input data of the technique is represented in the form of a matrix of
alternatives and attributes, which is based on the data received from the expert.

Step 2: Further, we normalize the information in decision matrix by using the below
theory:

—L —U zZn([max]M (XE) max] (xE) ])
maX]M— (xXg) , maX] — (xg)

Cc, =

| @

—L 7U
. —=L __ . ==U _ i2n<[mln — (xg) ,min, N—= () ])
minjN= (Xz) ,minjN= (%) |e Py ‘
Rqj Roj
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where the data in Eq. (48) is used for benefit types of data, such as

0 otherwise
o L U
% MR—U ,<M LMR’]J<MR"’J’
=/ =~ M= <M= M= <M=
Q:Cij = 1+MR—OJ Ly — I ’ Ly — Lo (48)
Ne
—”[ for non — membership grade
1 —i—./\/’f
oj

Where the data in Eq. (49) is used for cost types of data, such as

0 otherwise
L L U U
M7 Mi '<M TMRUJSMR:()]'TJ,
fr— -—L l
i’—‘ci,-/=< 14+ Me, Mz = Mg Mg =Mz (49)
—L
Ne
—”L for non — membership grade
1 +/\/’€7
Coj
I:mm]m . mm,/vt— (xs)} 127r(|:minj/\/1:§1'(%)AmianzﬁU(@)})
where QCGJ- - ’ ’ ,zv([maxﬁl(r) max»FU(xN)])
B [max]./\/’T (XE) » max]./\f ] (xp)] iy BT VR '
Step 3: Utilizing CIVIFAAWA and CIVIFAAWG operators to obtain the WSM and
WPM of each alternative:
WSM; = CIVIFAAWA (@ZQ [ ?)
— I\ \V v — —U\ \¥ ¥
b)) [, Al )
i N
[ =) meb))
= ¢ ' (50)

<

=) ) (A os)))

(Zf' () )w)% . *(%ﬁ(%g(ﬁ") )W)%

WPM; = CIVIFAAWG (QZCI <o, ?)
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= ) ) (51)
- v; 2 — U\ \V; v
)T [ At )
—e | 1—e
ERNNE AN v\ ¥
AL At ) || b))
e
Step 4: Compute the score value according to WSM and WPM, the detailed formula is
listed as follows.
Si="°F+Ssy (WSM;) + (1—°F) Ssy (WPM)) (52)

Step 5: Rank the alternatives and derive the best one referring to the score value S; in Step
4.
Further, we justify the above-mentioned method by some practical examples.
Example 1: To verify the WASPAS technique under the consideration of some CIVIF
information, we applied it for practical CIVIF decision matrix to obtain the best alterna-
tive. Four alternatives: S, S,, S3, Ss; and four criteria C;, C,, Cs, Cy, and Cyy indicates
the assessment information of S;(I = 1,2, 3, 4) under the criterion C; (J = 1,2, 3, 4).

Some valuable and effective steps of the WASPAS method are listed below:
Step 1: The input data of the technique is re};l)resented in the form of a matrix of
alternatives and attributes, which is based on the data received from the expert.

[ (10.3,0.6] 27 ((0:1.03) [0.2,0.3] /27 (102,04 [0.3,0.4] 27 (01,03 [0.1,0.2] 27 (102:02])
[0.3,0.4] ¢27(103,03) (0.3, 05]612:1([0304]) [0.2,0.2]¢27(102,03]) (0.1, 01]6127:(0103])

<[0 2,0. 3]6127[([0607]) > ([0 3, 04]612n([0506 ) ([04 0. 5]el2ﬂ( 0.4,0.5]) ) <[0 .5,0. 6 27 ([0.3,0.4]) >

[0.3,0.4] 27 (102:03]) [0.2,0.3]¢/27(101,03) [0.3,0.4] 27 (102,02 [0.2,0.4] /27 (102:02])
Cc; = [0.1,0.3] /27 (103,04]) [0.2,0.4] ¢27(103,05)) [0.1,0.3]¢27(102,02]) [0.2,0.2] 27 (101,01])
<[0'1’0'2]e12n(0102 ) (0.2, 03]e’2"([0202])> <[0‘3’0.3] 1271([0203])) <[03 0.4] 27 (0:2.03)

[0.3,0.4] 127 (103.03]) [0.3,0.5] /27 (103,04 [0.2,0.2] 27 (02,03 [0.1,0.1]¢727(101.03])
[0.2 02]61‘271([0.1,0.2]) [0.2,0.2]¢27(101,02]) [0.2,0.2]¢27(101,02]) [0.1 0.2]6i2n([0.1,0.2])

Step 2: Further, we normalize the information in decision matrix by using Eqs. (47)—
49, and obtain following resutls:

_ [0.3,0. 6]e’2”( [0.2,0.4]) [0.5,0. 6]e’2”( [0.6,0.7]) [0.2,0.4] 1211([0.3,0.5])’ [0.3’0.5]51'271([0.3.0.4])’
cCo,] = { ( [0.1,0.1]e 27 ([0.1,0.3]) ) <[0.2’0.3] 2 ([0.1 02])) <[0.1,0.2]e’2”([0'1’0'2]) > ’ ( [0.1,0.2]ei2”<[0‘1’0‘2]) )}

Fang et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1362 24/34


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1362

PeerJ Computer Science

_ £i27(10.182,0.25])

[0.231,0.375]
£127(10.083,0.214])

[0.273,0.364]
i27(10.273,0.231))

(0.133,0.187] [0.154,0.187] /27 (10167.0285)
£i27(10.375,0.412]) [0.273,0.455] /27 (10:273,0. 3071)

[0.25,0.308] [0.2,0.25]¢/27(10312,0.353])
[0.167,0.231] ¢27 ([0:091.0. 25))

[0.077,0.125]
i277([0.167,0.143])

([O 0. ]8127[( [0.,0.])
0.333,0.375]
0 231 0. 25161271( [0.083,0.214]) [
([O 182,0.182]¢ 252((0.182,0.231) 127 ((0.187, 02353])
0 267,0. 312]6127[( [0.25,0.294])
( [0.25,0.308] e 1277 ([0.182,0. 167])

) [0.167,0.308]
[0.083,0.214] ¢27((0-153,0.133) )

£127(10.182,0.167))

[0.084,0.214] [0.167,0. 285]6’2”( [0.230,0.333])

i27([0.076,0.067
£i27(10.230,0.267]) < [0.182,0.25] /27 (10:182.0.167) ) ei2n(l D

[0.273,0.25] ¢/27 ([0:182.0.25])
[0.153,0. 133]3’2”( [0.153,0.214] )
[0.182,0.167]e i277 ([0.091,0. 167])

0.273,0.333
[0.091,0.167] (0.230,0.334] /27 (10-230,0.285]) [i27r([0‘1’82.0A25]])
i27([0.091,0.167]) 127 ([0.091,0.167])
e [O 182,0. 167 [0.076,0.067]

[0.230,0.267] £i27(10.076,0.214])

i27([0.230,0.214])
4 s

[0.182,0.167]
£127(10.091,0.167))

[0.091,0.167]
127 ((0.091,0.167])

)
|
)

tép 3: Compute the WSM and WPM of each alternative according to the CIVIFAAWA
and CIVIFAAWG operators (¢ = 1), the specific results are illustrated as follows.

[0.000028, 0.001 1] eiZn([0.000007,0A00009]) , [0.0001, 0‘0003] ei2n([0.0003,0A0007]) ,
( [0.8096, 0.9050] eiZn([0.8096,0.8925]) ) ( [0.828, 0.9292] ei271([0.6953,0.828]) ?
WSM; = [0.000007’ 0‘00009] eiZn([0.0000Z,0.0000S]) , [0.00003’ 0'00004] eiZn([0.0000S,0.000l]) ,
< [0.8096,0.8907] eiZn([0.6952,0.8279]) ) ’ ( [0.6953’0‘7296]ei2n([0.3637,0.7296]) )
[0'7291 ,0.8651 ] ei27r([045452.0,8377]) , [0.8658, 0.9222] ei27r([0,9222.0.9512]) ,
<[0‘00005’ 0.000160] eiln([0.000059,0.00020])) <[0‘00008, 0.0004] ei2n([0.00002,0.00008]) ’
WPM; = [0.5452,0.8377]€i2ﬂ([0'7292'0'7847]), [0.7292’0.7847]eiZn([0.7292,0.8693])’
([0.00005, 0.000187] ei27r([0400002.0.00008])) ([0.00002, 0.00003] ei27r([0,000003,0.00003]))

Further, we examine the values of the score function, such as:

WSM,; ={—0.8542,—0.82,—0.8058, —0.629}

WPM; = {0.7442,0.9152,0.7241,0.7781}

Step 4: Acquire the score value of each alternative by using the theory of WSM and WPM

information:
S; =0.4245,S, = 0.5682,S; = 0.4181, S; = 0.4966

For convenience, we assume °F =0.2.
Step 5: Identify the ranking information for evaluating or deriving the best preference.

$2>284=51=S;3
From the above analysis, we obtain the best preferences as S;.

Application in MADM

The significant commitment of this examination is to apply MADM method under
CIVIEFS for deciding the optimal scheme from the group of complex interval-valued
intuitionistic fuzzy data. To determine the best one, we expounded a dynamic interaction.

There are m alternative €¢c = {Q_CI,Q_CZ, e ,G_Cm} and n criteria looking like
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Procedure of decision-making
To achieve the acquirement of the best one, we built the dynamic calculation looking like
the accompanying stages:

Stage 1: Construct the CIVIF decision matrix utilizing the CIVIF evaluation informa-

tion.
Stage 2: Normalize the CIVIF decision matrix. The specific conversion process is shown
below when dealing with beneficial data and cost data:

([w%u] ei2n<|iM:1j:k[‘.M:1j:kUi|>’ [ﬁ/\/:ﬁu} eih([NIjkL'NIJ’kU])) for benefit sort of data
D=

L ——=U L

([A% J\fu] eizn([N:If:k ’NIJ':" ]) [Mju EU} eizn([/\/llﬂ‘/’/vllkaD) for cost sort of data

Rk’ "R R’ Rk

Stage 3: Utilizing the Eq. (17) (CIVIFAAWA) and Eq. (32) (CIVIFAAWG) to aggregate
the information in the decision matrix.

Stage 4: Using Eq. (6) to derive the score information.

Stage 5: Evaluate the ranking information in the availability of score information.

Represented example

The significant finding of this investigation is to break down the explained administrators
in the conditions of the MADM methodology. For this, we examined some pragmatic
information to decide the practicality and probability of the introduced works.

Clarification of the problem
Permit us to ponder a creation association that expects to enroll a publicizing director

for an unfilled post. Here, we consider five competitors Q_C] j=1,2,3,4,5, allocated for

extra appraisals, such as: (’Z/Cl : Oral presentation capacity; (’Z/CZ : History; (’Z/C3 : Overall

tendency; and FQ: confidence. For this, we consider weight vectors such as 0.4,0.3,0.2,0.1.

The five specialists Qﬁ_c] 7=1,2,3,4,5 are to oversee vagueness under CIVIF information
by utilizing dynamic strategies.

Method under CIVIFAAWA and CIVIFAAWG operators
Determine the useful individual from the gathering of people (Five up-and-comers)
by utilizing the MADM procedure under CIVIFAAWA and CIVIFAAWG operators.
For obtaining the ideal one, we developed the dynamic calculation looking like the
accompanying stages:

Stage 1: Construct the CIVIF decision matrix. The specific data covering the cost and

beneficial sorts are listed as Table 2.
Stage 2: Normalize the decision matrix referring to the subsequent conversion process.

([WML*%U] Jzn([M:If:kL’MiIf:kU]), [ﬁ/\fu} €i2n<[N:1f:kL'N:1f:kU]> for benefit sort of data
D=

— U
U7 i2rm <|:MI: ,./\/11_: ])
e ke k for cost sort of data

o

([W w1 ) [

Stage 3: Under the CIVIFAAWA and CIVIFAAWG operators, we obtain the aggregation
consequence shown in Table 3 (¢ =1).
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Table 2 CIVIF data.

IS
k)

C
<, ([0.4,0.5]¢™27(10-3:04D 0.2, 0.3] e™2(02:04D) [0.41,0.51] 7 (1031041) [0 21, 0.31] 27 ([0-21.041))
<, ([0.3,0.4] 27 (10:0.01) [0.0,0.1] ™2 (00:01D) [0.31,0.41] 7 (100L0-1D [0, 01,0.11] ™27 (001.0.11D)
Cc, ([0.4,0.5]¢27([0-1.02D) 0.3, 0.4] 2 (02:03D) [0.41,0.51] ™7 (1011.021D [0 31,041 ™27 (021.031))
¢, ([0.2,0.3] 71040 [0.0,0.1] ™2 ([0-1:02D) [0.21,0.31] ™7 (1041.051D [[0,01,0.11] ™27 ((0-11.0:210)
?Cs ([0 4,0.5]¢27(0405D [q, 0,0.I]e’z”([““])) [0.41,0.51] 27 (0:41.051) [q, 01,0.11]3‘2”([02103”))
e, B
Q::Cl ([0‘42,0.52]ei2”([0‘32‘0‘42]), [0.22,0.32] e (10-22. 042])) ([0.43,0.53]ei2”([0‘33‘0‘43]), [0.23,0.33] e (10-23. 043]))
Q:icz ([0.32,0.42]ei2”([0‘02‘0‘12]), [0.02,0.12] 127 (10.02,0. 12])) ([0.33,0.43]ei2”([0‘°3‘0‘13]), [0.03,0.13] 127 (10.03,0. 13]))
@ ([0.42,0.52]ei2”([0‘12‘0‘22]), [0.32,0.42] g2 (10-22.0. 32])) ([0.43,0.53]ei2”([0‘13‘0‘23]), [0.33,0.43] g2 (10-23.0. 33]))
a ([0.22,0.32]ei2”([0‘42’0‘52]), [0.02,0.12] i27([0.12,0. 22])) ([0.23,O.33]ei2”([0‘43‘0‘53]), [0.03,0.13] i27([0.13,0. 23]))
?Cs ([0.42,O.52]ei2”([0‘42’0‘52]), [0.02,0.12] e (10-22.0. 32])) ([0.43’0.53]61'2;1([0443,0453])’ [0.03,0.13] g2 (10-23.0. 33]))

Table 3 Aggregation information matric.

CIVIFAAWA operator

CIVIFAAWG operator

[0.2048,0.2665] ™27 (1° 1489,0.2048])
0.5075,0.6012] ¢ ([06012.0.6789)

[0.1489,0.2048] e 1277 ([0.0048,0.0494])
0.1029,0.3828] ¢ i27([0.1029,0.3828])

0.6012,0.6789] ¢27 (10-5075,0.6012)

[0.0973,0.1489]e i277 ([0.2048,0.2665])
0.1029,0.3828]¢ i277([0.3828,0.5075])

0 2048 0. 2665] i27 ([0.2048,0.2665])
0. 1029 0. 3828] i277([0.1029,0.3828])

\ )
(i )
(02048 0.2665] g7 (0015100973 )
(i )
(i )

[0.6789,0.7464] g2 (06012, 0.6789])
[0.0973,0.1489]e 27 ([0.1489,0.2048 ))

[0.6012, 0.6789] ¢27(10:1029,0.3828])
[0.0048, 0.0494] ¢ ([0-0048.0.0194]) )

0. 1489 0. 2048] i27([0.0973,0.1489] )
0 0048 0. 0494] 277 ([0.0494,0.0973])

0 6789 0. 7464] i27 ([0.6789,0.7464])
0 0048 0. 0494] 1277 ([0.0048,0.0494] )

( O 6789 0. 7464] 27 ([0.3828,0.5075])

0 5075 0. 6012] 277 ([0.6789,0.7464]) )

Stage 4: Here, we compute the score values of the aggregated information in Stage 3,

see Table 4.

Stage 5: Obtain the ranking information based on the score values, the detailed result is
stated in Table 5.

According to the theory of CIFAAWA operator and CIFAAWG operator, the best

optimal is €.
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Table 4 Score values.

CIVIFAAWA operator CIVIFAAWG operator
[ —0.3909 0.5263
¢, —0.1409 0.4143
Cc, —0.4427 0.4289
<, —0.1646 0.5833
[ —0.0072 0.6855
Table 5 Ranking lists.
CIFAAWA operator ?Cs > a > €:Cl > 6:(;2 > ¢:c3
CIFAAWG operator Ce. > Cc, > Cc, > > Cp,
Table 6 Represented the stability of the proposed work.
Parameter Operator Score values Ranking values
¥=1 CIVIFAAWA operator —0.3909, —0.1409, —0.4427, e, >, >, > C, > Cqy
—0.1646,—0.0072
CIVIFAAWG operator 0.5263,0.4143,0.4289,0.5833, Ce, > €, >, > C, > Cqy
0.6855
¥=5 CIVIFAAWA operator —0.3901,—0.1261, —0.4416, e, > g, >, > €, > Cq,
—0.1571,0.0065
CIVIFAAWG operator 0.5255,0.4049,0.4278,0.5811,0.6826 e, > €, > ¢, > €, > Cq,
y=11 CIVIFAAWA operator —0.3888,—0.1169, —0.4401, e, > Cc, > ¢, > Cc, > Cq,
—0.1518,0.0151
CIVIFAAWG operator 0.5242,0.3989,0.4262,0.5791, e, > €, >, > €, > Cqy
0.6803
¥ =51 CIVIFAAWA operator —0.3818,—0.1049, —0.4329, Ce, >, > >C, > Cqy
—0.141,0.0274
CIVIFAAWG operator 0.5176,0.3901,0.4185,0.5724, Ce, > €, >, > Cc > Cqy
0.6748
¥ =101 CIVIFAAWA operator —0.3773,—0.1013,—0.4289, e, > €, >, > C, > Cqy
—0.1363,0.0323
CIVIFAAWG operator 0.5138,0.3876,0.4142,0.5696, Ce, >, >, > C, > Cqy
0.6726

Influence of parameter
Here, we discuss the stability and influence of the derived operators based on the different
values of parameters 1. Therefore, by using the information in Table 2 and various
parameter values, we obtain the subsequent consequence listed in Table 6.

We have gotten the consistent advantageous ideal €, based on diverse operators by
utilizing the particular upsides of the boundary. This result shows that our calculation
model has a good stability.
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Table 7 Comparison information for Table 1.

Methods

Score values

Ranking values

Xu (2007)

Xu & Yager (2006)
Wang & Liu (2012)
Wang & Liu (2011)

XX XXX XXXXX

XX XXX XXXXX

XX XX XXX XXX

XXX XXX XXXX

XX XXX XXXXX

XX XXX XXXXX

XX XX XXX XXX

XXX XXX XXXX

Huang (2014) X X X X X XX XXX XX X X X XXX XX
Seikh and Mandal (2021) X X X X X XXX XX XX X X XXX XXX
Garg & Rani (2019a) 0.4174,0.3054,0.3199,0.4744,0.5766 Ce, > €, > &, > C¢, > Cqy
and Garg & Rani (2019b)

CIVIFAAWA operator —0.3909, —0.1409, —0.4427, e, > €, > > Cc, > Cqy

—0.1646,—0.0072
CIVIFAAWG operator 0.5263,0.4143,0.4289,0.5833,0.6855 Cc. > Cc, > C, > ¢, >,
Notes.

“ x” denotes it is unsuitble to calculate the score values.

Comparative analysis
Here, our main theme to evaluate the comparison between proposed method with few
existing analyses to show the stability and effectiveness of the proposed method. For
this, we use various existing operators such as Aggregation operators (AOs) (Xu, 2007),
geometric AOs (Xu ¢ Yager, 2006), information AOs (Wang ¢ Liu, 2012), Einstein
geometric AOs (Wang ¢ Liu, 2012), Hamacher AOs (Huang, 2014), Dombi AOs (Seikh
& Mandal, 2021) under the IFSs, and AOs Garg ¢ Rani (2019a) and Garg ¢ Rani (2019b)
based on CIVIFSs. The comparative analysis is stated in Table 7 for the data in Table 2.

Under the various kinds of operators, we have gotten a completely consistent optimal
judgment €, by utilizing the particular upsides of the boundary. The best optimal is
&, according to the theory which was proposed by Garg & Rani (2019a) and Garg &
Rani (2019b) based on CIVIFSs and proposed operators. Further, the derived theory of
Aggregation operators (AOs) (Xu, 2007), geometric AOs (Xu ¢ Yager, 2006), information
AOs (Wang & Liu, 2012), Einstein geometric AOs (Wang ¢ Liu, 2012), Hamacher AOs
(Huang, 2014), Dombi AOs (Seikh ¢~ Mandal, 2021) under the IFSs have been failed,
due to various limitations, because these operators or information ware proposed based
on FSs, IFSs, IVIFSs, CFSs, and CIFSs which are the particular cases of the proposed
information and hence they are not able to evaluate our suggestion information (CIVIF
values).

Therefore, it can be inferred that the presented information and MADM model are
very valuable and dominant for handling awkward information.

CONCLUSION

In this manuscript, we combined four main theories such as CIVIF information, Aczel-
Alsina operational laws, averaging/geometric aggregation operators, and the WASPAS
technique. Furthermore, the theory of CIVIF information is the modified version of the
FSs, IESs, CFESs, CIFSs, and IVIFESs, because these are the special cases of the invented
theory. Further, we derived the theory of aggregation operators based on Aczel-Alsina
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operational laws for CIVIF information. The theory of the WAPSAS technique is also
proposed based on Aczel-Alsina aggregation operators for CIVIF information. The
key influence of this assessment is debated below: (1) We initiated the Aczel-Alsina
operational laws and their related results; (2) We initiated the principle of CIVIFAAWA,
CIVIFAAOWA, CIVIFAAHA, CIVIFAAWG, CIVIFAAOWG, and CIVIFAAHG opera-
tors, and illustrated their well-known properties and results; (3) We derived the WASPAS
method for CIVIFSs and evaluated their main steps with the help of some numerical
examples; (4) We demonstrated the MADM strategy under the invented works; (5) We
expressed the supremacy and dominancy of the invented works with the help of sensitive
analysis and geometrical shown of the explored works.

In the future, we concentrate to derive some new ideas such as complex fuzzy superior
Mandelbrot sets, complex intuitionistic fuzzy mandelbrot set, and their extension,
and we try to utilize them in the field of artificial intelligence, machine learning, game
theory, neural networks, and clustering analysis to improve or enhance the quality of the
presented information.
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