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ABSTRACT

A noiseprint is a camera-related artifact that can be extracted from an image to serve as

a powerful tool for several forensic tasks. The noiseprint is built with a deep learning

data-driven approach that is trained to produce unique noise residuals with clear traces

of camera-related artifacts. This data-driven approach results in a complex relationship

that governs the noiseprint with the input image, making it challenging to attack.

This article proposes a novel neural noiseprint transfer framework for noiseprint-

based counter forensics. Given an authentic image and a forged image, the proposed

framework synthesizes a newly generated image that is visually imperceptible to the

forged image, but its noiseprint is very close to the noiseprint of the authentic one,

to make it appear as if it is authentic and thus renders the noiseprint-based forensics

ineffective. Based on deep content and noiseprint representations of the forged and

authentic images, we implement the proposed framework in two different approaches.

The first is an optimization-based approach that synthesizes the generated image

by minimizing the difference between its content representation with the content

representation of the forged image while, at the same time, minimizing the noiseprint

representation difference from the authentic one. The second approach is a noiseprint

injection-based approach, which first trains a novel neural noiseprint-injector network

that can inject the noiseprint of an image into another one. Then, the trained noiseprint-

injector is used to inject the noiseprint from the authentic image into the forged one to

produce the generated image. The proposed approaches are generic and do not require

training for specific images or cameramodels. Both approaches are evaluated on several

datasets against two common forensic tasks: the forgery localization and camera source

identification tasks. In the two tasks, the proposed approaches are able to significantly

reduce several forensic accuracy scores compared with two noiseprint-based forensics

methods while at the same time producing high-fidelity images. On the DSO-1 dataset,

the reduction in the forensic accuracy scores has an average of 75%, while the produced

images have an average PSNR of 31.5 dB and SSIM of 0.9. The source code of the

proposed approaches is available on GitHub (https://github.com/ahmed-elliethy/nnt).
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INTRODUCTION

Digital image forensics is a broad field concerned with applying imaging science and

domain expertise to provide legal aspects for the content of a digital image. Digital image

forensics attracts attention nowadays because of the increasing popularity of digital cameras

and the availability and ease of use of powerful image editing software. Forensic analysts

can employ traces of an image to detect complex forgeries, localize falsified content, and

attribute the image to the camera that acquires it with great accuracy (Ferreira et al., 2020).

There exist a vast amount of different forensic methods. One of the most successful

methods is the method that utilizes imperfections in manufacturing the sensing elements of

a digital camera. These imperfectionsmake the different sensing elements produce different

values when exposed to the same light intensity. Such variations of light sensitivity are

called photo response non-uniformity (PRNU). The PRNU pattern is unique for each

camera, and thus, it can be regarded as a fingerprint for the camera (Chen et al., 2008).

This makes the PRNU pattern serves as a powerful tool for several forensic tasks such

as camera source identification, integrity verification, and authentication (Cao & Kot,

2012; Conotter, Comesana & Perez-Gonzalez, 2015). Additionally, there exists a well-posed

mathematical relation relating an acquired image from a camera with its PRNU (Fridrich,

2009). Specifically, the output of a digital camera’s sensor is mathematically related to

the incident light intensity at each pixel and the PRNU (see Eq. (1) in Fridrich (2009)).

However, this mathematical relation makes PRNU-based forensics vulnerable to several

attacks (Picetti et al., 2022; Raj & Sankar, 2019; Elliethy & Sharma, 2016; García Villalba et

al., 2017).

With the recent success of deep learning in several tasks, a new data-driven approach

is proposed (Cozzolino & Verdoliva, 2020) to extract camera-related artifacts from an

image. These artifacts are named as noiseprint. The noiseprint serves as a fingerprint of

a camera, much like the PRNU. However, the extraction of the noiseprint is performed

differently. Specifically, twin convolutional neural networks (CNNs) are organized into a

Siamese architecture and fed several image patches drawn from two classes. The positive

class represents patches cropped from images at the same sensor spatial location and

acquired by the same camera. The other is the negative class for other patches obtained

from different cameras or locations. The twin CNNs are trained to produce the same

output for patches from the positive class while producing different outputs for negative

patches. After the training is performed, the weights of each CNN are frozen, and the

CNN produces the noiseprint for a given image that contains clear traces of unique

camera artifacts. This makes the noiseprint an ideal tool for several forensic applications

as proposed in Cozzolino Giovanni Poggi Luisa Verdoliva (2019), Marra et al. (2020) and

Cozzolino et al. (2020). Additionally, the noiseprint becomes an essential building block in

many advanced recent forensics algorithms (Mareen et al., 2022; Marra et al., 2020) that

blend the noiseprint with other fingerprints (or features from other domains) to achieve

superior performance in different forensics tasks. Thus, we can treat the noiseprint as a

cornerstone in a family of related algorithms that handle different forensics tasks. Therefore,

proposing a counter-forensics framework for attacking the noiseprint is very important in
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digital forensics in general. However, the complex training of the twin CNN to produce

the noiseprint results in a complex relationship that governs the noiseprint with the input

image. Therefore, attacking the noiseprint-based forensics is challenging.

Recently, generative adversarial networks (GANs) have been successfully applied in

several counter forensic tasks (Stamm & Zhao, 2022). In Chen, Zhao & Stamm (2019), a

GAN is employed to perform cameramodel attacks on a specific cameramodel. Specifically,

a generative network is trained to generate an image with falsified camera model traces,

while the discriminator network is trained to distinguish the generated images from the real

ones. Another counter-forensic method is proposed in Güera et al. (2017) that employs an

adversarial image generator that takes an input image and introduces subtle perturbations

to misclassify the estimated camera model when analyzed by a CNN-based camera model

detector. InWu & Sun (2021), a new GAN-based approach is proposed to deal with traces

left by multiple manipulating operations. In Cozzolino et al. (2021), a GAN is trained to

generate a synthetic image that is visually similar to an input image and inserts a target

camera’s traces in the generated synthetic image. The generated synthetic images deceive

several CNN-based camera model identification detectors, making them believe that the

target camera model took the images. Despite the effectiveness of the GAN-based methods

in fooling the camera model detectors, training of the GAN is required for each camera

model. In other words, for each camera model, a different generator-discriminator couple

must be trained to generate images from the camera model. Additionally, these methods

require a training dataset containing authentic images of the camera model. This makes

these methods less general and limits their applicability in anti-forensic tasks.

To the best of our knowledge, there is no generic approach for attacking the noiseprint-

based forensic methods. In this article, we take the first step in this direction and propose a

novel generic framework for attacking the noiseprint-based forensic methods. Specifically,

the proposed framework successfully synthesizes a new image that is visually similar

to a forged one but simultaneously transfers the noiseprint from an authentic image

into the synthesized image to make it appear as if it is authentic. To do so, we propose

two approaches within this framework. The first is an optimization-based approach

that synthesizes a generated image by minimizing the difference between its content

representation with the content representation of the forged image while, at the same

time, minimizing the noiseprint representation difference with the authentic one. The

second approach is a noiseprint injection-based approach, which first trains a novel neural

noiseprint-injector network that can inject the noiseprint of an image into another one.

Then, the trained noiseprint-injector is used to inject the noiseprint from any authentic

image into the forged image to produce the generated image. The proposed approaches are

generic and do not require training for specific images or camera models. Additionally, we

evaluated the effectiveness of the proposed approaches against two common forensic tasks,

which are the forgery localization and camera source identification tasks. The proposed

approaches are able to significantly reduce several forensic accuracy scores compared with

two noiseprint-based forensics methods (Cozzolino & Verdoliva, 2020;Mareen et al., 2022)

while at the same time producing high-fidelity images.

In summary, the contributions of this article are:
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• To the best of our knowledge, we propose the first generic framework for attacking the

noiseprint-based forensic methods. The proposed framework is general and does not

require training for specific images or camera models.

• Within the proposed framework, we propose two approaches for attacking the

noiseprint-based forensic methods. One formulates and solves an optimization problem,

while the other is based on training a novel neural noiseprint-injector network.

• We present an extensive experimental analysis that evaluates the proposed approaches

in attacking two common forensic tasks: the forgery localization and camera source

identification tasks.

The remainder of this article is organized as follows. ‘Noiseprint-based forensics’ presents

an overview of the noiseprint-based forensic method (Cozzolino & Verdoliva, 2020). ‘Deep

feature representations and proposed neural noiseprint transfer framework’ presents the

proposed counter-forensic approaches. ‘Experimental analysis’ presents our experimental

analysis that evaluates the performance of the proposed approaches on two common

counter-forensic tasks. Finally, we summarize our conclusion in the ‘Conclusion’.

NOISEPRINT-BASED FORENSICS

This section gives an overview of the noiseprint-based forensic method proposed

in Cozzolino & Verdoliva (2020). As shown in Fig. 1, the method can identify and localize

a forgery in a digital image. Specifically, the method first extracts the so-called noiseprint

from the image. Then the method localizes the forgery by searching for inconsistencies

in the noiseprint using the blind localization algorithm proposed in Cozzolino, Poggi &

Verdoliva (2015). As shown in the figure, the noiseprint shows inconsistencies at the most

right, as the boat shown there is copied from another image, i.e., forged.

The noiseprint extraction method in Cozzolino & Verdoliva (2020) employs a CNN-

based image de-noising approach (Zhang et al., 2017) that is originally trained to extract

noise residual from an image. However, the noise residual obtained by the denoiser (Zhang

et al., 2017) is suitable for de-noising applications and can not be directly utilized for

forensic purposes. Therefore, the noiseprint extraction method (Cozzolino & Verdoliva,

2020) trains the denoiser differently so that the output noiseprint differentiates between

the authentic and forged images, as shown in Fig. 1. This training methodology is depicted

in Fig. 2.

Specifically, twin CNN denoisers are organized into a Siamese architecture and fed

several image patches drawn from either positive or negative classes. The positive class

represents the patches from the same camera at the exact sensor-level spatial location. In

contrast, the negative class represents other patches obtained at different locations or from

different camera models. The output of the twin denoisers is presented to a binary classifier

with cross-entropy loss, as shown in Fig. 2. The twin denoisers are trained to minimize

the loss. This encourages the CNN denoiser to generate a similar output for positive

class patches and a different output for negative ones. This modification in the training
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Figure 1 Noiseprint-based image forensic.

Full-size DOI: 10.7717/peerjcs.1359/fig-1

Figure 2 Noiseprint training methodology (Cozzolino & Verdoliva, 2020). Twin CNN denoisers are or-

ganized into a Siamese architecture and trained to minimize the cross-entropy loss of a binary classifier.

This encourages the denoisers to generate a similar output for positive class patches (obtained from the

same camera at the same sensor-level spatial location) and a different output for the negative class patches.

Full-size DOI: 10.7717/peerjcs.1359/fig-2

methodology allows the CNNdenoiser (Zhang et al., 2017) to output the noiseprint, instead

of the original noise residual, to be suitable for forensic applications.

As discussed above, the noiseprint extraction is performed based on complex training

for a CNN denoiser. The extracted noiseprint has a complex mathematical relation that

governs its relationship with the input image. Thus, the noiseprint can not be spoofed by

a simple inversion process or manipulation, as in the case of PRNU.

The following section presents the proposed neural noiseprint transfer framework for

noiseprint counter forensics. With a given forged and authentic image pair, the proposed

framework successfully transfers the noiseprint from the authentic image to a newly

generated image that is imperceptible to the forged image. However, its noiseprint looks

very typical, as if it was obtained authentically. Thus, the proposed framework renders the

noiseprint-based forensics ineffective.

DEEP FEATURE REPRESENTATIONS AND PROPOSED
NEURAL NOISEPRINT TRANSFER FRAMEWORK

In this section, we present the neural noiseprint transfer framework. As shown in Fig. 3,

given an authentic image Ia and a forged image If, the goal of the proposed framework

is to generate a new image Ig that is visually imperceptible to If, but its noiseprint is very

close to the noiseprint of Ia. To do so, we propose two approaches. The first approach is
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Figure 3 Block diagram of the proposed noiseprint counter forensics.Given an authentic image Ia and

a forged image If, the goal of the proposed approaches is to generate a new image Ig that is visually imper-

ceptible to If, but its noiseprint is very close to the noiseprint of Ia.

Full-size DOI: 10.7717/peerjcs.1359/fig-3

an optimization based approach that estimates Ig by minimizing the difference between

its content representation with the content representation of If, while at the same time,

minimizing the noiseprint representation difference with Ia. The second approach is a

noiseprint-injection based approach, which first trains a novel neural noiseprint-injector

network that can inject the noiseprint of an image into another. Then, the trained

noiseprint-injector is used to inject the noiseprint from Ia into If to produce Ig.

To define suitable content and noiseprint representations of an image to be used in the

proposed approaches, we first present a critical observation regarding the visualization of the

deep feature representations of the CNN denoiser (Zhang et al., 2017) that was used for the

noiseprint extraction, as we discussed in ‘Noiseprint-based forensics’. Then, based on this

observation, we present a definition for the image’s content and noiseprint representations

and employ the definitions in the proposed approaches we present afterwords.

Deep feature representations

We studied the deep feature representations of the CNN denoiser (Zhang et al., 2017)

in a similar way that was used before toward the goal of understanding the deep

image representations (Mahendran & Vedaldi, 2015; Lin & Maji, 2016) and for artistic

style transfer approaches (Gatys, Ecker & Bethge, 2016; Johnson, Alahi & Fei-Fei, 2016).

Specifically, we present an input image I to the CNN denoiser and produce the features at

a specific convolutional layer l . Then, we find another image J that its features at the same

convolutional layer best match the features produced for I. Mathematically,

J= arg min
X
‖F l(I)−F l(X)‖

2

2, (1)

where F l(X) is the features produced for image X at the convolutional layer l .

Figure 4 shows the produced images obtained from the features of different convolutional

layers of the CNN denoiser using Eq. (1). As shown in the figure, the images produced from

the features of the early layers tend to preserve the content of the input image. However,

as we go deeper in the network, the produced images tend to lose this content fidelity
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Figure 4 Architecture of the CNN denoiser (Zhang et al., 2017) that was used for the noiseprint ex-

traction. The architecture comprises several convolutional(Conv), batch normalization (BN), and recti-

fied linear unit (ReLU) layers. At several convolutional layers, we visualize the image so that its features at

the convolutional layer best match the features produced for an input image. The image produced from

the features of the early layers tends to preserve the content of the input image, while it starts to show high

similarity with the noiseprint of the input image as we go deeper in the network. Please note that the im-

ages are manipulated for the best visualization. The figure best viewed electronically with large zoom.

Full-size DOI: 10.7717/peerjcs.1359/fig-4

with the input image and start to show high similarity with the noiseprint of the input

image. Thus, the features at the early and end layers can provide content and a noiseprint

representations, respectively, of an image in the feature space.

These content and noiseprint representations are employed in both the optimization-

based approach and the training of the noiseprint-injector. Specifically, we utilize

loss functions that penalize both approaches’ differences in content and noiseprint

representations in the feature space. We choose the L2 loss because it is a convex and

continuously-differentiable function. This allows the gradient-based optimization to find

the global minimum. Please note that the original noiseprint extraction method (Cozzolino

& Verdoliva, 2020) employed cross-entropy loss for the output of the binary classifier

as shown in Fig. 2. This is because the goal is to encourage the Siamese architecture to

generate a similar output for positive class patches and a different output for negative class

patches. However, this is different from the goal of our loss which penalizes the differences

in content and noiseprint deep representations. The following two subsections present the

two proposed approaches in detail.

Proposed optimization based neural noiseprint transfer approach

The proposed optimization-based approach is sketched in Fig. 5. The approach estimates

the generated image Ig as

Ig= arg min
I

ℓ(If,Ia,I), (2)
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Figure 5 Proposed optimization-based approach. The approach finds an image I that minimizes the

content representation loss Lc , the noiseprint representation loss Ln, and the pixel domain loss Lp. Note

that the weights of the original noiseprint extraction network are kept fixed, and the image I is the only

learnable variable we need to optimize.

Full-size DOI: 10.7717/peerjcs.1359/fig-5

where

ℓ(X,Y,Z)=αLc(X,Z)+βLn(Y,Z)+γLp(X,Z) (3)

is a loss function that comprises the following terms:

• The content loss Lc(X,Z)=‖F c(X)−F c(Z)‖22 that penalizes the difference in content

representations of X and Z at convolutional layer c .

• The noiseprint loss Ln(Y,Z)= ‖Fn(Y)−Fn(Z)‖22 that penalizes the difference in

noiseprint representations of Y and Z at convolutional layer n.
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• The pixel lossLp(X,Z)=‖X−Z‖22 that penalizes the difference in pixel domain between

X and Z.

The factors α, β, and γ are weight-balancing factors between the different loss terms.

To solve Eq. (2), several numerical optimization techniques such as stochastic gradient

descent or ADAM (Kingma & Ba, 2015) can be used, but our experiments show that

the latter produces better results. In this case, we need to compute ∇ℓ, which is the

gradient of the loss function ℓ w.r.t. I. Note that the gradient of ℓ involves computing

the differentiation of the deep feature representations obtained from different levels of

the original noiseprint extraction network (Cozzolino & Verdoliva, 2020) as shown in Fig.

5. Luckily, these representations are typically composed of a chain of several linear and

non-linear layers and are still differentiable. Additionally, since the optimization here is

performed solely for the generated image (not the weights of the network), the network

weights are kept fixed with the pre-trained weights from the original noiseprint extraction

network. The detailed implementation of the proposed optimization-based approach is

sketched in Algorithm 1.

Finally, as we solve Eq. (2) to estimate an image, the optimization is time-consuming as

it involves a large number of computations, especially for large-size images. As we detail

next, this problem is mitigated in our other proposed injection-based approach.

Algorithm 1: Proposed optimization-based approach.

Data: If and Ia

Result: Ig

1 Na←Fn(Ia) /* get noiseprint representation of Ia*/ ;

2 Cf←F c(If) /* get content representation of If*/ ;

3 I← 0;

4 Epoch← 0;

5 while Epoch is less than the total required number of epochs do

6 Ni←Fn(I) /* get noiseprint representation of I*/ ;

7 Ci←F c(I) /* get content representation of I*/ ;

8 Lc←α‖Cf−Ci‖
2
2;

9 Ln←β‖Na−Ni‖
2
2;

10 Lp← γ ‖If− I‖
2
2;

11 L←Lc+Ln+Lp;

12 Perform one update step for I using the ADAM optimizer by minimizing L

w.r.t. I;

13 epoch← epoch + 1;

14 Ig← I;

Proposed injection based neural noiseprint transfer approach

Instead of optimizing for the generated image, which is time-consuming for large images,

as we presented in the previous subsection, here we propose another much faster approach.

Specifically, we propose a novel noiseprint-injector neural network that learns how to

transfer the noiseprint of an image into another one. The training of the network is
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1Keep in mind that the actual implemen-

tation is performed on patches, not single

images.

Figure 6 Proposed injection-based neural noiseprint transfer approach. As shown in (A), the

noiseprint-injector is trained to take the content, and noiseprint representations of two different images

X and Y, and produce another image G(F c (X),Fn(Y),w) that has similar content representations and

pixel values with X, while has similar noiseprint representations with Y. In (B), we present the proposed

noiseprint-injector network architecture. Note that the weights of the original noiseprint extraction

network are kept fixed, and the weights of the proposed noiseprint-injector network are the learnable

variables we need to optimize.

Full-size DOI: 10.7717/peerjcs.1359/fig-6

performed offline and completely in an unsupervised fashion. Let the noiseprint-injector

network be denoted asG and parameterized by the parameter vectorw. As shown in Fig. 6A,

the noiseprint-injector is trained to take the content and noiseprint representations of two

different images X and Y, and produce another image that has:

• Similar content representations in the feature space with the first image X.

• Similar values in pixel domain with X.

• Similar noiseprint representations in the feature space of the second image Y.

In other words, the goal of training the noiseprint-injector network is to make the

network learns how to produce an output image that bears the noiseprint of the image

Y while looking visually similar to X. This goal can be achieved by estimating the best

parameter vector w∗ of the noiseprint-injector network that minimizes the loss ℓ defined

in Eq. (3). Mathematically,

w∗= arg min
w

∑

∀X6=Y

ℓ(X,Y,G(F c(X),Fn(Y),w)). (4)

The training procedure of the proposed noiseprint-injector network (shown in Fig. 6A)

comprises the following steps.1 At each learning epoch, we first get the content
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2Note that the number of channels of the

content or noise representations is 64. This

is in accordance with the output of the

convolutional layers in Zhang et al. (2017).

representation of X and the noiseprint representation of Y. Then we perform a forward

pass of the noiseprint-injector network to get the output image. Then, we obtain both the

content and the noiseprint representations of the output image and form the total loss in

Eq. (3) with these representations in addition to the representations extracted from X and

Y. Finally, we perform a backward optimization step for the noiseprint-injector network

using the ADAM optimizer to update the parameters w. The detailed implementation of

these steps is presented in Algorithm 2. After estimating w∗, the noiseprint-injector can

produce the generated image from the authentic and forged images as

Ig=G(F c(If),F
n(Ia),w

∗). (5)

Specifically, we get the content representation of If and the noiseprint representation of Ia

and feed them to the noiseprint-injector network (with its weights fixed to w∗) to produce

Ig.

The architecture of the proposed noiseprint-injector network is shown in Fig. 6B. The

details of the input–output sizes, kernel, and stride lengths of each layer are shown in

Table 1. First, we combine the input content and noise representations in the feature space

by stacking them.2 Because the content and noise representations differ in the dynamic

range, we multiply the noise representations by a factor λ before combing them. Then,

the stacked features are presented to a convolution deconvolution auto-encoder network

with symmetric skip connections. A ReLU activation layer follows each deconvolution

layer. Our noiseprint-injector network is similar to the network proposed in Mao, Shen &

Yang (2016) for image restoration. However, our network here is much shallower, and the

inputs to the network are feature space representations, not an image as in Mao, Shen &

Yang (2016).

We emphasize that the goal of training our noiseprint-injector neural network is to learn

how to transfer the noiseprint of an image into another one. There is no restriction about

the image-pair used for the training. The only requirement of the image pair is to contain

images with different noiseprints so the network can learn how to transfer the noiseprint

from one image into another while generating a high-fidelity image. This requirement of

different noiseprints can be easily fulfilled by just using images obtained from different

cameras or from the same camera but cropped at different spatial locations. This again

enforces our claim that the proposed noiseprint-injection approach is generic and does

not require any sophisticated datasets (that are not easy to obtain) in training. After

training, the generated image is estimated in one forward pass of the network without any

optimization. Therefore, the proposed noiseprint injection-based approach is much faster

than the proposed optimization-based approach discussed in the previous subsection. Also,

as the proposed architecture does not include any size-changing layer (such as pooling),

the architecture works for any input size (a×b). In other words, there is no need to split

the input image into non-overlapping windows with specific sizes to make it suitable for

the network.

Elliethy (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1359 11/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1359


Table 1 Noiseprint-injector network architecture. K stands for kernel size, and S for stride. The archi-

tecture is suitable for any input image size (a×b).

Layer InSize K S OutSize

Conv a×b×128 3 1 a×b×128

DeConv a×b×128 3 1 a×b×128

DeConv ∗ a×b×128 3 1 a×b×1

Algorithm 2: Illustration of the proposed noiseprint-injector network training

procedure.

Data: Dataset that contains images with different noiseprints

Result: Best parameter vector w∗

1 Epoch← 0;

2 Initialize the parameter vector w;

3 while Epoch is less than the total required number of epochs do

4 Get two different images X and Y from the dataset;

5 Cx←F c(X) /* get content representation of X*/ ;

6 Ny←Fn(Y) /* get noiseprint representation of Y*/ ;

7 I ← G(Cx,Ny,w) /* forward pass to generate an output from the proposed

noiseprint-injector network */ ;

8 Ci←F c(I) /* get content representation of I*/ ;

9 Ni←Fn(I) /* get noiseprint representation of I*/ ;

10 Lc←α‖Cx−Ci‖
2
2;

11 Ln←β‖Ny−Ni‖
2
2;

12 Lp← γ ‖X− I‖22;

13 L←Lc+Ln+Lp;

14 Perform one update step for w using the ADAM optimizer by minimizing L

w.r.t. w (backward pass);

15 epoch← epoch + 1;

16 w∗←w;

EXPERIMENTAL ANALYSIS

The effectiveness of the proposed counter-forensic approaches is evaluated through

extensive experimental analysis on attacking two noiseprint-based forensics methods.

The first is the original noiseprint method (Cozzolino & Verdoliva, 2020) which denoted as

OrgNoiseprint, and the other is the method proposed inMareen et al. (2022)which denoted

as Comprint. The OrgNoiseprint method utilizes the noiseprint only in the forensic tasks,

while the Comprint method blends the noiseprint with the compression fingerprints

to boost the performance of the forensic tasks. Additionally, since there are no known

counter-forensic methods for the noiseprint specifically, the proposed counter-forensic

approaches are compared with the generic counter-forensic median filter-based denoising
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approach. In our evaluation, we focus on the attacks for two popular forensic applications:

the forgery localization and the camera model identification applications.

In the rest of this section, we first present the training procedure of the proposed

noiseprint-injector network and the specific values of the parameters used to report our

experimental results for both proposed approaches. Then, we present the two forensic

attacks in detail, showing the used datasets and the evaluation metrics for each attack.

Finally, we discuss our final thoughts at the end of this section.

Training and parameters setting
Optimization based approach

As shown in Fig. 5, the optimization-based approach tries to answer this simple question:

what is the image that has similar content and pixel representations with a forged image

and simultaneously has a similar noiseprint representation with an authentic image? Thus,

the optimization is performed solely for the image, not the network parameters, which

means it works out of the box without training. Specifically, the approach estimates the

generated image byminimizing the loss in Eq. (2) with respect to the generated image. Since

the content and noiseprint deep representations are obtained from different levels of the

original noiseprint extraction network (Cozzolino & Verdoliva, 2020) as indicated in ‘Deep

feature representations’, the functions of these layers are involved in the optimization.

However, the network weights are kept fixed with the pre-trained weights from the original

noiseprint extraction method (Cozzolino & Verdoliva, 2020) because the optimization is

performed solely for the generated image (not the weights).

Training of noiseprint-injector network

As indicated in ‘Proposed injection based neural noiseprint transfer approach’, the only

restriction about image pairs used for the training is that the image pair must contain

images with different noiseprints. This can be easily fulfilled by just using images obtained

from different cameras or obtained from the same camera but cropped at different

spatial locations. The training dataset comprises several image patches cropped at random

locations from different image pairs obtained from the Dresden dataset (Gloe & Böhme,

2010). Specifically, we used a total number of 10,000 patches. The size of each patch

is 256 ×256. The patches are obtained by cropping the images of the Dresden dataset

at random locations. Then, the 10,000 patches are shuffled and then introduced to the

noiseprint-injector neural network for training.

Training settings

The training was performed on an NVIDIA® Tesla® V100 GPU installed in a Ubuntu

machine with 128 GB RAM. The parameters are set as c = 1 and n= 59 for both proposed

approaches in all experiments. The number of epochs is set to 300. We set the hyper-

parameters for the noiseprint injection-based approach as α = 1, β = 1, γ = 10000,

λ= 0.01, and the learning rate = 10−5. The hyper-parameters for the optimization-based

approach are set to be α = 10, β = 1, γ = 10, and the learning rate = 0.006. We used

a smaller sample from our training/test dataset with the grid search approach to select

the best-performing hyper-parameters. The best-performing parameters here mean the
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3The source code of both methods is

publicly available online.

parameters that give the best performance on the test set from the point of view of attacking

the noiseprint-based forensics based on several forensic accuracy scores that are discussed

in the next subsection. Note that only the luminance channel is provided for the proposed

approaches for input color images. The output colored image is obtained by combining

the output luminance channel with the CbCr channels of the input image.

Forgery localization attack

We evaluate the effectiveness of the proposed counter-forensic approaches in attacking

the OrgNoiseprint and the Comprint forgery localization methods.3 Additionally, the

performance of the proposed approaches is compared with the median filtering-based

approach. We used both 3×3 and 5×5 kernel sizes for the median based-approaches.

All counter-forensic approaches under comparison (the proposed and the median filter

approaches) are applied to forged images to produce newly generated images. Then,

the forgery is localized in the generated images by searching for inconsistencies in

their noiseprints using the Splicebuster blind localization algorithm (Cozzolino, Poggi

& Verdoliva, 2015). The output of the localization algorithm is a real-valued heat map that

indicates, for each pixel, the likelihood that it has been forged.

To provide a quantitative evaluation of the counter-forensic approaches under

comparison, we evaluate them in two aspects. First, we need to measure the degree of

visual similarity between the forged images and the generated ones. The PSNR and the

SSIM (Wang et al., 2004) measures are used for this purpose. Second, we treat forgery

localization as a binary classification problem in which pixels of the generated image

can either belong to forged or authentic classes. Then, we employ several measures to

evaluate the effect of the approaches under comparison on the performance of this binary

classification results. All employed measures are built on four fundamental quantities,

which are: (a) TP (true positive): # forged pixels declared forged, TN (true negative): #

authentic pixels declared authentic, (c) FP (false positive): # authentic pixels declared

forged, and (d) FN (false negative): # forged pixels declared authentic. From these four

quantities, we measure the F1 score, Matthews Correlation Coefficient (MCC), and average

precision (AP) as in Cozzolino & Verdoliva (2020). Note that, as in Cozzolino & Verdoliva

(2020), the heat map generated by the localization algorithm is thresholded. Then, the F1

and MCC scores are reported as the maximum over all possible thresholds. Also, the AP

is computed as the area under the precision–recall curve. Three datasets are used in our

evaluation of the counter forgery localization, which are the DSO-1 dataset (de Carvalho et

al., 2013), Decision-Fusion dataset (Fontani et al., 2013), and the Korus dataset (Korus &

Huang, 2017). Each dataset has different characteristics. The DSO-1 dataset is characterized

by large splicings and uncompressed images. The Korus dataset contains raw images (not

JPEG compressed) with several forgeries, such as copy-move and object removals. The

Decision-Fusion dataset mimics a realistic scenario of professional forgery and saving the

forged images in JPEG compressed format. Note that the input to the proposed approaches

is a forged image from a dataset with a corresponding same-size authentic image selected

randomly. In contrast, the median filtering approach’s input is only a forged image.
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Tables 2 and 3 show the quantitative evaluation of the counter-forensic approaches

under comparison in attacking the OrgNoiseprint and the Comprint forgery localization

methods, respectively. Specifically, for each dataset, the average F1 score, MCC score,

and AP values are reported for the proposed optimization-based, the proposed noiseprint

injection-based, and the median filtering-based approaches. We also report the average

PSNR and SSIM between the generated images and the corresponding forged ones. To

verify the consistency of the performance of the proposed approaches w.r.t. the random

selection of the authentic images, the experiment is repeated ten times for each forged

image. As shown in the tables, the proposed approaches significantly reduce the values of

the used metrics (F1, MCC, and AP) compared with the original values associated with

the OrgNoiseprint and the Comprint forgery localization methods. Also, the proposed

approaches produce better metrics values compared with the median filtering-based

approach. However, the median based-approach with 5×5 kernel produces better results

than the one with 3×3 kernel but at the expense of more degradation to the visual fidelity.

At the same time, the generated images by the proposed approaches show high visual

fidelity to the forged ones, as reported by the PSNR and SSIM average values. We can see

that the proposed approaches reduce the forensic accuracy scores for the DSO-1 dataset

by an average of 75% compared with the OrgNoiseprint method while at the same time

keeping an average PSNR of 31.5 dB and SSIM of 0.9.

The numerical results shown in the tables are reinforced by presenting some visual

results of the OrgNoiseprint approach, the proposed optimization-based approach, and

the proposed injection-based approach in Figs. 7, 8, and 9, respectively. In each row in Fig.

7, the columns from left to the right show the forged image, its extracted noiseprint, and its

heat map. Similarly, in each row in Figs. 8 and 9, the columns from left to the right show

the generated image, the noiseprint of the generated image, and its heat map. Below each

row, we report the values of the F1 score, MCC score, and AP value. Again, the reported

values show the effectiveness of the proposed approaches, which significantly reduces the

values of the used metrics (F1, MCC, and AP) compared with the original values associated

with the OrgNoiseprint method.

Please note that despite the median filtering based-approach producing fair results,

the approach is vulnerable to easy detection (Kirchner & Fridrich, 2010; Cao et al., 2010;

Zhu, Gu & Chen, 2022). Based on the median filtering characteristics, several hand-crafted

features are designed and used along with machine learning algorithms for the detection

of the application of the median filter on a digital image. Examples of the employed

features from the filtered image include the gradient between neighboring pixels, the Local

Binary Patterns (Zhu, Gu & Chen, 2022), the Fourier Transform coefficients (Rhee, 2015),

and the singular values (Amanipour & Ghaemmaghami, 2019). In contrast, the proposed

approaches synthesize a newly generated image that is visually imperceptible to a forged

image, but its noiseprint is very close to the noiseprint of an authentic image. Thus, the

proposed approaches do not leave statistical traces that can be detected, as in the case of

the median filtering-based approach.

A final note we want to highlight is that the proposed approaches are designed to

attack the forensics approaches that are built on the utilization of the noiseprint. So, the
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Table 2 Quantitative evaluation of the proposed approaches and the median filtering based approach

in attacking the OrgNoiseprint method (Cozzolino & Verdoliva, 2020). Note that we use the notation

x(y) to report the values in the table, where x represents the value of a metric and y represents the reduc-

tion percentage compared with its original value (before applying the counter-forensic approach). Bold

values represent the highest reduction percentage in each dataset and metric.

Metrics Datasets

DSO-1 Decision-Fusion Korus

F1 0.802 0.520 0.345
OrgNoiseprint

MCC 0.796 0.527 0.347

(Cozzolino & Verdoliva, 2020) AP 0.785 0.445 0.298

F1 0.279 (65%) 0.189 (64%) 0.146 (57%)

Proposed MCC 0.181 (77%) 0.185 (65%) 0.136 (60%)

optimization AP 0.218 (72%) 0.149 (67%) 0.097 (67%)

approach PSNR 31.39 31.47 32.53

SSIM 0.896 0.899 0.906

F1 0.288 (64%) 0.196 (62%) 0.151 (56%)

Proposed MCC 0.176 (77%) 0.180 (66%) 0.140 (59%)

noiseprint-injection AP 0.222 (71%) 0.155 (65%) 0.104 (65%)

approach PSNR 31.52 31.40 31.45

SSIM 0.901 0.891 0.881

F1 0.368 (54%) 0.224 (56%) 0.191 (44%)

Median (3×3) MCC 0.279 (65%) 0.251 (52%) 0.186 (46%)

filtering-based AP 0.304 (61%) 0.168 (62%) 0.145 (51%)

approach PSNR 32.51 32.92 34.06

SSIM 0.942 0.932 0.944

F1 0.315 (60%) 0.217 (58%) 0.178 (48%)

Median (5×5) MCC 0.230 (71%) 0.242 (54%) 0.179 (48%)

filtering-based AP 0.255 (67%) 0.152 (65%) 0.131 (55%)

approach PSNR 30.88 30.63 30.80

SSIM 0.899 0.869 0.866

performance of the proposed approaches is closely tied to the success of the noiseprint-

based forensics approaches. If the original noiseprint-based forensics approaches do not

detect a specific type of forgery, the proposed approaches will not succeed accordingly.

This is clear from the reported results in Tables 2 and 3 for the Korus dataset. The original

noiseprint-based forensics approaches do not behave well for this dataset because the

dataset constitutes raw images (not JPEG compressed) while noiseprintis trained on

JPEG-compressed images and also because the dataset contains several contemporary

forgeries.

Camera model identification attack

Here, we evaluate the effect of the proposed approaches and the median filter

approach on the camera model identification application. Specifically, the IEEE

Forensic Camera Model Identification Challenge hosted on the Kaggle platform

(https://www.kaggle.com/competitions/sp-society-camera-model-identification) is used

for this purpose. Five camera models are used from the dataset: Sony-NEX-7, HTC-1-M7,
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Table 3 Quantitative evaluation of the proposed approaches and the median filtering based approach

in attacking the Comprint method (Mareen et al., 2022). Bold values represent the highest reduction

percentage in each dataset and metric.

Metrics Datasets

DSO-1 Decision-Fusion Korus

F1 0.804 0.551 0.287
Comprint

MCC 0.808 0.549 0.301

(Mareen et al., 2022) AP 0.791 0.456 0.228

F1 0.295 (63%) 0.211 (62%) 0.169 (41%)

Proposed MCC 0.211 (74%) 0.208 (62%) 0.171 (43%)

optimization AP 0.221 (72%) 0.149 (67%) 0.119 (48%)

approach PSNR 32.12 31.53 31.85

SSIM 0.908 0.867 0.893

F1 0.307 (61%) 0.213 (61%) 0.168 (41%)

Proposed MCC 0.215 (73%) 0.206 (62%) 0.167 (45%)

noiseprint-injection AP 0.234 (70%) 0.151 (66%) 0.115 (50%)

approach PSNR 31.42 31.43 31.79

SSIM 0.897 0.861 0.890

F1 0.343 (57%) 0.218 (60%) 0.190 (33%)

Median (3×3) MCC 0.299 (63%) 0.247 (55%) 0.205 (31%)

filtering-based AP 0.291 (63%) 0.157 (65%) 0.144 (36%)

approach PSNR 32.51 32.92 34.06

SSIM 0.942 0.932 0.944

F1 0.306 (61%) 0.215 (61%) 0.178 (37%)

Median (5×5) MCC 0.255 (68%) 0.238 (56%) 0.198 (34%)

filtering-based AP 0.251 (68%) 0.151 (67%) 0.131 (42%)

approach PSNR 30.88 30.63 30.83

SSIM 0.899 0.869 0.866

iPhone-6, LG-Nexus-5x, and Samsung-Galaxy-Note 3. As in Cozzolino & Verdoliva (2020),

100 training images are used from each camera to estimate the noiseprint of the camera

by averaging the noiseprint extracted from each training image. Then, we crop the central

500×500 of 100 different test images from each camera to be used in the identification. A

test image is related to a camera if the Euclidean distance from its noiseprint to the average

noiseprint of the camera is minimum.

As we discussed, the input to our proposed approaches is an image pair. The approaches

produce a generated image visually similar to the first input image while having similar

noiseprint with the second one. Thus, to apply the proposed approaches in this attack, we

form several input image pairs. In each pair, the first image is a test image obtained from a

specific camera in the dataset, while the second is taken at random from the test images of

a different camera.

Figure 10 shows the confusion matrices obtained for the camera model identification

using: (a) the original noiseprint forensics method (Cozzolino & Verdoliva, 2020), (b)

after applying the proposed optimization-based approach, (c) after applying the proposed

noiseprint-injection based approach, and (d) after applying the median-filter based
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Figure 7 Visual results of the OrgNoiseprint approach (Cozzolino & Verdoliva, 2020) for example im-

ages. The columns from left to right show: the forged image, its noiseprint, and its heat-map. The val-

ues of the F1 score, MCC score, and AP value for each image are reported below each row. The figure best

viewed electronically with large zoom.

Full-size DOI: 10.7717/peerjcs.1359/fig-7

approach. As shown in the figure, the proposed approaches can significantly reduce the

accuracy of the confusion matrix, which means that the proposed approaches are very

effective in camera model identification attacks.

Discussion

In this section, we present several discussion points about the proposed approaches.

First, the execution time of the proposed approaches is discussed. Then, the success of the
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Figure 8 Visual results of the proposed optimization-based approach for example images. The

columns from left to right show: the generated image by the proposed optimization-based approach, the

noiseprint of the generated image, and its heat-map. The figure best viewed electronically with large zoom.

Full-size DOI: 10.7717/peerjcs.1359/fig-8

proposed approaches in transferring the noiseprint of the authentic images to the generated

ones is highlighted. Then, the consistency of the performance of the proposed approaches

is verified against the different selections of authentic input images. Then, we highlight the

similarity between the proposed and other existing approaches dedicated to artistic style

transfer. Finally, some future research directions are presented.

Execution time

As presented in the previous two subsections, the proposed approaches are already

evaluated on different datasets. Each dataset contains images with different resolutions,
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Figure 9 Visual results of the proposed noiseprint-injection based approach for example images.

The columns from left to right show: the generated image by the proposed noiseprint-injection based

approach, the noiseprint of the generated image, and its heat-map. The figure best viewed electronically

with large zoom.

Full-size DOI: 10.7717/peerjcs.1359/fig-9

types, and sizes. This reinforces our claim that the proposed approaches are generic and do

not tie to specific images or camera models. Additionally, there is no or little difference in

performance between the proposed optimization-based approach and noiseprint-injection-

based approach. However, the latter is much faster compared to the former. Specifically, for

the exact resolution of newly generated images, the proposed noiseprint-injection-based

approach is about 100× faster than the optimization-based approach in generating the

image. For example, for images with HD (1280 × 720) resolution, the optimization-based
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4We obtained similar results for all other

images but display the plots for ten images

only for better visualization of the plots.

Figure 10 Confusionmatrices were obtained for the camera model identification using: (A) the

original noiseprint forensic method (Cozzolino & Verdoliva, 2020), (B) after applying the proposed

optimization-based approach, (C) after applying the proposed noiseprint -injection based approach,

and (D) after applying the median-filter based approach.

Full-size DOI: 10.7717/peerjcs.1359/fig-10

approach produces the generated image in about 10 min on the hardware specified in the

experimental analysis section. This time can be reduced if the machine is equipped with

more than one GPU. On the other hand, the noiseprint-injection approach produces the

generated image for the same resolution on the same hardware configuration in about

5 seconds. This is because the noiseprint-injection-based approach performs only a simple

forward pass when generating the new image. However, the noiseprint-injection-based

approach requires training the noiseprint-injector network, while the optimization-based

approach works out of the box without any training. In other words, the noiseprint-

injection-based approach shifts the image generation time from the generation phase to

the training phase, saving significant time in generating the new image. Nevertheless, the

execution time of the noiseprint-injection-based approach is not that large compared with

the original noiseprint extraction method, which produces the noiseprint for an image

with HD resolution in about 3 seconds.

Noiseprint transfer

To show the success of the proposed approaches in transferring the noiseprint from the

authentic image to the generated one, we performed the same experiment in Table 2

and recorded the mean squared error of the noiseprint between the generated image and

(a) the forged image (Generated vs. Forged) and (b) the authentic image (Generated vs.

Authentic). Since we repeated the experiments in Table 2 ten times for each forged image,

we used the box plot to represent the obtained (Generated vs. Forged) and (Generated vs.

Authentic) values. These plots are shown for the first ten images4 from the DSO-1 and

Korus datasets in Figs. 11A and 11B, respectively. Also, a solid line is drawn in each figure

to connect the average value of each box for better visualization. The upper and lower rows

of the figures display the results for the optimization and the injection-based approaches,

respectively.

As shown in the figure, the reported (Generated vs. Authentic) values are significantly

lower than the (Generated vs. Forged) values. In other words, the noiseprint similarity

between the generated and authentic images is significant compared with the noiseprint

similarity between the generated images and the original forged ones. This means that the
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Figure 11 Box plots of the mean squared error of the noiseprint between the generated and the forged

images (Generated vs. Forged); and between the generated and the authentic images (Generated vs. Au-

thentic). The plots shown in (A) and (B) are for the first 10 images in the DSO-1 and Korus datasets, re-

spectively. The upper and lower rows display the results for the optimization and the injection based ap-

proaches, respectively.

Full-size DOI: 10.7717/peerjcs.1359/fig-11

proposed approaches successfully transfer the noiseprint from the authentic image to the

forged one.

Performance consistency

Since the input to the proposed approaches is a forged image from a dataset with a

corresponding same-size authentic image selected randomly, we need to verify the

consistency of the performance with the different selections of authentic images. In

Tables 2 and 3, we repeated the experiments ten times for each forged image and reported

the average values. However, the average value does not indicate the spread of the reported

numbers. Here, instead of reporting the average values only, we used the box plot to

represent the obtained F1, MCC, and AP values for the proposed approaches for the first

10 images from the DSO-1 dataset. We show these box plots in Fig. 12.

From the box plots, we can see that the proposed approaches produce consistent (F1,

MCC, AP) values regardless of the used authentic images, as shown from the spread of each
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Figure 12 Box plots for the (A) F1, (B) MCC, and (C) AP values for the first ten images in the DSO-

1 dataset. The upper and lower rows display the results for the optimization and the injection based ap-

proaches, respectively.

Full-size DOI: 10.7717/peerjcs.1359/fig-12

box of the ten images. This is because the approaches successfully transfer the noiseprint

from the authentic image to the generated one, as shown in the previous subsection. This

successful transfer makes the noiseprint of the generated images not contain any traces of

inconsistencies as an indication of forgery. Thus, the forgery can not be localized regardless

of the authentic image used in the transfer, resulting in consistent metric values.

Similarity with artistic style transfer approaches

Another interesting point is that the proposed approaches bear some similarities with the

artistic style transfer approaches (see Jing et al., 2020; Singh et al., 2021 for recent reviews

on this topic). The goal of the artistic neural style transfer (NST) is to transfer a style

from a famous painting style to a natural image. Similar to our proposed approaches, the

goal is to transfer a noiseprint from an authentic image into a forged one. However, the

proposed approaches differ from the NST in many aspects. First, the concern of the NST

is to give a style to the high-level contents of an image, not the total pixels. Therefore,

several NST approaches employ CNN networks designed for image classification, such

as VGG network (Simonyan & Zisserman, 2015), to get the content representation of the

image. This differs from our proposed approaches as we are concerned with all pixels to

give a high-fidelity generated image. Second, traditional NST methods optimize for the

output image as the proposed optimization-based approach, which makes them slow.

More recent studies (Johnson, Alahi & Fei-Fei, 2016; Ulyanov et al., 2016; Ulyanov, Vedaldi

& Lempitsky, 2017) tried to reduce the time required to generate an image with NST by

training a separate CNN for each style image. Although this bears some similarity with our
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noiseprint-injection-based approach, the proposed noiseprint-injection does not perform

the training for each authentic image. We train the noiseprint-injector to be generic and

not tailored to specific images, as discussed in ‘Proposed injection based neural noiseprint

transfer approach’.

Future directions

Finally, in our view, the proposed framework (especially the optimization based approach)

could serve as a flexible image generator that generates newly synthesized images in

accordance with some constraints. Any possible combinations of the constraints can adapt

the proposed framework to existing problems. Thus the strength of the proposed framework

does not lie only in the successful attack of the noiseprint-based forensics, but it opens the

door for other extensions for constrained image generation problems. For example, the

proposed framework in this study may be adapted for attacking other noise-based forensic

methods that are built on patterns such as the PRNU (Chen et al., 2008) and the Dark

Signal Nonuniformity (DSNU) (Berdich & Groza, 2022). The framework could produce

newly synthesized images with similar contents to forged images under the constraints of

satisfying authentic patterns. Another possibility, since the proposed approaches synthesize

a newly generated image, they may show robustness against generic deep-learning-based

fake image detection models such as Singh & Sharma (2021). However, this generalizability

to other patterns or generic models has yet to be thoroughly tested and remains a subject

for future research.

CONCLUSION

This article proposes a novel generic framework for attacking the noiseprint-based forensic

methods. Given forged and authentic images, the proposed framework successfully

synthesizes a new image that is visually similar to the forged image but simultaneously

transfers the noiseprint from the authentic image to the synthesized image to make it

appear as if it is authentic. To perform this, we propose two approaches. The first is an

optimization-based approach that synthesizes the generated image by minimizing the

difference between its content representation with the content representation of the forged

image while, at the same time, minimizing the noiseprint representation difference with

the authentic one. The second approach is a noiseprint injection-based approach, which

first trains a novel neural noiseprint-injector network that can inject the noiseprint of

an image into another one. Then, the trained noiseprint-injector is used to inject the

noiseprint from the authentic image into the forged image to produce the generated image.

The effectiveness of the proposed approaches is evaluated against two common forensic

tasks, the forgery localization, and camera source identification tasks. In the two tasks, the

proposed approaches are able to significantly reduce several forensic accuracy scores by

an average of 75% compared with the noiseprint-based forensic, while at the same time

producing high fidelity images with an average PSNR of 31.5 dB and SSIM of 0.9.
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