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ABSTRACT
Purity is an important factor of maize seed quality that affects yield, and traditional
seed purity identification methods are costly or time-consuming. To achieve rapid
and accurate detection of the purity of maize seeds, a method for identifying maize
seed varieties, using random subspace integrated learning and hyperspectral imaging
technology, was proposed. A hyperspectral image of the maize seed endosperm was
collected to obtain a spectral image cube with a wavelength range of 400∼1,000 nm.
Methods, including Standard Normal Variate (SNV), multiplicative Scatter Correction
(MSC), and Savitzky–Golay First Derivative (SG1) were used to preprocess raw
spectral data. Iteratively retains informative variables (IRIV) and competitive adaptive
reweighted sampling (CARS) were used to reduce the dimensions of the spectral data.
A recognition model of maize seed varieties was established using k-nearest neighbor
(KNN), support vector machine (SVM), line discrimination analysis (LDA) and
decision tree (DT). Among the preprocessingmethods,MSC has the best effect. Among
the dimensionality reduction methods, IRIV has the best performance. Among the
base classifiers, LDA had the highest precision. To improve the precision in identifying
maize seed varieties, LDA was used as the base classifier to establish a random subspace
ensemble learning (RSEL) model. Using MSC-IRIV-RSEL, precision increased from
0.9333 to 0.9556, and the Kappa coefficient increased from 0.9174 to 0.9457. This
study shows that the method based on hyperspectral imaging technology combined
with subspace ensemble learning algorithm is a new method for maize seed purity
recognition.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning
Keywords Hyperspectral, Random subspace ensemble learning, Maize seed, Variety recognition

INTRODUCTION
Seed purity is an important indicator of seed quality (Wang, Wu & Han, 2021). Seed
purity refers to the degree of typical consistency between individual varieties in terms of
characteristics. It is expressed by the percentage of the number of seeds of this variety
in the number of samples for testing this crop. If the purity of the seeds does not meet
the predetermined requirements, there will be an uneven emergence of the maize seeds
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when the seeds are planted with the field. Plants that are not tall enough will not receive
enough sunlight for photosynthesis, which reduces the yield (Jiao et al., 2008) from the
maize. According to related studies, if the purity of the maize seeds is agricultural product
inspection reduced by 1%, It will lead to a reduction of approximately 2 kg/mus of crop
yield. With the widespread application of hybridization technology in the seed industry, the
number of varieties of crop seeds is increasing. At the same time, the degree of similarity
between different varieties is also increasing. Therefore, it is difficult to distinguish them
effectively by relying on human sensory organs. In addition, the phenomena of adulteration
and fraud in the seedmarket occasionally occurs. Harvesting and processing can be prone to
confounding, and some institutions have problems with the purity of maize seeds owing to
irregular management and operations during the breeding process. Precise and quantitative
sowing methods have become mainstream, which has put forward new requirements for
seed purity. Traditional detectionmethods include seedmorphology identification, seedling
identification, field planting, electrophoretic band identification, and molecular marker
identification (Zhang et al., 2012; Ye et al., 2013; Rao et al., 2012). However, these methods
have disadvantages, such as long identification times, high costs, and a destructive effect on
seeds (Huang et al., 2014). Therefore, it is necessary to develop a non-destructive and rapid
method for identifyingmaize seed varieties. Near-infrared spectroscopy andmachine vision
technologies have been widely applied in the field of agricultural product inspection (Gao et
al., 2020). Near-infrared spectroscopy can more accurately detect the internal composition
of a sample, such as protein and moisture (Serrano et al., 2021). Machine vision technology
obtains characteristic information of a sample through image analysis. However near-
infrared spectroscopy is based on the sampling method of rotating and diffuse reflection
integrating spheres (Xie & Guo, 2020). Because the light spot can only be projected over
a limited area, only part of the position information of the sample can be detected,
which causes the spectral data to be less representative (Sun et al., 2021b). Therefore
the detection results sometimes cannot achieve the desired effect. When the appearance
characteristics of the samples are highly similar, machine vision technology cannot achieve
a satisfactory result, because it can only reflect the physical appearance information from
the samples, rather than the internal spatial and chemical information (Huang et al., 2022).
Hyperspectral imaging (HSI) technology is a new nondestructive testing technology that
combines spectral and image information (Zhang, Dai & Cheng, 2021). This technology
has been developed to create an important seed purity detection method. HSI technology
avoids the time-consuming processes involved early maize seed purity identification
methods. These processes are long, expensive and destructive for seeds. HSI technology
does not collect spectral information of a certain point, but obtains the spectral information
of each pixel on the image (Huang et al., 2016). HSI technology combines the advantages
of near-infrared spectroscopy technology and machine vision technology, so it can realize
rapid, non-destructive, and efficient identification of the purity of maize seeds. Several
studies have used HSI technology to identify the purity of seeds of different crops, and
achieved good results, which verified the advantages of HSI technology (Aulia et al., 2022;
Zhou et al., 2021; Bai et al., 2020; Zhou et al., 2020; Xia et al., 2019).
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Ensemble learning is currently attracting considerable attention in the field of machine
learning (Roshan & Asadi, 2021). It is usually better to identify seed purity based on
ensemble learning technology than to use a single classifier (Karegowda, 2014). Wei et al.
(2020) used random subspace ensemble learning to classify and identify different varieties
of soybean seeds. Results showed that the variety identification model based on random
subspace ensemble learning had high precision and stability. The using of random subspace
ensemble learning to identify maize seed varieties has rarely been reported.

To improve the identification of maize seed varieties, SNV, MSC, and SG1 were used to
pre-process the original spectral data. CARS and IRIV were used to extract characteristic
bands of the full-band spectral data. KNN, SVM, LDA, and decision tree were used to
establish maize seed varieties. IRIV has good feature extraction ability for high-dimensional
data, and its use has not yet been reported for maize seed variety identification (Xu et al.,
2021; Sun et al., 2018b;Yun et al., 2014; Sun et al., 2018a). Based on different pre-processing
and characteristic band extraction methods, maize seed variety identification models based
on the base learner are quite different. To improve the effectiveness of variety identification,
an LDA-based random subspace ensemble learning maize variety identification model was
used to achieve the rapid and non-destructive detection of maize seed varieties.

MATERIALS & METHODS
Materials
The seeds used in the experiment were provided by Anhui Longping High-tech Seed
Industry Co. Ltd (Anhui, China). There were 6 varieties used, namely ‘Longping 259’,
‘Longping 206’, ‘Longping 208’, ‘Huawan 263’, ‘Huawan 267’, And ‘Huawan 617’. There
were 60 seeds of each variety used, comprising a total of 360 seeds. The maize seeds of each
variety were of normal quality, and without any treatment or blemishes on the surface as
shown in Fig. 1. Moreover, the morphological character and color of the six varieties of
maize seeds were highly similar, and there was no significant difference between them.
Before the experiment begins, all samples were stored in sealed bags and placed in a
glass dryer. For the rigor and scientificity of the experiment, according to the prescribed
standards of relevant sample collection, the purity ofmaize seeds involved in the experiment
has reached more than 99%. According to the theory of probability and statistics, there
will not be more than one hybrid sample in each variety of maize, so the samples of these
six varieties of maize can be assumed as standard samples without hybrid among varieties.
This study is carried out on this assumption.

Hyperspectral acquisition system
The hyperspectral imaging system and its accessories constitute the hyperspectral data-
acquisition system, as shown in Fig. 2. A GaiaField-Pro-V10 imaging spectroscopy system
(JiangSu Dualix Spectral Imaging Technology Co. Ltd) was used to collect the spectral
data from the maize seeds. The GaiaField-Pro uses a built-in push-broom mode for image
acquisition. Therefore, nomobile platform is required.When collecting hyperspectral data,
the area array detector and the imaging spectrometer are combined, and driven by the

Yang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1354 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1354


Figure 1 Six varieties of maize seeds. (A) Longping 206 Longping 208 Longping 259. (B) Huawan
263 Huawan 267 HuaWan 617.

Full-size DOI: 10.7717/peerjcs.1354/fig-1

scanning control motor. The slit of the imaging spectrometer and the sample placement
platform move relative to each other. The detector collects target information in real time,
and finally stitches together to form a complete picture of the cube data. The spectral band
range collected by this system is 400∼1000 nm. (visible-near-infrared band), with a total
of 176 bands. The exposure time is set to 0.6 ms, the focal length is 30.51 cm, and the
resolution is 3.2 nm. The width of the spectrometer slit is 30 µm, and the length is 9.6 nm.
The scanning speed was 15 s/cube; the detector calibration method and spectral calibration
were used, and the numerical aperture was F/2.8.

Data collection and black and white correction
Before the experiment began, the halogen light source of the hyperspectral data acquisition
system was preheated for 10 min to ensure the stability of the light source. Because the
GaiaField-Pro-V10 hyperspectral imaging system integrates a data acquisition and analysis
processing system, no external computer is required, and only a display is connected
outside the system to display the data acquisition process in real time. Maize seeds of each
variety were placed on a black panel with low reflectivity in six rows and ten columns.
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Figure 2 Hyperspectral imaging acquisition system.
Full-size DOI: 10.7717/peerjcs.1354/fig-2

The black panel can isolate the background, except the maize seeds. This can eliminate the
influence of environmental interference information on the hyperspectral data to a certain
extent, so that only the maize seeds were in the spectral field of view (Sun et al., 2021a).
A total of 360 maize seeds were collected to pick up data, and 60 seeds were collected
each time. the varieties of maize seeds collected each time were the same, so a total of 6
data collections were conducted. During the experiment, to reduce the influence of dark
current and uneven illumination of the hyperspectral acquisition system, black-and-white
correctionwas performedon the hyperspectral image (Zhang, Rao & Ji, 2020). The standard
whiteboards were made of Teflon. The correction formula is given by equation:

R=
Iraw− Idark
Iwhite− Idark

where Iraw is the raw data of maize seed hyperspectral imaging, Idark is the dark current data
(the reflectance is close to 0), Iwhite is thewhiteboard data (the reflectance is close to 1), andR
is the final hyperspectral imaging of maize seeds after black and white correction. The black
and white correction tool was the built-in calibration software of the GaiaField-Pro-V10
imaging spectroscopy system.

Extraction of the region of interest
The data collected by the HSI system contains the image information and spatial data
information of the maize seeds.

Therefore, the original data must be processed to extract the spectral data. The entire
area of a single maize seed in the image is taken as the region of interest (ROI), and then
the average reflectance of all pixels in the ROI is calculated as the spectral value of each
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Figure 3 ROI extraction steps of maize seeds. (A) Hyperspectral image. (B) Binarized image. (C) Region
of interest. (D) The original spectrum.

Full-size DOI: 10.7717/peerjcs.1354/fig-3

maize seed (Qi et al., 2017). Its value can be calculated using the following equation:

A=

∑176
i=1
∑m

j=1Aij

m
m, which is the number of all pixels in the ROI area, and Aij is the spectral value of the i-th
pixel in the j-th band.

The threshold method was used to remove the background region (Thakur & Madaan,
2014). In line with the difference in the gray value between the ROI and the background
area, a threshold was set for the gray image. The pixel with a gray value greater than the
threshold was set to 1. Otherwise, it was set to 0, and the gray image was converted into a
binarized image. The binarized image was then applied to the original image to separate
the maize seed hyperspectral image from the background area. The selection of the ROI
area was completed using MATLAB R2019b software. After many experiments, when
the threshold was set to 0.1, the background area could be effectively separated with the
condition that the integrity of the ROI could be guaranteed. The spectral average of all the
pixels in the image was taken as the spectral data for the region. This process is illustrated
in Fig. 3.
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Preprocessing of spectral data
MSC, SNV, and SG1were used to preprocess the original spectral data. Eliminating
interference signals such as background noise, baseline drift, and stray light during spectral
acquisition reduced the complexity and improved the interpretability of the model (Wang
et al., 2018). After optimizing the selection of parameters, the order of derivation in the
SG1 algorithm was set to 1, the number of window points was set to 5, and the degree of
the polynomial was set to 2.

Modeling based on base classifiers
CARS and IRIV were used to extract characteristic wavelengths to reduce computational
consumption and increase computational speed, eliminate irrelevant or nonlinear variables,
and obtain a model with strong predictive ability and good robustness (Lu et al., 2018).

IRIV is a method of selecting feature variables based on a binary matrix shuffling filter
(BMSF) (Liang et al., 2014). According to the degree of contribution to the model, the
variables were divided into strong information variables, weak information variables,
no information variables, and interference information variables. After many iterations,
the non-informative variables and interfering information variables were removed. The
strong and weak information variables were retained, the weak information variables were
eliminated in reverse, and the remaining strong information variables were used as feature
variables (Song et al., 2019).

CARS combines Monte Carlo sampling with a partial least-squares regression algorithm,
and is a common featurewavelength selectionmethod (Jiang et al., 2021). The characteristic
wavelength extraction process is as follows: (1) the Monte Carlo sampling method is first
used to select the correction set. (2) A partial least squares (PLS) model is established
based on the selected correction set. (3) The absolute value of the regression coefficient
is calculated, the variables with large absolute values are retained, and the exponential
decay function is used to determine the number of variables to be eliminated. (4) A PLS
cross-validation model is established, and the subset corresponding to the PLS model with
the smallest cross-validation root mean square error is selected, which is the required
characteristic wavelength (Huan et al., 2021).

In IRIV, the maximum number of principal components was set to 40, and the number
of cross-validations was 11. In CARS, after MSC preprocessing of the original spectrum
data in CARS, the maximum number of principal components was set to 25. Then, a
10-fold cross-validation was used to establish the PLS model, with a Monte Carlo sampling
frequency of 80.

The selected classifiers were decision tree (DT), line discriminant analysis (LDA), support
vector machines (SVM), and k-nearest neighbor (KNN). In DT, the maximum number of
splits is set to 20, and the splitting criterion is the Gini diversity index. In SVM the kernel
function is linear, the frame constraint is set to 3, and the kernel scale is set to automatic.
In KNN, the number of neighbors is set to 20, the distance measure is Minkowski, and the
distance weight is equal to the distance.

The KS method (Kennard–Stone) was used to divide the sample set into training and
prediction sets. The Euclidean distance formula was used to calculate the distance between
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each two samples, before dividing he two samples with the longest distance into the training
set. The distances were then calculated between the remaining samples and the two samples
that were selected. The distances are the smallest and the largest sample is included in the
training set. This step is then repeated until the number of training set samples reaches a
predetermined value (Luo et al., 2021). The distance calculation formula is shown in the
following equation (Li et al., 2014).

dx
(
p,q
)
=

√√√√ N∑
j=1

[xp
(
j
)
−xq

(
j
)
]2

where dx(p,q) is the Euclidean distance between two samples p and q, p,q ∈[1,N ].

Modeling based on random subspace ensemble learning
ROI processing was performed on the hyperspectral images of the maize seeds, and the
hyperspectral data for each maize seed were then extracted. The original spectral data
were preprocessed using SNV, SG1and MSC. The spectral characteristic wavelengths were
extracted using the CARS and IRIV methods. Using LDA, DT, SVM and KNN-based
classifiers, an identification model for the different maize seed varieties was established. To
further improve the precision in identifying different maize seed varieties, an integrated
learning method was used that was based on a random subspace to improve the robustness
and generalization ability of the maize seed identification model. The flow of the random
subspace integration method is illustrated in Fig. 4.
The random subspace ensemble learning used in this study was used to generate N train-

ing subsets with the same number of samples in the training set. These are low-dimensional
feature subspaces, but the dimensionality was lower than that of the training set data. The
data from the N low-dimensional data subspaces were inputted into the base learner for
training (Zhou, 2012; Zhang & Ma, 2012). In line with the performance of the base learner,
it was decided whether to use the base classifier, which was the combination strategy
of the base learner. The combined strategy used in this study was the weighted average
method. The random subspace reduces correlation of each base learner using a random
subset of features instead of all the features used to train each base learner (Ho, 1998).

RESULTS AND DISCUSSION
Spectral acquisition and raw spectral analysis
The spectral band ranged from 400 to 1,000 nm, with a total of 176 wavelengths. At both
ends of the spectral wavelength range, the spectral curve was flat and with no obvious
fluctuation. This indicates that the influence of the interference information in the system
and in the environment on the spectral data is negligible, which therefore preserves all the
wavelengths. The original spectral curve is shown in Fig. 5.
Figure 6 shows the average spectral curves for the sixmaize seed varieties. The trend in the

average spectral curve for the six maize seed varieties shown in Figs. 3–2 is predominantly
consistent. It is difficult to identify the maize varieties on the trend of the curve, but in
the wavelength range of 668–735 nm, the six maize varieties can be differentiated. The
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Figure 4 Random subspace ensemble learning flow chart.
Full-size DOI: 10.7717/peerjcs.1354/fig-4

distance between the spectral curves reaches the maximum value, so the difference in
spectral reflectance for the six maize seed varieties is the most pronounced. The order
from high to low for the spectral reflectance is ‘‘Huawan 267’’ (code-named 5), ‘‘Longping
206’’ (code-named 2), ‘‘Huawan 263’’ (code-named 3), ‘‘Longping 208’’ (code-named 6),
‘‘Huawan 617’’ (code-named 4), ‘‘Longping 259’’ (code-named 1), which may be caused
by the different contents of protein, starch, oil and water in them. For maize seeds, the
spectral reflectance at 410–500 nm is proportional to the protein content, and the presence
of starch, oil and other compounds leads to the absorption peak at 500–735 nm. The
peak near 980nm shows the central absorption wavelength of the second overtone of
O-H stretching, which is caused by the presence of water and carbohydrates, or by the
second overtone of OAH stretching due to the interaction between water and protein. The
spectral curves for the maize varieties code-named ‘‘2’’ and ‘‘3’’ are the closest, with the
longitudinal distance between the two spectral curves being the smallest. It can, therefore,
be inferred that these two varieties are similar. If the seeds of these two varieties are mixed
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Figure 5 Original spectrum of maize seeds of six varieties.
Full-size DOI: 10.7717/peerjcs.1354/fig-5

together, it will likely be difficult to distinguish them with the naked eye. Different maize
seed varieties have varying seed vigor, germination vigor, disease resistance, and lodging
resistance. If the two maize seed varieties are mixed together, sowing may lead to uneven
seedling emergence. Dwarf seedlings will have insufficient photosynthesis due to lack of
light, ultimately affecting the crop harvest. In addition, in the spectral curves of the maize
seeds code-named ‘‘6’’ and ‘‘4’’, the vertical distance between them is also relatively close.
This may also bring certain difficulties in identifying specific maize of varieties. Therefore,
the identification ofmaize varieties with the techniques developed in this study is important
and plays a key role in promoting the development of maize seed identification.

Spectral data preprocessing and feature wavelength extraction
The raw spectral data were preprocessed using MSC, SNV, and SG1, as shown in Fig. 7.
There was no changes in the peak position of the curve after the MSC pretreatment. The
spectral curve from after the SNV pretreatment was very similar to the position of the curve
after the MSC pretreatment. After the SG1 pre-treatment, there was a significant increase
in the absorption peaks of the spectral curves.

Feature variable extraction was performed on the pre-processed spectral data using
CARS and IRIV. In IRIV, the maximum principal component was set to 40 and the
number of cross-validation was 11; In CARS, the maximum principal component was 25,
the number of Monte Carlo samples is 80, and the PLS model is established by 10-fold
cross-validation method. When CARS was used to extract features from the preprocessed
data from the MSC, SNV, and SG1, the number of selected feature variables were 71, 60,
and 71, respectively. When using IRIV to extract features from the preprocessed data from
the MSC, SNV, and SG1, the numbers of the selected feature variables were 69, 73 and 64,
respectively.
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Figure 6 Average spectrum of maize seeds from six varieties.
Full-size DOI: 10.7717/peerjcs.1354/fig-6

Maize variety identification by base classifier
After denoising and dimensionality reduction of the original spectral data from the maize
seeds using three preprocessing methods and two feature variable extraction methods,
namely decision tree, KNN, SVM and LDA, variety identification models were established.
The classification accuracies of the training and test sets are listed in Table 1. Before
spectral data feature extraction had been performed, classification modeling precision
based on the decision tree was the lowest, and the classification precision based on the
LDA was the highest. After feature variable extraction, the classification precision of
the LDA significantly improved. The accuracies of the training and prediction sets were
0.9626 and 0.9333, respectively. Based on the SVM modeling, the degree of change in
the precision of variety identification was less pronounced both before and after feature
extraction. The classification precision based on KNN and DT was lower than 0.55 before
and after the feature variable extraction. This indicates that using a single classifier to
model maize seed varieties is prone to low levels of precision. Compared with other
preprocessing methods, the MSC-based variety identification model has a higher precision
rate. Therefore, for subsequent variety identifications, the MSC method was used to
improve the prediction precision. The identification of maize varieties based on the base
classifier and the identification of maize seed varieties based on random subspace ensemble
learning in this study were both looped 10 times in MATLAB R2019b. The average value
was taken at the end to reduce the random error of the experimental results (Jang et al.,
2022).
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Figure 7 Preprocessing results of raw spectral data. (A) Spectra after MSC pretreatment. (B) Spectra af-
ter SNV pretreatment. (C) Spectra after SG1 pretreatment.

Full-size DOI: 10.7717/peerjcs.1354/fig-7

Table 1 Identification results of maize varieties based on the base classifier.

Dimensionality reductionmethod NONE CARS IRIV

Classifier Preprocessing Training set Prediction set Training set prediction set Training set Prediction set

MSC 0.4948 0.4667 0.5122 0.4333 0.5296 0.4111
SNV 0.5156 0.4667 0.4944 0.4222 0.5226 0.4222DT

SG1 0.3904 0.3444 0.3337 0.4111 0.3893 0.3667
MSC 0.5563 0.4556 0.5256 0.4222 0.5326 0.44440
SNV 0.5378 0.4667 0.5148 0.4444 0.5389 0.4333KNN

SG1 0.4196 0.3444 0.4011 0.3444 0.3652 0.3222
MSC 0.7730 0.7333 0.7769 0.7444 0.766 0.7222
SNV 0.7570 0.7444 0.7567 0.7222 0.7578 0.7333SVM

SG1 0.7378 0.6222 0.7093 0.6333 0.7159 0.6444
MSC 0.7881 0.8667 0.9617 0.9111 0.9626 0.9333
SNV 0.7859 0.8667 0.9530 0.9111 0.9282 0.9333LDA

SG1 0.7133 0.8111 0.9341 0.9111 0.8889 0.9333

Maize variety discrimination based on ensemble learning in random
subspace
When using random subspace ensemble learning the first step is to determine the ensemble
scale, that is, the feature dimension of the constructed subspace and the number of
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Table 2 The discrimination precision of the base classifier and the subspace dimension on the quality of maize seeds.

Number of
base classifiers

Subspace dimension

20 30 40 50 60 70 80 90 100

15 0.8467 0.8989 0.9211 0.9333 0.9444 0.9422 0.9456 0.9400 0.9378
20 0.8500 0.8956 0.9200 0.9378 0.9456 0.9456 0.9467 0.9322 0.9367
25 0.8489 0.9044 0.9178 0.9400 0.9411 0.9422 0.9378 0.9400 0.9367
30 0.8478 0.8967 0.9200 0.9411 0.9444 0.9433 0.9400 0.9300 0.9367
35 0.8544 0.8944 0.9222 0.9378 0.9422 0.9456 0.9400 0.9322 0.9378
40 0.8567 0.9000 0.9167 0.9378 0.9422 0.9444 0.9389 0.9356 0.9378

base classifiers. The combination of an appropriate number of feature dimensions and
the number of base classifiers can improve the prediction efficiency while ensuring the
prediction effect. When the number of base classifiers is determined, different feature
dimensions have different levels of precision in identifying maize seed varieties (Ji et al.,
2011). When modeling the full-band spectral data based on random subspace ensemble
learning, 15, 20, 25, 30, 35, and 40 groups of six base classifiers were selected to explore the
range of different feature dimensions in the range of 20∼100. The identification results are
presented in Table 2. Table 2 shows that when the number of base classifiers is constant, the
precision of variety identification increases with the subspace feature dimension. From the
longitudinal observation of the table, when the subspace dimension is constant, there is no
clear linear relationship between the precision of breed identification and the increase in
the number of classifiers. However, there is an optimal combination of the number of base
classifiers and the subspace dimension. When the subspace dimension increased to 80∼90,
the precision of the variety identification had a downward trend. The combination of the
number of base classifiers and the dimension of the subspace has a certain influence on the
identification precision. Therefore, it is not the case that the greater the dimension of the
subspace and the number of base learners, the higher the precision of breed identification,
and the number of the two should be adjusted. This means that the variety identification
effect of the random subspace can reach the best state. By adjusting the number of base
classifiers and the dimension of the subspace features many times, the number of base
classifiers was finally determined to be 25, with the dimension of the subspace being 63.
Based on these two parameters, the maize seed varieties were identified. The precision of
the training set was 0.9726, and the precision of the prediction set was 0.9467.

After the preprocessed spectral data are modeled by the random subspace ensemble
learning model of maize varieties, the number of basic learners and the subspace dimension
of the random subspace ensemble learning are required to be re-determined because the
dimension of the spectral data after feature extraction is reduced to 71. The number of
learners was determined as six groups of 15, 20, 25, 30, 35, and 40, and the subspace
dimension was adjusted at intervals of five within the range of 20–65, as shown in Table
3. Similar to the trend of the precision rate change based on full-band modeling, when the
number of basic learners is constant, the precision rate of breed identification increases
with an increase in the subspace dimension rate slightly. After several parameter selections,
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Table 3 Identification precision of maize seed varieties based on base classifier and subspace dimension after CARS.

Number of
base classifiers

Subspace dimension

20 25 30 35 40 45 50 55 60 65

15 0.8256 0.8778 0.9044 0.9033 0.9078 0.9144 0.9222 0.9167 0.9189 0.9122
20 0.8489 0.8778 0.9022 0.9078 0.9111 0.9178 0.9200 0.9133 0.9144 0.9122
25 0.8356 0.8756 0.9000 0.9033 0.9033 0.9156 0.9211 0.9167 0.9122 0.9111
30 0.8478 0.8767 0.9022 0.9100 0.9089 0.9167 0.9189 0.9156 0.9111 0.9111
35 0.8500 0.8882 0.9044 0.8989 0.9044 0.9122 0.9189 0.9122 0.9178 0.9122
40 0.8433 0.8833 0.9067 0.9022 0.9033 0.9133 0.9200 0.9178 0.9133 0.9111

Table 4 Identification precision of maize seed varieties based on base classifier and subspace dimension after IRIV.

Number of
base classifiers

Subspace dimension

20 25 30 35 40 45 50 55 60 65

15 0.8678 0.8944 0.9144 0.9300 0.9411 0.9511 0.9544 0.9556 0.9489 0.9367
20 0.8767 0.8978 0.9100 0.9233 0.9444 0.9522 0.9556 0.9533 0.9533 0.9389
25 0.8882 0.8989 0.9122 0.9278 0.9411 0.9533 0.9556 0.9522 0.9500 0.9400
30 0.8800 0.8956 0.9111 0.9244 0.9400 0.9489 0.9556 0.9556 0.9533 0.9411
35 0.8789 0.8978 0.9100 0.9233 0.9433 0.9533 0.9544 0.9556 0.9533 0.9344
40 0.8767 0.8989 0.9111 0.9233 0.9411 0.9522 0.9556 0.9556 0.9544 0.9389

the number of base learners was 19, and the subspace dimension was 53. Based on these
two parameters, the training set precision of the random subspace ensemble learning
was 0.9644 and the prediction set precision was 0.9222. based on the same method of
selecting the number of basic learners and the dimension of the subspace for the spectral
data processed by CARS dimensionality reduction, two parameters were selected for the
spectral data preprocessed by IRIV, and the precision of maize seed variety identification
was obtained. The highest precision rate was 0.9556, which was 3.23% higher than that of
the CARS feature extraction method, as shown in Table 4. Finally, it was determined that
the number of base classifiers was 33 and the dimension of the subspace features was 53.
The training set precision rate of the random subspace ensemble learning based on these
two parameters was 0.9644, and the prediction set precision rate was 0.9556.

It can be seen from Table 1 that the SVM and LDA have a higher recognition precision
of maize seed varieties by the base classifier. Therefore, the results for varietal recognition
of maize seeds using random subspace ensemble learning were compared with those of
the SVM and the LDA. The two parameters that were compared were breed identification
precision and the Kappa coefficient. The Kappa coefficient is a measure of classification
precision based on the confusion matrix. It typically evaluates a value between 0 and 1.
Figures 8 and 9 show that the discrimination results based on the SVM are not significantly
different both before and after the dimension reduction of the spectral data. Based on
the identification results of the LDA, after the spectral data dimensionality reduction,
the precision and the Kappa coefficient significantly improved. For the classification
results for spatial ensemble learning, after IRIV dimensionality reduction processing, the
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Figure 8 Kappa coefficients for different modeling methods.
Full-size DOI: 10.7717/peerjcs.1354/fig-8

Figure 9 Modeling precision of different modeling methods.
Full-size DOI: 10.7717/peerjcs.1354/fig-9

discrimination precision and Kappa coefficient improved. The two parameters decreased
slightly after CARS processing. Overall, the use of random subspace ensemble learning
for cultivar identification for six maize seed varieties had higher precision and Kappa
coefficient than the base classifier.

CONCLUSION
Using hyperspectral imaging technology combined with random subspace ensemble
learning, classification and identification were undertaken for six maize seed varieties. The
hyperspectral image of the endosperm side of maize seeds was collected, the ROI area
of the maize seeds was extracted using the threshold method in MATLAB software, and
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the average spectral information of the seeds was extracted. MSC, SNV and SG1 were
used to preprocess the original spectral data, and then the characteristic wavelengths were
extracted using CARS and IRIV. The classification effects of DT, LDA, SVM and KNNwere
compared, the MSC preprocessing method and the LDA method were selected. A base
classifier was used for ensemble learning with LDA as a random subspace. Results show
that this model based on maize-MSC-IRIV-RSEL can improve the classification precision
of the base learner from 0.9333 to 0.9556, and the Kappa coefficient from 0.9174 to 0.9457.
Results show that the use of hyperspectral imaging technology combined with stochastic
subspace ensemble learning can further improve the classification of maize seed varieties
and achieve rapid non-destructive detection of maize seed purity.

The subspace ensemble learning algorithm used in this study can fuse multiple base
classifiers into a strong classifier, which can enhance the precision and stability of the
maize seed purity identification model. However, there are some areas that need to be
improved. Firstly, not all subspace data can contribute to the improvement of the final
results. Subsequent researchers can develop more efficient algorithms to find subspaces
that can improve the results. Secondly, the base learner used in this study is LDA, which has
achieved good results. Subsequent researchers can find better base classifiers to improve
the recognition effect of maize seed purity.

ACKNOWLEDGEMENTS
The author would like to thank the maize sample provider, and everyone that helped with
this study.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was financially supported by the Sci-Tech Innovation 2030 Agenda (No.
2022ZD0115701). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Sci-Tech Innovation 2030 Agenda: 2022ZD0115701.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Huan Yang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Cheng Wang, Han Zhang, Ya’nan Zhou and Bin Luo conceived and designed the
experiments, analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Yang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1354 16/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1354


Data Availability
The following information was supplied regarding data availability:

The raw data and code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1354#supplemental-information.

REFERENCES
Aulia R, Kim Y, Amanah HZ, Andi AMA, KimH, KimH, LeeW, Kim K, Baek J, Cho

BK. 2022. Non-destructive prediction of protein contents of soybean seeds using
near-infrared hyperspectral imaging. Infrared Physics & Technology 127:104365
DOI 10.1016/j.infrared.2022.104365.

Bai X, Zhang C, Xiao Q, He Y, Bao Y. 2020. Application of near-infrared hyperspectral
imaging to identify a variety of silage maize seeds and common maize seeds. RSC
Advances 10(20):11707–11715 DOI 10.1039/C9RA11047J.

Gao TY, Zhang SJ, Sun P, Zhao HM, Sun HX. 2020. Variety classification of walnut
based on X-ray image. Food Science and Technology 45(11):284–288.

Ho TK. 1998. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8):832–844
DOI 10.1109/34.709601.

Huan K, Chen X, Song X, DongW. 2021. Variable selection in near-infrared spectra: ap-
plication to quantitative non-destructive determination of protein content in wheat.
Infrared Physics & Technology 119:103937 DOI 10.1016/j.infrared.2021.103937.

Huang HP, Hu XJ, Tian JP, Peng XH, Luo HB, Huang D, Zheng J, Wang H. 2022. Rapid
and nondestructive determination of sorghum purity combined with deep forest
and near-infrared hyperspectral imaging. Food Chemistry 377:131980–131990
DOI 10.1016/j.foodchem.2021.131980.

HuangM, Tang J, Yang B, Zhu Q. 2016. Classification of maize seeds of different years
based on hyperspectral imaging and model updating. Computers and Electronics in
Agriculture 122:139–145 DOI 10.1016/j.compag.2016.01.029.

HuangM,Wang QG, ZhangM, Zhu QB. 2014. Prediction of color and moisture content
for vegetable soybean during drying using hyperspectral imaging technology. Journal
of Food Engineering 128:24–30 DOI 10.1016/j.jfoodeng.2013.12.008.

Jang D, SohngW, Cha K, Chung H. 2022. A weighted twin support vector machine as
a potential discriminant analysis tool and evaluation of its performance for near-
infrared spectroscopic discrimination of the geographical origins of diverse agricul-
tural products. Talanta 237:122973–122973 DOI 10.1016/j.talanta.2021.122973.

Ji SW, Li XD, Tang JY, Shi YB. 2011. Subspace ensemble method for analog circuit fault
diagnosis. Computer Engineering 37(17):291–293.

Jiang HZ, Ye LC, Li XP, Shi MH. 2021. Variety Identification of Chinese walnuts using
hyperspectral imaging combined with chemometrics. Applied Sciences 11(19):1–15.

Yang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1354 17/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1354#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1354#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1354#supplemental-information
http://dx.doi.org/10.1016/j.infrared.2022.104365
http://dx.doi.org/10.1039/C9RA11047J
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1016/j.infrared.2021.103937
http://dx.doi.org/10.1016/j.foodchem.2021.131980
http://dx.doi.org/10.1016/j.compag.2016.01.029
http://dx.doi.org/10.1016/j.jfoodeng.2013.12.008
http://dx.doi.org/10.1016/j.talanta.2021.122973
http://dx.doi.org/10.7717/peerj-cs.1354


Jiao NY, Zhao C, Ning TY, Hou LT, Fu GZ, Li ZJ, ChenMC. 2008. Effects of maize-
peanut intercropping on economic yield and light response of photosynthesis.
Transactions of Chinese Journal of Applied Ecology 19(05):981–985.

Karegowda AG. 2014. Enhanced categorization of wheat seeds by integrating ensemble
methods with decision tree identified significant features. International Journal of
Data Mining & Emerging Technologies 4(1):10–15
DOI 10.5958/2249-3220.2014.00016.0.

Li S, Zhang X, Li J, Shan Y, Huang Z. 2014. Non-destructive detecting fructose and
glucose content of honey with Raman spectroscopy. Transactions of the Chinese
Society of Agricultural Engineering (Transactions of the CSAE) 30(6):249–255.

Liang K, Liu QX, Pan LQ, ShenMX. 2014. Detection of soluble solids content in
‘Korla fragrant pear’ based on hyperspectral imagingand CARS-IRIV algorithm.
Transactions of the Journal of Nanjing Agricultural University 41(04):760–766.

Lu B, Sun J, Yang N,Wu XH, Zhou X, Shen JF. 2018. Quantitative detection of moisture
content in rice seeds based on hyperspectral technique. Journal of Food Process
Engineering 41(8):1–7.

Luo X, Xu L, Huang P,Wang Y, Liu J, Hu Y,Wang P, Kang ZL. 2021. Nondestructive
testing model of tea polyphenols based on hyperspectral technology combined with
chemometric methods. Agriculture 11(7):1–15.

Qi HJ, Jin X, Liu Z, Dedo IM, Li SW. 2017. Predicting sandy soil moisture content with
hyperspectral imaging. International Journal of Agricultural and Biological Engineering
10(6):175–183 DOI 10.25165/j.ijabe.20171006.2614.

Rao PS, Bharathi M, Reddy KB, Keshavulu K, Rao LS, Neeraja CN. 2012. Varietal
identification in rice (Oryza sativa) through chemical tests and gel electrophoresis
of soluble seed proteins. Indian Journal of Agricultural Sciences 82(4):304–311.

Roshan S, Asadi S. 2021. Development of ensemble learning classification with
density peak decomposition-based evolutionary multi-objective optimiza-
tion. International Journal of Machine Learning and Cybernetics 12:1737–1751
DOI 10.1007/s13042-020-01271-8.

Serrano J, Shahidian S, Carapau Â, Rato AE. 2021. Near-Infrared Spectroscopy (NIRS)
and optical sensors for estimating protein and fiber in dryland mediterranean
pastures. AgriEngineering 3(1):73–91 DOI 10.3390/agriengineering3010005.

Song HL, Yan YF, Song ZH, Sun JL, Li YD, Li FD. 2019. Nondestructive testing model
for maize grain moisture content established by screening dielectric parameters and
variables. Transactions of the Chinese Society of Agricultural Engineering (Transactions
of the CSAE) 35:262–272.

Sun J, Li YT,Wu XH, Dai CX, Chen Y. 2018a. SSC prediction of cherry tomatoes based
on IRIV-CS-SVR model and near infrared reflectance spectroscopy. Journal of Food
Process Engineering 41(8):1–7.

Sun J, Mo NY, Dai CX, Chen Y, Yang N, Tang Y. 2018b. Detection of moisture content
of tomato leaves based on dielectric properties and IRIV-GWO-SVR algorithm.
Transactions of the Chinese Society of Agricultural Engineering (Transactions of the
CSAE) 34(14):188–195.

Yang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1354 18/20

https://peerj.com
http://dx.doi.org/10.5958/2249-3220.2014.00016.0
http://dx.doi.org/10.25165/j.ijabe.20171006.2614
http://dx.doi.org/10.1007/s13042-020-01271-8
http://dx.doi.org/10.3390/agriengineering3010005
http://dx.doi.org/10.7717/peerj-cs.1354


Sun J, Zhang L, Zhou X,Wu XH, Shen JF, Dai CX. 2021a. Detection of rice seed vigor
level by using deep feature of hyperspectral images. Transactions of the Chinese
Society of Agricultural Engineering (Transactions of the CSAE) 37(14):171–178.

Sun J, Zhang L, Zhou X, Yao K, Tian Y, Nirere A. 2021b. A method of information
fusion for identification of rice seed varieties based on hyperspectral imaging
technology. Journal of Food Process Engineering 44(9):1–13.

Thakur P, Madaan N. 2014. A survey of image segmentation techniques. International
Journal of Research in Computer Applications and Robotics 2(4):158–165.

Wang D,Wu JZ, Han P. 2021. Progress in research on rapid and non-destructive detec-
tion of seed quality based on spectroscopy and imaging technology. Spectroscopy and
Spectral Analysis 41(1):52–59.

Wang H,Wang K,Wang B, Lv Y, Tao X, Zhang X, TanM. 2018. Integration of artificial
neural network modeling and hyperspectral data preprocessing for discrimination of
colla corii asini adulteration. Journal of Food Quality 2018:1–11.

Wei Y, Li X, Pan X, Li L. 2020. Nondestructive classification of soybean seed varieties
by hyperspectral imaging and ensemble machine learning algorithms. Sensors
20(23):1–12 DOI 10.1109/JSEN.2020.3014328.

Xia C, Yang S, HuangM, Zhu Q, Guo Y, Qin J. 2019.Maize seed classification using
hyperspectral image coupled with multi-linear discriminant analysis. Infrared Physics
& Technology 103:103077 DOI 10.1016/j.infrared.2019.103077.

Xie D, GuoW. 2020.Measurement and calculation methods on absorption and scat-
tering properties of turbid food in Vis/NIR range. Food and Bioprocess Technology
13(2):229–244 DOI 10.1007/s11947-020-02402-3.

Xu LJ, ChenM,Wang YC, Chen XY, Lei XL. 2021. Study on non-destructive detection
method of kiwifruit sugar content based on hyperspectral imaging technology.
Spectroscopy and Spectral Analysis 41(7):2188–2195.

Ye S,Wang Y, Huang DQ, Li JB, Gong YQ, Xu L, Liu LW. 2013. Genetic purity testing
of F1 hybrid seed with molecular markers in cabbage (Brassica oleracea var. capitata).
Scientia Horticulturae 155:92–96 DOI 10.1016/j.scienta.2013.03.016.

Yun YH,WangWT, TanML, Liang YZ, Li HD, Cao DS, Lu HM, Xu QS. 2014.
A strategy that iteratively retains informative variables for selecting optimal
variable subset in multivariate calibration. Analytica Chimica Acta 807:36–43
DOI 10.1016/j.aca.2013.11.032.

Zhang C, Ma Y. 2012. Ensemble machine learning: methods and applications. New York:
Springer Science & Business Media.

Zhang J, Dai L, Cheng F. 2021. Corn seed variety classification based on hyperspectral
reflectance imaging and deep convolutional neural network. Journal of Food
Measurement and Characterization 15:484–494 DOI 10.1007/s11694-020-00646-3.

Zhang L, Rao ZH, Ji HY. 2020.Hyperspectral imaging technology combined with
multivariate data analysis to identify heat-damaged rice seeds. Spectroscopy Letters
53(3):207–221 DOI 10.1080/00387010.2020.1726402.

Yang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1354 19/20

https://peerj.com
http://dx.doi.org/10.1109/JSEN.2020.3014328
http://dx.doi.org/10.1016/j.infrared.2019.103077
http://dx.doi.org/10.1007/s11947-020-02402-3
http://dx.doi.org/10.1016/j.scienta.2013.03.016
http://dx.doi.org/10.1016/j.aca.2013.11.032
http://dx.doi.org/10.1007/s11694-020-00646-3
http://dx.doi.org/10.1080/00387010.2020.1726402
http://dx.doi.org/10.7717/peerj-cs.1354


Zhang XL, Liu F, He Y, Li XL. 2012. Application of hyperspectral imaging and
chemometric calibrations for variety discrimination of maize seeds. Sensors
12(12):17234–17246 DOI 10.3390/s121217234.

Zhou Q, HuangW, Fan S, Zhao F, Liang D, Tian X. 2020. Non-destructive discrim-
ination of the variety of sweet maize seeds based on hyperspectral image coupled
with wavelength selection algorithm. Infrared Physics & Technology 109:103418
DOI 10.1016/j.infrared.2020.103418.

Zhou Q, HuangW, Tian X, Yang Y, Liang D. 2021. Identification of the variety of
maize seeds based on hyperspectral images coupled with convolutional neural
networks and subregional voting. Journal of the Science of Food and Agriculture
101(11):4532–4542 DOI 10.1002/jsfa.11095.

Zhou ZH. 2012. Ensemble methods: foundations and algorithms. CRC Press: Boca Raton.

Yang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1354 20/20

https://peerj.com
http://dx.doi.org/10.3390/s121217234
http://dx.doi.org/10.1016/j.infrared.2020.103418
http://dx.doi.org/10.1002/jsfa.11095
http://dx.doi.org/10.7717/peerj-cs.1354

