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ABSTRACT
A more effective directed text detection algorithm is proposed for the problem of low
accuracy in detecting text with multiple sources, dense distribution, large aspect ratio
and arbitrary alignment direction in the industrial intelligence process. The algorithm
is based on the YOLOv5 model architecture, inspired by the idea of DenseNet dense
connection, a parallel cross-scale feature fusion method is proposed to overcome the
problem of blurring the underlying feature semantic information and deep location
information caused by the sequential stacking approach and to improve the multiscale
feature information extraction capability. Furthermore, a rotational decoupling border
detection module, which decouples the rotational bounding box into horizontal
bounding box during positive sample matching, is provided, overcoming the angular
instability in the process of matching the rotational bounding box with the horizontal
anchor to obtain higher-quality regression samples and improve the precision of
directed text detection. TheMSRA-TD500 and ICDAR2015datasets are used to evaluate
the method, and results show that the algorithm measured precision and F1-score of
89.2% and 88.1% on theMSRA-TD500 dataset, respectively, and accuracy and F1-score
of 90.6% and 89.3% on the ICDAR2015 dataset, respectively. The proposed algorithm
has better competitive ability than the SOTA text detection algorithm.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Neural
Networks
Keywords Directional text, Target detection, Rotation Decoupled bounding box

INTRODUCTION
The goal of text detection is to locate text areas in a given image, which is a prerequisite
for many application media, including multimedia retrieval (Ye et al., 2005), industrial
automation (Liang, Doermann & Li, 2005) and optical character recognition (OCR)
(Vinciarelli, 2002) system applications. With the development of convolutional neural
networks (CNNs) (Wang et al., 2012), the existing text detection models have achieved
better results on ICDAR 2013 and COCO-Text real datasets, where the models usually
employ horizontal bounding boxes (HBBs) (Xia et al., 2018) for target localisation.
However, in most existing detection tasks, the target texts in a given image own the
characteristics of dense distribution, a large aspect ratio, and arbitrary alignment directions.
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When the HBB model is used to detect the densely arranged directed text, the non-
maximum suppression (NMS) (Neubeck & Van Gool, 2006) may remove some of the
prediction bounding boxes due to the large intersection over union (IOU) (Jiang et al.,
2018) between adjacent prediction boxes, eventually decreasing in the detection accuracy
(Liao et al., 2017; Bazazian et al., 2017). Subsequently, some scholars proposed a rotating
bounding box (OBB) (Ma et al., 2018; Yang et al., 2021) for target localisation, which
can effectively separate densely arranged directed targets and reduce redundancy whilst
decreasing the false kill of NMS on detected targets by adding angles, thus improving the
accuracy of target localisation.

With the introduction of the OBB bounding box, the loss of the model at the boundary
suddenly increases due to the existence of periodicity in the bounding box angle (Yang
et al., 2021). As a result, the model cannot obtain the prediction results in the simplest
and most direct approach. Scholars then proposed the APE (Zhu, Du &Wu, 2020) to
represent the angle as a continuously varying periodic vector; Theyused a free detector
with boundary discontinuity (CSL) (Yang & Yan, 2020) to transform the angle regression
problem, and RSDet++ (Qian et al., 2022) to mitigate the angle loss discontinuity by
modulating the bounding box rotation loss. Although the use of these methods can
mitigate or even eliminate the effects caused by the angular periodicity of the bounding
box, these approaches undoubtedly increase the computation of the model. In this regard,
there is still a huge room for improvement in the field of target detection, oriented toward
a series of optimization schemes for target detection.

This study proposes a text detection algorithm based on YOLOv5 model architecture
to address the shortcomings of the preceding algorithms in dense distribution, large
aspect ratio, and other directed text detection. A parallel cross-scale connection method
is proposed in the feature fusion process to overcome the lack of underlying feature
information and deep location information caused by the original sequential stacking
method, thereby improving the multiscale feature fusion capability. An improved rotation
decoupling bounding box detection module is also proposed and implemented. The OBB
bounding box is decoupled into the HBB + angle combination method in the process of
model training positive sample matching strategy to solve the rotation bounding box angle
periodicity problem. As a result, the model detection precision is effectively improved, and
the model parameter calculation is reduced.

The remainder of the article is organised as follows: first, the proposed method for
directed text detection is introduced in the ‘Proposed Methodology’. Then, the ‘Analysis of
Experimental Results’ conducts experiments on the proposed method, and its effectiveness
is analysed. Finally, the ‘Conclusion and Future Work’ summarises the proposed approach
and provides an outlook for future work.

PROPOSED METHOD
In this section, we initially illustrate the network architecture of the rotational decoupled
oriented text detection algorithm. Then, we describe the proposed D-PANet feature fusion
network module and the design of the rotational decoupling bounding box detection
module in detail.
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Figure 1 Rotationally decoupled target text detection model.
Full-size DOI: 10.7717/peerjcs.1352/fig-1

Network architecture
The proposed rotational decoupled oriented text detection algorithm is designed based on
the YOLOv5 (Zhu et al., 2021) architecture, as shown in Fig. 1, the proposed architecture
consists of four parts: input layer, feature extraction backbone network, feature fusion
module and detection outputmodule. Amongst them, the input layer and feature extraction
backbone network remain unchanged from YOLOv5, whereas the feature fusion module
and detection output module have been improved.

D-PANet feature fusion network
Target detection in the feature fusion process heavily relies on the location information in
low-level features and the semantic information in high-level features. Low-level features
have fewer convolution times, resulting in relatively less semantic information, but the
localisation information is accurate. By contrast, high-level features are rich in semantic
information due to repeated convolutions, but the target localisation is more ambiguous.
The D-PANet feature fusion network is used to effectively enhance the low-level feature
semantic information and the high-level feature location informationin this article.

The proposed D-PANet model network is based on the idea of DenseNet (Huang et al.,
2017) dense connectivity, which adds a parallel up-sampling and down-sampling channel
to the multiscale features by using cross-scale connectivity, converting the feature fusion
from the original sequential stacking method to a parallel two-branch structure. The
structure can effectively enable each scale to acquire more features, enhance image feature
fusion, and realise the improvement of semantic information and location information for
each scale feature. The specific network of D-PANet is shown in Fig. 2.

Taking the acquisition of F5 as an example, we retain the 1 * 1 convolutional layer
that reduces the number of C5 feature channels in the original YOLOv5 feature fusion
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Figure 2 D-PANet feature fusion network.
Full-size DOI: 10.7717/peerjcs.1352/fig-2

module whilst retaining the down-sampling operation with a stride size of 2 for feature
F4. Then, the second branch is used to down-sample operations with a stride size of 4 for
feature F3. Finally, BottleneckCSP is used to eliminate the overlapping effect caused by
the down-sampling process. The acquisition process is shown in Fig. 3, where each scale
output F3, F4 and F5 can be expressed as follows:
F3=X3

F4= f (X4,Z3)
F5= f (X5,Z4,Z ′3)

(1)

where (X3,X4,X5,Z3,Z ′3,Z4) denotes the output features of each scale feature layer and f
denotes the concat+ conv operation.

Design and implementation of the rotational decoupling bounding box
detection module
Figure 4 shows the output diagram of the rotational decoupled bounding box detection
module. The image is passed through the feature extraction backbone network and
D-PANet feature fusion module to obtain the final detection feature layer. The feature
channel output dimension is 3(5+1), where 3 is the different preset aspect ratio anchor
box, 5 indicates the detection output bounding box information, and 1 indicates the text
confidence degree. In the training process of this detection module model, firstly, the
rotationally decoupled bounding box representation is defined, and then the positive
sample matching strategy between the rotationally decoupled bounding box and the
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Figure 3 Schematic diagram of feature P5 acquisition process.
Full-size DOI: 10.7717/peerjcs.1352/fig-3

Figure 4 The output diagram of the rotational decoupled bounding box detection module.
Full-size DOI: 10.7717/peerjcs.1352/fig-4

horizontal anchor box desings. Secondly the bounding box in the regression stage of the
bounding box prediction is encoded. Finally, the loss function is added to complete the
model iteration by the BP algorithm.

Rotational decoupling bounding box characterization method
Currently, the two main rotational bounding box characterisation methods for rotational
characterization arethe eight-parameter method (x1,y1,x2,y2,x3,y3,x4,y4) (Zhu et al.,
2015) and the five-parameter method (x,y,w,h,θ) (Ren et al., 2017). Amongst them,
the five-parameter method is divided into two types according to the range of angular
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Figure 5 Common rotational bounding box characterization methods. (A) Eight-parameter definition
method (B) OpenCV definition method (C) Long-edge definition method.

Full-size DOI: 10.7717/peerjcs.1352/fig-5

definition variation, namely the OpenCV definition method θ ∈ [−π/2,0) and the long-
edge definition method θ ∈ [−π/2,π/2), and the specific rotational characterisation is
shown in Fig. 5.

All of the characterization methods are capable of detecting directed text, but the
eight-parameter characterisation method requires significantly more model parameters
than the five-parameter characterizationmethod. Both the OpenCV definitionmethod and
the long-edge definition method have issues with angular periodicity, thereby a effecting
the stability of model training (Yang & Yan, 2020). A new rotationally decoupled bounding
box five-parameter characterisation technique, shown in Fig. 6, is suggested in this study.

The rotational decoupling bounding boxes come in two varieties: w ≥ h(|θ | ≤ π/4
with X-axis) and w < h(|θ |<π/4 with Y -axis). The two types of bounding boxes are
symmetric and independent of each other. During the model training, the rotational
decoupling bounding box is decoupled to the horizontal bounding box HBBX +θ when
w ≥ h and to the horizontal bounding box HBBY +θ when w < h. Under this definition
θ ∈ [−π/4,π/4], the decoupled bounding box representation is compatible with the
original YOLOv5.

Positive sample matching strategy
In this study, the headmodule’s positive sample acquisition is based on the algorithmic idea
that ‘high-quality anchors are easier to regress to obtain an accurate prediction bounding
box’ in YOLOv4, using the positive sample matching strategy based on the maximum
IOU threshold, as shown in Fig. 7. Initially, the anchor is matched with the ground truth
bounding box to obtain the IOU, and when the IOU is larger than the set threshold (the
threshold value is set to 0.7 in this study to ensure the precision of the detection results
and avoid the difficulty of convergence of the model training due to the small number of
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Figure 6 Schematic representation of the rotational decoupling bounding box.
Full-size DOI: 10.7717/peerjcs.1352/fig-6

positive samples), it is marked as a positive sample and mapped to the feature layer, and
vice versa for the background.

Regression to obtain precise predicted bounding box is simpler when using a positive
sample sampling strategy based on IOU thresholding, but determining how to increase the
IOU of matching the ground truth bounding box with the anchor box becomes crucial.
The OBB bounding box and HBB anchor box matching cannot achieve a better IOU
when the conventional five-parameter bounding box characterisation method is used.
The parameter calculation of the model is evidently enhanced by introducing the OBB
anchor box, However, the problem of introducing the OBB anchor box to improve the
IOU can be effectively avoided by decoupling the OBB bounding box into the combination
of HBBX/Y+θ through the rotation decoupling bounding box characterisation method. As
shown in Fig. 8, any rotated bounding box is decoupled into a unique horizontal bounding
box HBBX/Y matched with the horizontal anchor box, and the decoupled result θ is used
for loss calculation, allowings the model to calculate the angle between the bounding box
and the predicted bounding box, effectively avoiding the problem of angle periodicity in
the OpenCV definition method and the long-edge definition method.Moreover, the two
positive sample matching strategies of introducing a rotating anchor box and a rotating
decoupled bounding box are compared. The result shows that both rotating decoupled
bounding boxes can match with an HBB anchor box to obtain a higher IOU and improve
the accuracy rate of the prediction bounding box.
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Figure 7 Schematic diagram of the positive sample matching strategy based on the maximum IOU
threshold.

Full-size DOI: 10.7717/peerjcs.1352/fig-7

Figure 8 Schematic diagram of matching the real bounding box with the anchor box before and after
decoupling.

Full-size DOI: 10.7717/peerjcs.1352/fig-8
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Bounding box coding
After the positive samples are obtained by the matching strategy, they need to be predicted
by the bounding box regression. However, in the implementation of the algorithm, if
the obtained positive samples are directly subjected to the bounding box regression, then
oscillations in the losses occur due to the absence of any constraints on the parameters
of the bounding box, which is not conducive to model training. The parameters of the
bounding box are encoded to effectively carry out model training. The encoding principle
is shown in Fig. 9, where the model initially restricts the regression prediction bounding
box to a certain offset (tx ,ty ,tw ,th) of the corresponding anchor box by indexing the grid
coordinates (cx ,cy) and presetting the anchor box width and height (pw ,ph). Then, the
output range is controlled to [−1,1] by using the tanh function according to the angle
change interval θ ∈ [−π/4,π/4] in the bounding box, strictly controlling the model’s angle
prediction interval tθ , and finally obtaining the prediction angle (x̂,ŷ,ŵ,ĥ,θ̂) by using the
angle decoding formula. The encoding of the offset and the decoding of the predicted
bounding box are calculated as follows:

tx = x− cx
ty = y− cy
tw = log(w/pw)
th= log(h/ph)
tθ = 4θ/π

(2)



x̂ = 2σ (tx)−0.5+ cx
ŷ = 2σ (ty)−0.5+ cy
ŵ = pw×2σ (tw)2

ĥ= ph×2σ (th)2

θ̂ =π/4 · tanh(tθ )

(3)

where is denoted as a Sigmoid function to scale the predicted bounding box offset to
between 0 and 1.

Loss function
Since the model introduces the OBB bounding box, an angle regression channel needs to be
added to this model’s bounding box prediction regression channel, and the SmoothL1 loss
function is used for angle learning. At the same time, as a single-category text prediction
model, it discards the category prediction channel and completes text prediction by
OBB prediction regression with a confidence level only to improve the model detection
efficiency. The above analysis indicates thatthe loss in this study consists of three types:
bounding box loss, angle loss and confidence loss; the specific losses are calculated after
modification, as follows:

Loos= lossbbox+ losstheta+ lossconf (4)
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Figure 9 Rotationally decoupled bounding box regression schematic. (A) Pw ≥ Ph (B) Pw< Ph.
Full-size DOI: 10.7717/peerjcs.1352/fig-9
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where I objij denotes whether the i th anchor box in the j th grid is responsible for the
predicted text bounding width position, and the value of which is 1, and 0 otherwise.
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the predicted bounding box parameters and the confidence level, respectively; λcoord and
λnoobj denote the penalty coefficients.

Rotationally decoupled bounding box detection module
implementation
Based on the baseline network design of rotationally decoupled bounding box and
horizontal anchor box positive sample matching strategy, predicted bounding box
regression coding and loss calculation,the rotationally decoupled bounding box detection
module can effectively realize autonomous learning and inference,and its specific learning
and inference process are shown in Tables 1 and 2, respectively.
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Table 1 Training process of rotation-based decoupled bounding box detection module.

Training process of rotation-based decoupled bounding box detection module

Input: model prediction channel parameters T̂ andreal text marker parameters T ,
where: T̂ = (x̂,ŷ,ŵ,ĥ,θ̂ ,P̂r ); T = (x,y,w,h,θ,Pr )

Output: Loss
1. Extract the prediction bounding box parameters and the ground bounding box parameters;
T̂HBB= (x̂,ŷ,ŵ,ĥ);
T̂theta= θ̂ ;
T̂obj= P̂r ;
THBB= (x.y,w,h);
Ttheta= θ ;
Tobj = Pr

2. Regression coding of bounding box parameters, indexing grid coordinates (cx ,cy);
Preset anchor width and height (pw ,ph), Learning regression predicts the corresponding offset
of the bounding box to the anchor (tx ,ty ,tw ,th,tθ ). where: tx = x− cx ;
ty = y− cy ;
tw = log(w/pw);
th= log(h/ph);
tθ = 4θ/π
3. Calculate the loss of each parameter;
LossHBB= LCIOU (T̂HBB,THBB);
Losstheta= LsmoothL1(T̂theta,Ttheta);
LossHBB= LBCE(T̂obj ,Tobj)

Table 2 Inference process of rotationally decoupled bounding box detection module.

Inference process of rotationally decoupled bounding box detection module

Input: The model prediction channel predicts the corresponding offset of the bounding box to
the anchor box (tx ,ty ,tw ,th,tθ )
Output: Prediction bounding box T̂ = (x̂,ŷ,ŵ,ĥ,θ̂ ,conf )
1. Decode the offset (tx ,ty ,tw ,th,tθ ) of the predicted bounding box of the regression channel
with respect to the anchor box, Get the prediction bounding box parameters: x̂ = 2σ (tx) −
0.5+ cx ;
ŷ = 2σ (ty)−0.5+ cy ;
ŵ = pw×2σ (tw)2;
ĥ= ph×2σ (th)2

2. Obtain the confidence level of the text location target and filter the confidence level thresh-
old to obtain the prediction result T̂ = (x̂,ŷ,ŵ,ĥ,θ̂ ,P̂r );
3. Non-Maximum Suppression processing of the acquisition results→NMSOBB(T̂ )
4. Output the final prediction bounding box T̂ = (x̂,ŷ,ŵ,ĥ,θ̂ ,conf )

Analysis of experimental results
In this section, we first present the experimental data and experimental setup of the
proposed method, then analyse the model performance of the proposed method by
conducting comparison tests on a public dataset, and finally analyse the effectiveness of
different improved methods by ablation experiments on a self-built dataset.
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Table 3 Deep learning environment configuration table.

Platform CPU GPU Memory Running environment configuration

PC Intel i7-8700 Nvidia Pascal1060 6G 16G CUDA9.0 cudnn7.1 PyTorch1.8 Python3.8

Experimental data and experimental setup
For this experiment, the model was evaluated on ICDAR 2015, MSRA-TD 500 and a self-
built dataset to test the model’s performance. In addition, to shorten the experimental data
training and its validation time, training and testing were performed on a 64-bit Windows
system with the hardware configuration and running environment configuration shown
in Table 3. During model training, the model used stochastic gradient descent as the
optimiser, the momentum factor was set to 0.9, the weight decay was set to 0.005, the
initial weights of the network model were generated by random initialisation, the initial
learning rate was 0.001, 16 images were input in each iteration, and the learning rate was
multiplied by 0.1 at 100 and 200 times to reduce the learning rate, and the regularisation
factor was set to 0.0005 to suppress overfitting. The coefficient of regularisationwas set
to 0.0005 to suppress overfitting.A total of 300 iterations were performed, the model was
saved every one iteration, and the best weight amongst 300 iterations was finally selected
as the detection network model.

Model comparison experiments
To verify the effectiveness of the proposed directed text detection model based on rotation
decoupled bounding boxes, it compared and analysed by validating it on the MSRA-
TD500 and ICPR2015 datasets with recent years text detection algorithms. The recent years
algorithms mainly include CTPN (Tian et al., 2016), RRPN (Ma et al., 2018), R2CNN
(Jiang et al., 2017), EAST (Zhou et al., 2017), DBNet (Liao et al., 2020), SegLink (Shi, Bai
& Belongie, 2017), TextSnake (Long et al., 2018), PSENet (Wang et al., 2019a) and PANNet
(Wang et al., 2019b), ATRR (Wang et al., 2019c), TextFuseNet (Ye et al., 2020). Themodel’s
performance is referenced by four metrics: precision, recall, F1-Score, and detection speed,
which are calculated as follows:

Precision=
TP

TP+FP
(8)

Recall=
TP

TP+FN
(9)

F1−Score=
2×Precision×Recall
Precision+Recall

(10)

where TP is the positive sample whose model prediction is accurate, FP is the negative
sample whose model prediction is positive, and FN is the positive sample whose model
prediction is inaccurate.

Table 4 shows the performance results of different algorithm models on the MSRA-
TD500 dataset, where a segmentation-based DBNet algorithm achieves an accuracy of
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Table 4 Detection results of the algorithms in this article and those in recent years on theMSRA-
TD500 dataset.

Methods P (%) R (%) F (%) Speed (fps)

RRPN 82.0 73.0 77.0 3.3
EAST 87.3 67.4 76.1 13.2
DBNet 91.5 79.2 84.9 32
SegLink 86.0 70.0 77.0 8.9
TexSnake 83.2 73.9 78.3 1.1
ATRR 85.2 82.1 83.6 10
PANNet 84.4 83.8 84.1 30.2
OUR 89.2 87.0 88.1 42

Notes.
In addition to our algorithm for the experimental measurement of the rest of the algorithm detection results are the original
algorithm author experimental results.

Table 5 Detection results of the algorithms in this article and those in recent years on the ICDAR2015
dataset.

Methods P (%) R (%) F (%) Speed (fps)

CTPN 74.0 52.0 61.0 7.1
R2CNN 85.6 79.7 82.5 –
DBNet 91.8 83.2 87.3 12
SegLink 73.1 76.8 75.0 –
TextFuseNet 91.3 88.9 90.0 8.3
PSENet 86.9 84.5 85.7 1.6
PANNet 84.0 81.9 82.9 26.1
OUR 90.6 88.1 89.3 39.7

Notes.
In addition to our algorithm for the experimental measurement of the rest of the algorithm detection results are the original
algorithm author experimental results.

91.5 in the dataset detection compared with the comparison algorithm, which achieves
the best performance in terms of detection accuracy. However, the proposed rotational
decoupled bounding box-based directed text detection algorithm model is second only to
the DBNet algorithm in terms of accuracy and achieves better performance results in terms
of recall, F1-Score, and detection speed compared with the other algorithms. Table 5 shows
the performance results of different algorithmic models on the ICDAR2015 dataset, in
which the frame rate measured by the proposed model is 39.7 fps, and its detection speed
achieves the best amongst other algorithms. In addition, the detection precision, recall and
F1-Score of the proposed model are similar to the SOTA methods, effectively verifying that
the proposed model is competitive. Figure 10 displays some of the detection outcomes of
the proposed arithmetic model used in this article on the MSRA-TD500 and ICDAR2015
datasets. It is clear from the figure that the model is capable of performing directed text
detection.
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Figure 10 Partial detection results of public dataset.
Full-size DOI: 10.7717/peerjcs.1352/fig-10

Table 6 Effect of the performance of the D-PANet feature fusionmodule.

Methods P (%) R (%) F (%) Speed (fps)

PANet 60.9 58.3 59.6 42.1
D-PANet 62.1 58.6 60.1 41.2

Ablation experiments
The improved YOLOv5 multiscale special fusion sign pyramid D-PANet and multi-angle
rotation decoupled bounding box detection modules on self-built datasets are tested and
compared under the same deep learning environment and parameter configuration to
analyse the effectiveness of different improved methods and to use the proposed methods
in an industrial real-world environment.

(1) Effectiveness of D-PANet feature fusion module.
Table 6 demonstrates the effect of whether the model employs the D-PANet feature

fusion module on the performance of the detection network. The experimental results
show that the use of the D-PANet feature fusion module leads to a 1.2%, 0.3% and 0.5%
improvement in the model detection accuracy, recall, and F-value, respectively, compared
with the original model performance, and the detection speed only decreases by 0.9
fps, effectively demonstratingthat the D-PANet dual-branch feature information fusion
structure can further improve the performance of the shallow and deep feature information
fusion and highlight the target information, thereby improving text detection precision
with only a small increase in parameter calculation.

(2) Effectiveness of rotating decoupled bounding box detection modules
Four experimental control groups are designed in this experiment to investigate the

effect of different bounding box detection modules on the performance of the detection
network. The first group of experiments uses the original YOLOv5 detection module;
the second group of experiments uses the OpenCV bounding box definition method
detection module; the third group of experiments uses the long-edge definition method
detection module; the fourth group uses the decoupled bounding box detection module.
The performance of the detection models is verified by experiments, as shown in Table 7.

The comparison betweenthe first group and the fourth groupindicates that the detection
speed of the decoupled bounding box detection module is reduced by 3.6 fps, but the
detection speed is improved by 6.7 and 6.5 fps compared with the second group and the
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Table 7 Effect of different boundary frame characterizations on the performance of the detection module.

Experimental
group

OpenCV definition
method

Long-edge definition
method

Rotational
decoupling

R
(%)

P
(%)

F
(%)

Speed

Group 1 60.9 58.3 59.6 42.1fps
Group 2 X 90.4 87.8 89.1 30.8fps
Group 3 X 92.6 89.4 90.8 31.0 fps
Group 4 X 95.6 90.1 92.8 37.5 fps

Figure 11 Partial model test plots of the detection module for different bounding box representations.
(A) OpenCV definition method detection module; (B) Long-edge definition method detection module;
(C) Rotationally decoupled bounding box detection module.

Full-size DOI: 10.7717/peerjcs.1352/fig-11

third group, respectively. This finding shows that the decoupled bounding box detection
module can effectively avoid the introduction of rotating anchor boxes to reduce the model
parameter calculation and improve the model detection efficiency. Meanwhile, the model
detection precision, recall and F1-score, are 95.6%, 90.1%, and 82.8%, respectively, using
the decoupled bounding box detection module. The detection performance is improved
compared with the second and third groups, effectively showingthat the decoupled
bounding box detection module can solve the problem of angular periodicity in the
regression bounding box and improve the model detection performance. The results of the
corresponding detection model are shown in Fig. 11.

CONCLUSION
In this study, a rotation-based decoupled directed text detection algorithm is proposed.
The algorithm is built by the YOLOv5 model framework. The target feature information
fusion is enhanced by a two-branch feature fusion structure. Then, a rotationally decoupled
bounding box representation is defined, and a positive sample matching strategy between
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the rotationally decoupled bounding box and the horizontal anchor box is proposed to
improve the data positive sample acquisition capability. Subsequently, the bounding box
is encoded, and the corresponding loss function is added in the predictive regression
stage of the bounding box to complete the construction of the rotationally decoupled
bounding box detection module and improve the performance of the directed text
detection. Comparative experiments are conducted on several rotation detection datasets,
such as MSRA-TD500 and ICDAR2015,to verify the detection performance of the model
proposed. The experimental results show that the proposed method in this article achieves
better detection accuracy and efficiency.

Since the continuous development of deep learning techniques, the current detection
methods should be improved using different architectures and various text detection
methods. In addition, this work focuses on improving the detection accuracy of text with
multiple sources, dense distribution, large aspect ratio and arbitrary alignment direction by
rotating the decoupled bounding box detection module; thus, the model feature extraction
capability is neglected. Although a two-branch feature fusion structure is proposed to
enhance the fusion of target feature information in the feature fusion stage, it does not
change the problem of insufficient model feature extraction capability. For this reason,
the model performance should be further improved in the future work with the help
of the previous research base, such as through the YOLOv8 framework and using 2*2
convolutional layers.
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