
Submitted 8 September 2022
Accepted 28 March 2023
Published 3 May 2023

Corresponding author
Tamás-Zsolt Képes,
tamas.kepes@ubbcluj.ro

Academic editor
Claudio Ardagna

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.1351

Copyright
2023 Képes

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

The critical node detection problem in
hypergraphs using weighted node degree
centrality
Tamás-Zsolt Képes
Computer Science, Babes-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania

ABSTRACT
Network analysis is an indispensable part of today’s academic field. Among the different
types of networks, the more complex hypergraphs can provide an excellent challenge
and new angles for analysis. This study proposes a variant of the critical node detection
problem for hypergraphs using weighted node degree centrality as a form of importance
metric. An analysis is done on both generated synthetic networks and real-world
derived data on the topic of United States House and Senate committees, using a newly
designed algorithm. The numerical results show that the combination of the critical
node detection on hypergraphs with the weighted node degree centrality provides
promising results and the topic is worth exploring further.

Subjects Data Science, Network Science and Online Social Networks
Keywords Node detection, Hypergraphs, Centrality measures, Genetic algorithm, Critical nodes,
Graph theory, Network analysis

INTRODUCTION
Network analysis is an important topic that has received large amounts of attention in
recent years, while its applications span multiple fields of study such as telecommunication
in Dzaferagic et al. (2018), biology in Albert (2005), ecology in Bascompte (2007), etc.

One of the main problems in network analysis is the Critical Node Detection Problem
(CNDP) as described in Lewis & Yannakakis (1980), or in the survey by Lalou, Tahraoui &
Kheddouci (2018). In general, the CNDP can be described as the problem of finding a node
or a set of nodes, that are considered important or critical, according to a specific metric.
The CNDP has had many applications during the past few years such as social network
analysis inBorgatti (2006) and Fan & Pardalos (2010), network vulnerability studies inDinh
& Thai (2011) and network risk management in Arulselvan et al. (2007). Furthermore, a
survey on the topic of critical element detection is presented inWalteros & Pardalos (2012),
where the authors describe, among other critical element types, critical nodes.

The Critical Node Detection Problem has been mostly studied on traditional graphs,
directed or undirected, weighted or unweighted as in Shen & Smith (2012), Shen, Smith &
Goli (2012) and Marx (2006), etc. and the problem has been further optimized in papers
like Walteros et al. (2019), where the authors focus on generalizing and optimizing the
approach for both CNDP and a more generalized critical structure detection, using a
mathematical programming approach. CNDP has also been approached with a memetic
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search algorithm in Zhou, Hao & Glover (2019), with a specific application for the
cardinality-constrained CNP variant. An improvement for the memetic algorithm is
presented in Zhou et al. (2021). In Salemi & Buchanan (2022) a distance-based variant to
the CNDP is solved which enables an increase in the size of networks that can be reasonably
investigated. Also in Zhou et al. (2022) a fast tri-individual memetic search is proposed for
the distance-based variant of the CNDP.

Much less focus was given to the CNDP’s application on hypergraphs. A hypergraph
can be considered a generalization of a graph, where each edge can connect any number
of nodes, and as such, it can provide an interesting application for the CNDP, because the
basic definition of a critical node is changed by the hypergraph environment.

While the CNDP has been investigated on hypergraphs in the past, this study
differentiates itself from any previous works done on this topic by introducing a more
complexmetric into the CNDP algorithmwith the use ofWeighted Node Degree Centrality
from Kapoor, Sharma & Srivastava (2013).

The article will proceed with a more in-depth introduction of the proposed problem
of CNDP in hypergraphs, including mathematical definitions and improvements on and
distinctions from previous work done on the topic. Following this, an introduction to the
weighted node degree centrality metric is given and possible applications for this research
are discussed. Next, an algorithm will be presented. Finally, numerical results are presented
for this approach on a number of synthetic networks and also a case study will be given on
US congressional committee networks, followed by conclusions and possible future work.

CRITICAL NODE DETECTION IN HYPERGRAPHS
Firstly, a formal definition must be given to traditional graphs.
Definition 1 A graph is represented as a G= (V ,E) pair, where V is the set of nodes or
vertices, while E is the set of edges, which in traditional graph theory are node pairings.

Hypergraphs described in Berge (1984) can be considered as a generalization of a graph,
where each edge can connect any number of nodes. Hypergraphs have been used for
example in artificial intelligence Feng et al. (2019), image classification Yu, Tao & Wang
(2012), biology Franzese et al. (2019), etc.
Definition 2 A hypergraph is a H= (X ,D) double, where X = {x1,x2,...,xn} is the set of
nodes, D= {D1,D2,...,Dm} is a set of the subsets of X, denoting the set of hyperedges, n
and m refer to the number of nodes and hyperedges respectively.

An example hypergraph is given in Fig. 1. In this example, we can see nine hyperedges
labeled from 0 to 8 connecting seven nodes labeled from 1 to 7.
Definition 3 Having a graph G(V ,E), the Critical Node Detection Problem (CNDP) can be
defined as the problem of finding a set of nodes S with the size of k, that when deleted, will
maximally degrade G according to a given metric σ (G).

In traditional cases, σ (G) can be anything from the minimization of a connectivity
measure, such as pairwise connectivity, the minimization of the largest connected
component, or the maximization of the number of connected components, etc.
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Figure 1 Small example hypergraph.
Full-size DOI: 10.7717/peerjcs.1351/fig-1

Previous research already tackled a more simple combination of the CNDP and
hypergraphs in Gaskó et al. (2022), and this paper aims to improve and expand the topics
researched there.

In Gaskó et al. (2022) the hypergraph representation was not an optimal one. There, a
translation was proposed from a hypergraph into a connected web of complete sub-graphs,
by replacing every hyperedge with a complete sub-graph, where every node that would
participate in an edge, will participate in this sub-graph and will be connected with every
other node in the same situation. In the case when a node would participate in multiple
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hyperedges, the given node will participate in multiple sub-graphs. In this research, a more
dedicated method for hypergraph representation is used in the form of the Python package
named HyperNetX, developed by the Battelle Memorial Institute, where the hypergraphs
are represented by a dictionary-style approach. This approach increases the possibilities
of methods that can be applied to a hypergraph, allowing for a more complex σ (G) to be
discussed.

Secondly, a completely new, redesigned, and rewritten algorithm is proposed, the new
variant will be discussed in an upcoming section.

Finally, the most significant difference was in the definition of σ (G). While previously
the maximization of the number of connected components in a hypergraph, after the
removal of the set S of nodes was used as the metric, the current approach to σ (G) is
significantly different and is the main focus of this paper. σ (G) works by introducing the
weighted node degree centrality measure for the CNDP. This new measure is described in
the next section.

Weighted node degree centrality
The weighted node degree centrality was proposed in Kapoor, Sharma & Srivastava (2013),
as a natural extension of traditional centrality measures to hypergraphs. The following
section will provide a short summary of the proposed metric and how it applies to our
study.
Definition 4 Simple degree centrality for nodes in a hypergraph can be defined as the
number of nodes adjacent to the primary node.

Definition 4 disregards the strength of the ties between nodes, so a weighted degree
centrality is proposed to mitigate this problem.
Definition 5 Weighted node degree centrality can be defined using:

Ch
d (i)=

∑N

j=1

∑L

k=1
wk,if {vi,vj}⊂ ek

where, N is the number of nodes, L is the number of hyperedges, ek is a specific hyperedge,
wk is the weight of the specific hyperedge and vi is a specific node.

Multiple hyperedge weights can be described, all of them make use of the frequency of
the hyperedge’s appearance or its multiplicity (mj) and the cardinality of the hyperedge
(cj), the importance of multiplicity and cardinality can be demonstrated in example 1. The
following weights are used in the application:

• Constant: wj = 1
• Frequency based: wj =mj

• Newman’s definition of ties strength in collaboration networks: wj =
mj
|cj |−1

• Network theory: wj = 1− (1− 1
cj−1

)mj

Example 1 Let’s suppose that there are two groups of people D1 and D2.D1 has 3 members
while D2 has 15. The people in D1 meet twice a week while those in D2 meet only once a
month. By this allegory, the people in D1 are in a much closer relationship because of two
factors, there are fewer of them in the group, so they are supposedly much closer, secondly,
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they meet more frequently, meaning that their relationship is closer in that regard too. From
the hypergraph perspective, D1 and D2 are the hyperedges, the number of people is the
cardinality while the number of meetings is the multiplicity.

In any one instance of the algorithm, a singular weighting scheme is used at a time,
incorporating itself into the fitness function. The goal of the fitness calculation is the
minimization of the average weighted node degree centrality in the network, after the
removal of a set of nodes. A more formal definition of the problem is given in Definition 6.
Definition 6 Having a hypergraph H= {X ,D}, where X = {x1,x2,...,xn} is the set of
nodes, D = {D1,D2,...,Dm} is the set of hyperedges, our goal is to minimize the average
weighted node degree centrality Ch

d (i) in the modified network, where i ∈ X \ S, S being
the set of potentially critical nodes.

ALGORITHM
A basic genetic algorithm (GA) is proposed, in order to perform the selection of k number
of critical nodes from the total node lists. The following details need to be clarified in order
to fully understand the created algorithm and the tough process behind it.

Encoding
The created population for the GA contains a fixed number pop_size of individuals. These
individuals in turn contain k number of nodes that are ‘‘proposed’’ as a possible critical
node list. Each node is represented by its integer index in the node dictionary, in turn,
meaning, that nodes represented with labels can also be processed.

Fitness
The fitness value for each individual is calculated using the average weighted node degree
centrality in the hypergraph H after the removal of the selected individuals’ nodes from
the total node dictionary. This removal modifies the structure of H, in order to not lose
information, the fitness calculation is done on a copy of the original hypergraph. Multiple
weight calculations are considered, and all of them are described in detail at the weighted
node degree centrality explanation.

Crossover
The crossover process is described in Algorithm 2. It samples a subset of the total population
with size tournament_size, we then sort the selected subset and use the two best individuals,
according to their fitness, and we initiate the crossover process using them. The crossover
is done by zipping the two individuals’ node lists and then separating them, we attribute
special attention to the correctness of the results, i.e., nodes can not repeat in a correct
node list. The two new individuals are appended to the child list and the process is repeated
tournament_count times. After crossover completion, the child population is pre-evaluated,
in order to skip the evaluation at later steps of the algorithm.

Mutation
The mutation operator simply selects an individual from the child population and replaces
one of its nodes with a new node, taking into account the correctness criteria stated at
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the crossover operator. The newly mutated individual is then inserted back into the child
population. The new individual is also pre-evaluated.

Selection
The algorithm combines the original population and any newly-created child population,
including any possible mutations, after which we trim this new set to the original popsize
using elitism (keeping the best individuals), this will become the new population for the
next iteration of the algorithm (a (µ+λ) selection scheme is used). The selection process
also involves an evaluation step at the end, in case any individual needs re-evaluation.

Algorithm 1 Genetic algorithm
Randomly initialize pop;
Evaluate every individual in pop;
repeat
Create an evaluated child population using tournament-based crossover;
if random chance == pmut then
Choose a random child from the list of children.
Mutate child by randomly replacing a node with a new one and re-evaluate the
new individual;

end if
Update pop, using an elitist selection of pop_size number of individuals from the
combined parent and child population;
Re-evaluate every individual in the updated pop;

untilMaximum number of generations;
return Best individual from final pop;

Algorithm 2 Parent selection and Crossover
repeat
Select tournament_size number of individuals to participate;
Select the two best individuals according to evaluation from tournament contenders;
Unite and then split evenly the two parents’ node lists;
Append new children to the resulting child population;

untilMaximum number of tournament rounds;
return child_pop

EXPERIMENTS AND RESULTS
The proposed algorithm depends on a large number of parameters, both in terms of the
basic genetic algorithm parameters but also base values for the more unique sections and
for the fitness calculations. The following paragraphs will outline the main parameters and
the methods of parameter selection for each individual value.
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Population size
The population size parameter refers to the number of individuals considered in each
generation of the genetic algorithm. Generally, a larger value provides better results, but
having too large of a value inquires a negative trade-off of performance while also providing
diminishing returns. Population size also factors into the number of tournament rounds
used in the creation of the new population in each generation, meaning that having an
excessively large population provides an even bigger penalty in speed. The population
size parameter has been chosen as 50 from the pool of 20, 50, and 100 after a round
of parameter-setting runs on a few synthetic networks, that have shown no significant
difference in results with the 50 and 100 cases, so we opted for the smaller one, to decrease
step times.

Mutation chance
The mutation chance or pmut gives a percentage chance of a mutation occurring during a
genetic algorithm generation. Each generation can have at most one mutation occurring
and if a mutation is required then the child selected for mutation and the node replaced by
the mutation is selected at random, without any bias, from the children created through the
crossover tournament and the nodes that are not present in the selected child respectively.
The impact that pmut has on the algorithm is twofold. Firstly a high mutation chance has
an easier time escaping local optimums and moving our search along, resulting in fewer
required generations. Secondly, a higher chance of mutation provides volatile results. pmut

was also chosen from a pool of values: 1%, 2% or 5% as a result of the same parameter
selection process. The value chosen was 5% because it did the best out of all tested values.

Generation count
This parameter refers to the number of generations of the GA that we process. This value
started out as high as 10,000 but after a few test runs we identified that no more than 200
generations are necessary in most cases that we have studied, so this number was chosen
as a stable point and it was not subject to the parameter selection process.

Probability of selection into the crossover process
The probability of selection into the crossover process or pcross for short factors into the
number of tournament rounds and the number of parents selected to participate in the
tournament. This probability should be high, but not 100% in order to exclude someparents
from participating and in turn ensure higher variability. This number was also chosen from
a pool of possibilities: 60% or 80%. Testing has shown a marginal improvement for the
80% case.

Tournament size
A round of the crossover tournament always combines two separate individuals to create
two new children, but the process of selecting the two participating parents is not trivial.
We need to sample the two best parents from those that were selected to participate in the
current round, the number of participating parents in any round is the number given by
the tournament size parameter. This number was also chosen from a pool of possibilities:
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2, 3, or 4. Observations after several parameter-setting runs show, that anything above a
value of 2 will provide very similar results. Finally, a value of 3 was chosen.

Type of weighted centrality
The algorithm also receives as a parameter, the desired type of weighted centrality from
the supported list presented in the description of the weighted centrality measure. For the
parameter-setting scenario of the GA, a simple constant weight is used to eliminate any
variation that this measure would introduce.

Networks
Some baseline synthetic networks were constructed using LFR benchmarks (https:
//www.santofortunato.net/resources). These graphs, described in Table 1, were smaller in
scale and were mainly used as both proof of concept about the correctness of the algorithm
with the different weight types and as a benchmarking tool, for the parameter-setting part
of the research process.

In addition to synthetic networks, two real-world networks were used as proof of
concept, the data sets were used in Chodrow, Veldt & Benson (2021) and were derived from
Congressional data compiled by Charles Stewart and Jonathan Woon. In these networks,
nodes represent either members of the US House of Representatives in the first network or
members of the US Senate in the second one; while hyperedges correspond to committee
memberships. Some basic information about these networks is presented in Table 2.

Results
Firstly some results on the synthetic networks will be given. The results will not be analyzed
in terms of meaning, given the fact, that the data is artificially generated and does not
correspond to anything real-world related. The results provided in Figs. 2 and 3 are
averages of ten runs, for six similarly generated community networks.

Regarding the results presented in Figs. 2 and 3, we see that the total fitness value of the
population and the fitness value of the best individual in the population simultaneously
and suddenly lower to a point, typically reached at the 25–50 generation mark, after which
a stagnation period is entered. The latest changes happened at around generation 150,
which is why a generation number of 200 was chosen. In a local conclusion, it can be said,
that the algorithm works in terms of lowering the desired fitness value, indifferent of the
used weight type or the network analyzed, which means that this algorithm as a tool of
analysis can be useful and can provide interesting results.

Comparison between heuristic and GA
Validating the usefulness of the results obtained by the proposed genetic algorithm should
be a priority. Since the approach of critical node detection on hypergraphs is a fairly new
field of study, no real benchmarks are set. Nevertheless, a comparison of some kind should
be considered. This paper presents a comparison between a proposed heuristic algorithm
and our GA.
The proposed heuristic works by removing a set of nodes S′ with the size of k, having
the largest weighted node degree centrality, and then calculating the average weighted
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Table 1 Synthetic networks and basic properties.

Hypergarph |X | |D| rank mean edge size median edge size

lfr_150_m01_on70_om2 150 150 7 3.86 4
lfr_150_m02_on70_om2 150 150 6 3.69 3
lfr_150_m03_on70_om2 150 150 6 3.76 3
lfr_150_m01_on50_om2 150 150 7 4.00 4
lfr_150_m02_on50_om2 150 150 6 4.04 4
lfr_150_m03_on50_om2 150 150 6 3.90 4

Table 2 Real networks and basic properties.

Hypergarph |X | |D| rank mean edge size median edge size

house-committees 1290 341 82 34.8 40
senate-committees 282 315 31 17.2 19
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Figure 2 Best individual and total population fitness values over time aggregated for several similar
networks, constant and frequency based weights.

Full-size DOI: 10.7717/peerjcs.1351/fig-2

node degree centrality. k is the same number of nodes removed by the GA in any fitness
calculation, and it is the same k as the number of critical nodes from the CNDP. This
heuristic was chosen since our goal with the GA is similarly to minimize the average
weighted node degree centrality. Logically, we could say, that by removing the largest
contributors to the average of weighted node degree centrality in the original network, the
new average would be strictly better, than removing any other combination of nodes. This
comparison proves the contrary since the set of truly critical nodes will further lower the
average, and since the GA gives better results, we can consider them nodes that are more
similar to critical nodes.

Comparisons were made with four synthetic networks, on all weight types, taking results
from the average of ten GA runs and comparing them with the result given by the heuristic
on the same networks, an overall improvement of 2.57% was observed with differences
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Figure 3 Best individual and total population fitness values over time aggregated for several similar
networks, Newman and network-based weights.

Full-size DOI: 10.7717/peerjcs.1351/fig-3
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Figure 4 Comparison between heuristic and GA results for a synthetic network on all four tested
weight types, values indicate average centrality over time.

Full-size DOI: 10.7717/peerjcs.1351/fig-4

ranging from similar results, all the way up to an improvement of 14.14%. In Fig. 4 a
comparison is presented on a typical synthetic network on the different weight types, with
results of the GA presented as the blue lines, while the green lines represent the heuristic
result for the same network and weight type.
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Table 3 Result comparisons for the house committees network. An asterisk (*) represents the value ob-
tained by the best run in each category.

Original weight type Constant Frequency Newman Network

Constant *292.91 293.24 8.32 8.31
Frequency based 290.28 *290.56 8.31 8.30
Newman approach 301.10 301.26 *8.27 8.25
Network approach 299.16 299.39 8.25 *8.24

Table 4 Result comparisons for the senate committees network. An asterisk (*) represents the value ob-
tained by the best run in each category.

Original weight type Constant Frequency Newman Network

Constant *246.14 252.94 18.43 18.18
Frequency based 245.20 *251.54 18.27 18.07
Newman approach 247.77 254.00 *18.15 17.97
Network approach 256.85 262.23 18.07 *17.94

Real world networks
A comparison is given between the best results individuals for each weight type’s run and
the result they would have gotten if evaluated by every other weight type. This comparison
will be done for both the house and senate networks.

In Tables 3 and 4 an * symbol represents the value obtained by the best run in each
category; the best run is chosen instead of an average in order to get a concrete set of nodes
that can be tested with the other weight types.

Some interesting results can be read from Tables 3 and 4. Firstly, in general, it can be said
that no single weight type produces significantly better results than any other weight type.
Secondly, while there is a loose correlation between results, given that the improvement
process lowers all types of results, lowering a category doesn’t lower every other category,
so there is some categorization to be done. Two categories can be identified: Constant and
Frequency-based weights are strongly related according to the results, and the Newman
and Network-based approaches are also closely related. The results are around the point
where lowering the numbers in one category actually increases the numbers in the other
one, which is interesting.

An interpretation of the results is also needed, given that these two networks represent
real-world data, more specifically memberships in US house and senate committees. The
problem at hand was the detection of critical or important nodes in the networks. This,
translated to the committee interpretation, was the problem of finding the ‘most active’ US
House members and senators during the period these two data aggregations were made.
Ten runs were made with every weight type, this means 40 runs for each network. Next, a
few statistics will be given, all conclusions are done on the final results of every run.

In the house network, a total of 666 unique nodes out of the 1,290 total nodes were
identified at least once in the results as ‘important’. If we give a threshold of appearance of
50% of the runs, then this number lowers to 60 out of 1,290, and if the threshold is raised
to 75%, then the result yet again lowers, this time to only two nodes. In contrast, for the
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senate network, a total of 81 of the 282 nodes appear at least once. With the 50% threshold,
this number lowers to 29, and with the 75% threshold, the result is nine nodes.

These statistics are interesting and extremely telling about the nature of both the US
house and senate. Senators are lower in number at any given time and are typically
re-elected multiple times, giving a more stable population of the US Senate. With members
present for many years, they can participate in more committees, and long term, senior
members will appear as important, or critical in the data. By contrast, house members are
more numerous and experience more movement in their population numbers, so finding
a more senior house member, who participated in more committees is hard. An important
observation is that the data already provides a filter on both house and senate members
since only those who have participated in at least one committee are even represented here.

These statistics could be useful in determining a form of productivity metric among
house and senate members, maybe even giving an indication about who were the key
players in US politics at any given time, during the historic period processed here. This
information can be used in predicting or suggesting re-elections or state-level challenges,
or it can be used to determine historical cliques and voting patterns in both chambers.

CONCLUSIONS
A tool for the critical node detection problem in hypergraphs was presented, using weighted
node degree centrality measures. Results on synthetic networks proved the validity of this
analysismethod. Two real-world networks were presented and analyzed using the algorithm
provided and some interesting conclusions could be drawn, given the political nature of the
presented networks. Analyzing hypergraphs proved to be a subject worthy of investigation,
as it can provide a new look into the field of network analysis.

In future work, the introduction of new centrality measures or other types of fitness
values should be considered. Possibilities for centrality metrics are large in both number
and variety, but each metric has to be investigated in terms of their applicability on
hypergraphs. Multiple instances of centrality metrics can be found for example in Rasti
& Vogiatzis (2022), where descriptions for multiple centrality metrics are defined such as
group degree centrality, group average-closeness centrality, group betweenness centrality,
representative degree centrality, clique betweenness centrality, and star closeness centrality.
Other types of centralities may need to be analyzed for different types of connections, such
as stochastic centralities for random networks or probabilistic connections, such as the
row-stochastic centrality presented inMostagir & Siderius (2021).

Refinement of the algorithm is another possibility, especially creating a variant that can
swiftly analyze larger, more complex networks, in order to provide analysis for networks
that were previously not analyzed from the critical node detection perspective. One
possibility of network applications can be that of protein interaction networks, in Rasti &
Vogiatzis (2019) the authors propose, that one of the common representations of protein
interactions is protein complex hypergraphs.
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