
Submitted 16 January 2017
Accepted 18 September 2017
Published 16 October 2017

Corresponding author
Jasmin Ramadani,
jasmin.ramadani@informatik.uni-
stuttgart.de

Academic editor
Ahmed Hassan

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.135

Copyright
2017 Ramadani and Wagner

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Are suggestions from coupled file
changes useful for perfective maintenance
tasks?
Jasmin Ramadani and Stefan Wagner
Institute of Software Technology, University of Stuttgart, Stuttgart, Germany

ABSTRACT
Background. Software maintenance is an important activity in the development
process where maintenance team members leave and new members join over time.
The identification of files which are changed together frequently has been proposed
several times. Yet, existing studies about coupled file changes ignore the feedback from
developers as well as the impact of these changes on the performance of maintenance
and rather these studies rely on the analysis findings and expert evaluation.
Methods. We investigate the usefulness of coupled file changes during perfective
maintenance tasks when developers are inexperienced in programming or when they
were new on the project. Using data mining on software repositories we identify files
that are changed most frequently together in the past. We extract coupled file changes
from the Git repository of a Java software system and join them with corresponding
attributes from the versioning and issue tracking system and the project documentation.
We present a controlled experiment involving 36 student participants in which we
investigate if coupled file change suggestions influence the correctness of the task
solutions and the required time to complete them.
Results. The results show that the use of coupled file change suggestions significantly
increases the correctness of the solutions. However, there is only a minor effect on the
time required to complete the perfective maintenance tasks. We also derived a set of
the most useful attributes based on the developers’ feedback.
Discussion. Coupled file changes and a limited number of the proposed attributes are
useful for inexperienced developers working on perfective maintenance tasks where
although the developers using these suggestions solved more tasks, they still need time
to understand and organize this information.

Subjects Data Science, Software Engineering
Keywords Data mining, Software repositories, Coupled changes, Git

INTRODUCTION
Software maintenance represents a very important part in software product develop-
ment (Abran & Nguyenkim, 1991). Maintenance is often performed by maintenance
programmers. Over time teams change when members leave and others join (Hutton &
Welland, 2007). New members cannot be productively included to solve maintenance tasks
immediately, so they need some support to successfully perform their tasks.

Perfective maintenance tasks represent changes dealing with new or modified user
requirements (Stafford, 2003). They are related to activities which increase performance of

How to cite this article Ramadani and Wagner (2017), Are suggestions from coupled file changes useful for perfective maintenance tasks?
PeerJ Comput. Sci. 3:e135; DOI 10.7717/peerj-cs.135

https://peerj.com
mailto:jasmin.ramadani@informatik.uni-stuttgart.de
mailto:jasmin.ramadani@informatik.uni-stuttgart.de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.135

the system or enhance its user interface (Van Vliet, Van Vliet & Van Vliet, 1993). Lientz &
Swanson (1980) reported that more than 60% of the software maintenance efforts are of
perfective nature.

Software development produces large amounts of data which is stored in software
repositories. These repositories contain the artifacts developed during software evolution.
After some time, this data becomes a valuable information source for solving maintenance
tasks.

One of the most used techniques for analyzing software repositories is data mining. The
term mining software repositories (MSR) describes investigations of software repositories
using data mining (Hassan, 2008).

Couplings have been defined as ‘‘themeasure of the strength of an association established
by a connection from one module to another’’ (Stevens, Myers & Constantine, 1974).
Change couplings are also described as files having the same commit time, author and
modification description (Gall, Jazayeri & Krajewski, 2003). Knowing which files were
frequently changed together can support developers in dealing with the large amount of
information about the software product, especially if the developer is new on the project,
the project started a long time ago or if the developer does not have significant experience
in software development.

Problem statement
Several researchers have proposed approaches of identifying coupled file changes to give
recommendations to developers (Bavota et al., 2013; Kagdi, Yusuf & Maletic, 2006; Ying
et al., 2004; Zimmermann et al., 2004; Hassan & Holt, 2004). Existing studies, however,
focus on the presentation of the mining results and expert investigations and they neglect
the feedback of developers on the findings as well as the impact of coupled changes on
maintenance tasks.

Research objectives
The overall aim of our research is to investigate the usefulness of coupled file change
suggestions in supporting developers who are inexperienced, new on the projects or
supposed to work on unfamiliar parts of the project. We provide suggestions for likely
changes so that we can explore how useful the suggestions are for the developers.

We identify couplings of files that are changed frequently together based on the
information gathered from the software project repository. We use the version control
system, the issue tracking system and the project documentation archives as data sources
for additional attributes. We join this additional information to the coupled changes that
we discover to build the suggestions.

The usefulness of coupled file changes is determined by analyzing their influence on the
correctness of the solutions and the time required for solving maintenance tasks.

Contribution
We present a controlled experiment on the usefulness of coupled change suggestions where
each of the 36 participants try to solve four different perfective maintenance tasks and
report their feedback on the usefulness of the repository attributes.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 2/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

RELATED WORK
Many studies have been dedicated to investigating software repositories to find logically
coupled changes, e.g., Bieman, Andrews & Yang (2003); Fluri, Gall & Pinzger (2005); Gall,
Hajek & Jazayeri (1998). We identify two granularity levels, the first one investigates the
couplings based on a file level (Kagdi, Yusuf & Maletic, 2006; Ying et al., 2004) and the
second scenario examines coupled changes identified between parts of files like classes,
methods or modules (Fluri, Gall & Pinzger, 2005; Kagdi, 2007; Zimmermann et al., 2004;
Zimmermann et al., 2006; Hassan & Holt, 2004). In our study, we use coupled file change
on a file level.

The majority of the studies dealing with identifying coupled changes use some kind of
data mining for this purpose (German, 2004; Hattori et al., 2008; Kagdi, Yusuf & Maletic,
2006; Shirabad, Lethbridge & Matwin, 2003; Van Rysselberghe & Demeyer, 2004; Ying et al.,
2004; Zimmermann et al., 2004). Especially the association rules technique is often used to
identify frequent changes (Kagdi, Yusuf & Maletic, 2006; Ying et al., 2004; Zimmermann et
al., 2004). This datamining technique uses various algorithms to determine the frequency of
these changes. Most of the studies employ the Apriori algorithm (Kagdi, Yusuf & Maletic,
2006; Zimmermann et al., 2004). However, other faster algorithms like the FP-growth
algorithm are also in use (Ying et al., 2004). We generate the coupled file changes using the
frequent item sets analysis and the FP-growth algorithm.

Most of the studies use a single data source where some kind of version control system
is investigated, typically CVS or Subversion. There are few studies which investigate a Git
version control system (Bird et al., 2009; Carlsson, 2013). Other studies combine more than
one data source to be investigated, like the version control system and an issue tracking
system (Canfora & Cerulo, 2005; D’Ambros, Lanza & Robbes, 2009; Fischer, Pinzger & Gall,
2003; Wu et al., 2011) where the data extracted from these two sources is analyzed and the
link between the changed files and issues is determined. We use three different sources for
the additional attributes: the Git versioning history, the JIRA issue tracking system and the
software documentation.

To the best of our knowledge, there are few studies investigating how couplings align
with developers’ opinion or feedback. Coupling metrics on structural and semantic levels
are investigated in Revelle, Gethers & Poshyvanyk (2011). The developers were asked if they
find these metrics to be useful. They show that feature couplings on a higher level of
abstraction than classes are useful. The developers’ perceptions of software couplings are
investigated in Bavota et al. (2013). Here the authors examine how class couplings captured
by different coupling measures like semantic, logical and others align with the developers’
perception of couplings.

The interestingness of coupled changes is also studied in Ying et al. (2004). This study
defines a categorization of coupled changes interestingness according to the source code
changes. In Ramadani & Wagner (2016), the feedback on the interestingness of coupled file
changes and attributes from the software repository was investigated. In our experiment we
extend the findings of this case study and investigate the usefulness of coupled file changes
and the corresponding attributes.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 3/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

The categorization of changes of a software product related to the maintenance task
categories defined in Swanson (1976) has been previously investigated (Hindle, German &
Holt, 2008; Purushothaman & Perry, 2005). The authors in Purushothaman & Perry (2005)
classified small changes based on their purpose and implementation. The changes on the
software in large commits have been categorized in Hindle, German & Holt (2008). They
define categories to identify the types of the addressed issues and the types of the changes in
large commits. Similarly, we classify the issues related to the changes on the system based
on the defined maintenance categories. Furthermore, we classify the changes on the system
based on the most involved functionalities.

Various experiments involving maintenance tasks have been described in the
literature. Nguyen, Boehm & Danphitsanuphan (2011) deal with assessing and estimating
software maintenance tasks. De Lucia, Pompella & Stefanucci (2002) investigate the effort
estimation for corrective software maintenance. Ricca et al. (2012) perform an experiment
on maintenance in the context of model-driven development. Chan (2008) investigates the
impact of programming and application-specific knowledge on maintenance effort. In our
experiment, we explore how the coupled file change suggestions influence the correctness
of performing maintenance tasks and the time required to solve these tasks.

BACKGROUND
Software maintenance
Software maintenance includes program or documentation changes to make the
software system perform correctly or more efficiently (Shelly, Cashman & Rosenblatt,
1998). Software maintenance has been defined in the IEEE 1219 Standard for Software
Maintenance (IEEE, 1998) to be a software product modification after delivery to remove
faults, improve performance or adapt the environment. In the ISO/IEC 12207 Life Cycle
Processes Standard (ISO/IEC, 2008), maintenance is described as the process where code
or documentation modifications are performed due to some problem or improvement.

Maintenance categories
Swanson (1976) defined three different categories of maintenance: corrective, adaptive
and perfective maintenance. The ISO/IEC 14764 International Standard for Software
Maintenance (ISO/IEC, 2006) updates this list with a fourth category, preventive
maintenance, so we have the following maintenance categories (Pigoski, 1996):

• Corrective Maintenance: This type of maintenance tasks includes corrections of errors
in systems. Software product modifications are performed to correct the discovered
problems. It corrects design, source code and implementation errors.
• Adaptive Maintenance: This involves changes in the environment and includes adding
new features or functions to the system. Software product modifications are performed
to ensure software product usability in a changed environment.
• Perfective Maintenance: This involves changes in the system which influence its
efficiency. It also includes software product modifications to improve maintainability or
performance.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 4/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

• Preventive Maintenance: Here, the changes to the system are performed to reduce the
possibility of system failures in the future. It includes software product modification to
detect and remove failures before they materialize.

Data mining
Coupled file changes
To discover coupled file changes using data mining, we introduce the data technique that
we employ in our study. One of the most popular data mining techniques is the discovery
of frequent item sets. To identify sets of items which occur together frequently in a given
database is one of the most basic tasks in data mining (Han, 2005).

Coupled changes describe a situation where someone changes a particular file and also
changes another file afterwards. Let us say that the developer changes file f1 and then
frequently changes file f3. By investigating the transactions of changed files in the version
control system commits we identify a set of files that are changed together. Let us have the
following three transactions: T1=

{
f1,f2,f3,f7

}
, T2=

{
f1,f3,f5,f6

}
, T3=

{
f1,f2,f3,f8

}
. From

these three transactions, we isolate the rule that files f1 and f3 are found together: f1 and
f3 are coupled. This means that when the developers changed file f1, they also changed file
f3. If these files are found together frequently, this can help other persons by suggesting
that if they change f1, they should also change f3. Let F =

{
f1,f2,...,fd

}
be the set of all

items (files) f in a transaction and T = {t1,t2,...,tn} be the set of all transactions t . As
transactions, we define the commits consisting of different files. Each transaction contains
a subset of chosen items from F called item set. An important property of an item set is the
support count δ which is the number of transactions containing an item. We call the item
sets frequent if they have a support threshold minsup greater than a minimum specified by
the user with

0≤minsup≤ |F |. (1)

Data mining algorithm
Various algorithms for mining frequent item sets and association rules have been proposed
in literature (Agrawal & Srikant, 1994; Györödi & Györödi, 2004; Han, Pei & Yin, 2000).
We use the FP-Tree-Growth algorithm to find the frequent change patterns. As opposed
to the Apriori algorithm (Agrawal & Srikant, 1994) which uses a bottom-up generation
of frequent item set combinations, the FP-Tree-Growth algorithm uses partition and
divide-and-conquer methods (Györödi & Györödi, 2004). This algorithm is faster and more
memory-efficient than the Apriori algorithm used in other studies. This algorithm allows
frequent item set discovery without candidate item set generation.

Change grouping heuristic
There are different heuristics proposed for grouping file changes (Kagdi, Yusuf & Maletic,
2006). We apply a heuristic considering the file changes done by a single committer to be
related and do not include the changes done by other committers in the same group. We
use the complete version history of the project, however based on the ‘‘developer heuristic’’
we group the commits performed by a single developer. From each group of these commits
we extract files frequently changed together.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 5/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

EXPERIMENTAL DESIGN
In this sectionwe define the research questions, hypotheses andmetrics used in our analysis.

Study goal
We use the GQM approach (Basili, Caldiera & Rombach, 1994) and its MEDEA
extension (Briand, Morasca & Basili, 2002) to define the study goal. The goal of our study is
to analyze the usefulness of coupled file change suggestions. The objective is to compare the
correctness of the solution and the time needed for a set of maintenance tasks between the
group using coupled change suggestions and the group that does not use this kind of help.
The purpose is to evaluate how effective coupled file change suggestions are regarding the
correctness of the modified source code and the time required to perform the maintenance
tasks. The viewpoint is that of software developers and the targeted environment is open
source systems.

Research questions
We investigate the usefulness of coupled file change suggestions and the corresponding
repository attributes. In this study, we concentrate on perfective maintenance to have a
similar set of tasks. For that purpose we define the following research questions:
RQ1: How useful are coupled file change suggestions in solving perfective maintenance
tasks?
To determine the usefulness of the coupled file changes concept, we define the following
sub-questions:
RQ1.1: Do coupled file change suggestions influence the correctness of perfective
maintenance tasks?
We investigate if there is any difference in the correctness of the maintenance task solutions
between the group of developers who used coupled file change suggestions and the group
not using them.
RQ1.2: Do coupled file change suggestions influence the time needed to solve perfective
maintenance tasks?
We explore if the time that the developers need to complete the maintenance tasks differs
between the group using coupled change suggestions and the group not using these
suggestions. We consider two scenarios: The first one includes only the time needed to
solve the tasks, the second one also includes the time needed to select relevant coupled
file changes.
RQ2: How useful are the attributes from the software repository in solving perfective
maintenance tasks?
The second research question deals with the attributes from the versioning system, the
issue tracking system and the documentation. We investigate the perceived usefulness of
each attribute in the proposed set to understand which attributes are good candidates to
be provided to the developers.

Hypotheses
We formulate the following hypotheses to answer the research questions in our study.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 6/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

For RQ1.1 we define the following hypotheses: H0.1.1: There is no significant difference
in the correctness of perfective maintenance task solutions between the developers using
coupled file change suggestions and those not using these suggestions.
HA.1.1: There is a significant difference in the correctness of perfective maintenance task
between the developers who used coupled file change suggestions and those not using these
suggestions.
For RQ1.2 we address the following hypotheses:
H0.1.2: There is no significant difference in the time required to solve perfectivemaintenance
tasks between the developers who used coupled file change suggestions and the developers
not using these suggestions.
HA.1.2: There is a significant difference in the time required to solve perfective maintenance
tasks between the developers who used coupled file change suggestions and those not using
these suggestions.
To answer RQ2 we formulate the following hypotheses:
H0.2: There is no significant difference in the perceived usefulness among the attributes
from the software repository in the current set.
HA.2: There is a significant difference in the perceived usefulness among the attributes from
the software repository in the current set.

Experiment variables
We define the following dependent variables: the correctness of the solution after the
execution of the maintenance task, the time spent to perform the maintenance task and
the usefulness of the repository attributes. For the first variable, the correctness of the task
solution, we assign scores to each developer’s solution of the maintenance tasks.

Our approach is similar to the one presented by Ricca et al. (2012) where the correctness
of the solution of the maintenance task is manually assessed by defining scores from totally
incorrect to completely correct task solution. We define three scores: 0 if the developers
did not execute or did not solve the task at all, 1 if the task was partially solved and 2 if the
developer performed a complete solution of the maintenance task. The solutions are tested
using unit tests to ensure the correctness of the edited source code.

The second variable, the time required for executing the maintenance tasks is measured
by examining the screen recordings. We mark the start time and the end time for every
task. We calculate the difference to compute the total time needed to solve each task. We
differentiate the time needed only to solve the tasks ts and the time needed to determine
the relatedness of the coupled files tr . For the third variable, the usefulness of the repository
attributes, we use an ordinal scale to identify the feedback of the developers. The participants
can choose between the following options for each attribute: very useful, somewhat useful,
neutral, not particularly useful and not useful. We code the usefulness feedback using the
scoring presented in Table 1.

Experiment design
We distinguish two cases for the maintenance tasks: the first one includes tasks executed
on Java Code in the Eclipse IDE without any suggestions and the second one includes tasks

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 7/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

Table 1 Usefulness score.

Very useful Somewhat useful Neutral Not particularly useful Not useful

5 4 3 2 1

Table 2 Experiment design.

Lab Tasks

Lab 1 Tasks 1–2 (−) Tasks 3–4 (+)
Lab 2 Tasks 1–2 (+) Tasks 3–4 (−)

executed with additional coupled files suggestions and corresponding attributes from the
repositories. We use a similar approach to the one presented by Ricca et al. (2012) and
define two values: − for Eclipse only and + for the coupled file suggestions.

We use a counterbalanced experiment design as described in Table 2. This ensures that
all subjects work with both treatments: without and with coupled change suggestions.
We split the subjects randomly into two groups working in two lab sessions of two hours
each. In each session, the participants work on two tasks using only the task description
and on two tasks using coupled file change suggestions and their related attributes. The
participants in the second lab swapped the order of the tasks in the first lab.

Objects
The object of the study is an open source Java software called A-STPA. The source code
and the repository were downloaded from SourceForge (https://sourceforge.net/projects/
astpa/). The system was built mainly in Java by 12 developers at the University of Stuttgart
during a software project between 2013 and 2014. It represents an Eclipse-based tool for
hazard analysis. The source code contains 16,012 lines of code and 178 classes organized
in 37 packages. The Git repository of the project contains 1,106 commits from which we
extracted 205 coupled file changes.

Subjects
The experiment participants are 36 students from the Software Engineering course in
their second semester at the University of Stuttgart (Germany). The students have basic
Java programming and Eclipse knowledge and have not been related in any way with the
software system investigated in the experiment.

Materials, procedure and environment
All subjects received the following materials which can be found in the supplemental
material of this paper.

• Tools and code: The participants received the Eclipse IDE to work with, the screen
capturing tool and the source code they need to edit.
• Questionnaires: The first questionnaire is filled in at the start of the experiment and it is
related to their programming background. The second questionnaire performed at the
end of the experiment is about their feedback on the usefulness of coupled changes and
the additional set of repository attributes.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 8/33

https://peerj.com
https://sourceforge.net/projects/astpa/
https://sourceforge.net/projects/astpa/
http://dx.doi.org/10.7717/peerj-cs.135

• Software documentation: We provided the technical documentation for the software
system including the architecture description covering the sub-projects, the overview
of the classes in the data model, the application controllers, the graphic editor and the
package descriptions.
• Setup instructions: The participants received the instruction steps how to prepare the
environment, where to find the IDE, the source code and how to perform the experiment.
• Maintenance tasks and description: Every participant received spreadsheets with four
maintenance tasks and their free-text description. The maintenance tasks represent
quick program fixes that should be performed by the participants according to the
maintenance requests (Basili, 1990). The maintenance tasks used in the experiment
require the participants to add various enhancements to the system. The changes do not
influence the structure or the functionalities of the application. The tasks are related
to simple changes of the user interface of the system. All four maintenance tasks are
perfective and have been assigned to the participants in both groups.
• Set of coupled files: The files changed together frequently used to solve a similar tasks
have been provided to the group that uses coupled file changes.
• Repository Attributes: The attribute set from the versioning system, the issue tracking
system and the documentation about similar tasks performed in the system. They have
been joined to the coupled files using a mapping between the commits containing the
coupled files and the issues using their issue IDs.

The environment for the experiment tasks was Eclipse IDE on a Windows PC in both
treatments. For each lab, we prepared an Eclipse project containing the Java source code
of the A-STPA system. The project materials were made available to the subjects on a flash
drive. The participants had a maximum of two hours to fill the questionnaires and perform
the maintenance tasks.

Selection of change author
According to the used heuristic for grouping the change sets in the versioning history, we
need to select the authors of the changes whose data will be included in the analysis.

The selection process of the developers as authors of the source code changes is presented
in Fig. 1. Out of 12 developers who worked on the A-STPA software, after performing
the frequent itemset analysis, we have eight developers left whose entries in the repository
delivered coupled files.

We have four maintenance tasks to be solved in the experiment. For each of the tasks
we use commits from a different developer to avoid the influence of the authorship of the
commits on the tasks. Out of the eight developers we need to select four, one for each
maintenance task.

Selection of coupled files
After selecting the developers, we continue with the selection of the coupled files. The
process includes the selection of the most frequent coupled files followed by the selection
of relevant coupled files as presented in Fig. 1.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 9/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

Figure 1 Changes selection.
Full-size DOI: 10.7717/peerjcs.135/fig-1

Selection of the most frequent coupled files
We need to select the coupled files which we will include in the suggestions for the
developers in the experiment. For each of the four developers we list the most frequent
coupled files we have extracted. We sort the sets of coupled file changes by their frequency
in descending order, so on top of the list we have the most frequent set of coupled files.
We start selecting the sets of coupled files from the top of the list.

We do this for two main reasons: (1) To avoid a potential subjectivity in the selection
of the coupled files. (2) We want to use the strongest couplings, meaning the coupled files
which are frequent and did not happen by chance.

Selection of relevant coupled files
After identifying the most frequent coupled files, we examine their broader change context.
This means that we need to determine if they fulfill the requirements to be: (1) of perfective
nature and (2) related to modifications in the user interface of the application.

We determine this change context using a manual analysis of the content of the commit
messages where the coupled file changes were included as well as the description of the
related issues. To perform this, we use the mappings between the commit messages and
the issue IDs provided as part of the corresponding repository attributes we added to the
coupled file changes.

Classification of issues
We classified the issues for the examined software systems using the approach proposed in
Hindle, German & Holt (2008). We determine the following classes of issues:

• Corrective: These issues cover failures related to the processing or performance of the
software.
• Adaptive: These changes include modifications related to the data and the processing
environment.
• Perfective: The changes include modifications related to performance, maintenance or
usability improvements.
• Implementation: These tasks include new requirements for the software system.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 10/33

https://peerj.com
https://doi.org/10.7717/peerjcs.135/fig-1
http://dx.doi.org/10.7717/peerj-cs.135

• Other: These include changes that are not functionally related to the system like
copyright or control version system related issues.

We go further and classify the perfective changes based on the most frequently involved
system functionalities. For example, we want to know how many perfective issues have
been defined for the user interface of the application and what are the main parts of this
interface addressed in these issues. This way we expose the representativeness of the selected
coupled file changes and the defined tasks for the software system we examine.

Definition of tasks
After we determined the sets of coupled file changes which fulfill the requirements of the
experiment, we continue with the definition of the tasks the participants need to solve.

Firstly, we determine the change context of the selected coupled file sets more precisely
by looking up repeatedly in the related commit messages and the issue description. This
identifies the functionality the file changes are related to. We use the mapping of the issue
IDs and the commit messages to follow up this information. After we identified the issues
related to sets of relevant coupled file changes, we define perfective maintenance tasks
related to similar functionalities covered in these issues. For example, in Table 3 we have
an issue extracted from the issue tracking system of the A-STPA product which defines
that a new item in the application view should be created using a keyboard shortcut. The
commit message for the changes solving this task represents the comment of the developer
who placed the shortcut. Considering the described functionality, we create a task where
the developer needs to create a new shortcut combination for that purpose. In the same
manner, we repeat the procedure for each of the relevant coupled files that we have selected
and define four tasks.

The content of the text description of the tasks is related to the content of the issues we
extracted from the issue tracking system. We keep the content of the task definitions very
simple. They contain the functionality or the part of the system which has to be changed
and the action to be performed. This makes it easier to replicate the process using other
software products and their repositories.

Tasks and coupled file changes
Our goal is for each of the tasks to provide coupled file changes related to their context.
This feature is of great importance for the study. Offering unrelated coupled file can be
misleading and confusing for the developers.

We can extend the examination of the commit messages content and the issue
descriptions to determine the change context as a part of a tool using natural-language
processing techniques. We can compare the content of the user input or the issue content
with the comments in the commit messages or issue description we mapped to the coupled
file change sets. However, this exceeds the scope of this study and can be considered as
future work.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 11/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

Table 3 Task information and coupled file changes. .

User task Task solution file set

Change the shortcut for adding new items in all the
user interface views from ‘‘SWT.KeyDown and ‘n’’’ into
‘‘SWT.KeyUp and ‘y’’’

ControlActionView.java
SystemGoalView.java
DesignRequirementView.java
SafetyConstraintView.java
HazardsView.java
AccidentsView.java

Related commit Suggested coupled changes

I have set a simple shortcut
for new items to be ‘‘n’’,
which can be quickly
changed if needed.

ControlActionView.java
DesignRequirementView.java
SafetyConstraintView.java
AccidentsView.java

Related issue

Using a keyboard shortcut,
a new item should be created
in the application views.

Solution of tasks
The complete list of files included in the task solutions are defined manually by analyzing
the solutions of the related issues and evaluated by an independent party.

An example of the relation between the files included in the solution for a particular
maintenance task and the set of coupled file changes is presented in Table 3. Here, we can
see that to be able to solve the mentioned task, the developer needs to change six files which
are related to the views of the application.

The coupled change suggestion based on an issue related to the defined task recommends
four files to be changed. These files were extracted from the version history have been
changed frequently together in the past.

We would like to point out that the file change suggestions do not represent the solutions
for a particular task in the experiment. The solution usually contains more files than the
provided suggestions. Although the provided suggestions contain a subset of the solution
set, the developers still need to find the location in the source code meaning the method or
the class that they need to modify in order to solve the tasks. This is finer grain information
that we do not provide in our coupled files. The developers still have to read the repository
attributes and decide if they want to follow the coupled file change suggestions.

Maintenance activities
After receiving the task description, the participants investigate the source code of the
application, identify the files where the changes are needed and perform the changes
according to the requirement. The scenario for solving the provided maintenance tasks
includes the following activities (Nguyen, Boehm & Danphitsanuphan, 2011):

• Task understanding: First of all, the participants need to read the task description and
the instructions and prepare for the changes. They can ask if they need some clarification
about the settings and the instructions.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 12/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

1The questionnaires are available in the
supplemental material of this paper.

• Change specification: During this step, the participants locate the source code they need
to change, try to understand and specify the code change.
• Change design: This step includes the execution of the already specified source code
changes and debugging the affected source code.
• Change test: To specify the successfulness of the performed code changes, a unit test
needs to be performed. This step is performed by the experiment organizers after the lab
sessions.

Data collection procedure
We collect data from several sources: the software repository of the system, the
questionnaires, the provided task solutions and the screen capture recordings.

Software repositories
• Version Control System: The first data source that we use is the log data from the version
control system. The investigated project uses Git as a control management tool. It is a
distributed versioning system allowing the developers to maintain their local versions of
source code. This version control system preserves the possibility to group changes into
a single change set or a so-called atomic commit regardless of the number of directories,
files or lines of code that change. A commit snapshot represents the total set of modified
files and directories (Zimmermann et al., 2004). We organize the data in a transaction
form where every transaction represents the files which changed together in a single
commit. From this data source we extract the coupled file changes and the commit
related attributes.
• Issue Tracking System: It stores important information about the software changes or
problems. In our case, the developers used JIRA as their issue tracking system. This data
source is used to extract the issue-related attributes.
• Project Documentation: The software documentation gathered during the development
process represents a rich source of data. The documentation contains the data model
and code descriptions. From these documents, we discover the project structure. For
example, in the investigated project, the package containing the files described by the
following path: astpa/controlstructure/figure/, contains the Java classes responsible for
the control diagram figures of this software. We use the documentation to identify the
package description.

The complete set of attributes we extract from the software repository is presented
in Table 4.

Questionnaire
Thedevelopers answer a number ofmultiple-choice questions.Using the first questionnaire,
we investigate the developers’ programming background. We use a second questionnaire
after the tasks are solved in order to gather the feedback on the usefulness of coupled
changes and the additional attributes.1

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 13/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

Table 4 Repository attributes description.

Attribute name Attribute description

Commit ID Unique ID of Git commit
Commit message Free-text comment of the commit in Git
Commit time Time-stamp of committed change in Git
Commit author Person who executed the commit
Issue description Free-text comment on issue to be solved
Issue type Type of the issue: bug, feature
Issue author Person who created the issue to be solved
Package description Free-text description of the package: layer, feature

Tasks completion
Similar to other studies (Chan, 2008; Nguyen, Boehm & Danphitsanuphan, 2011; Ricca et
al., 2012), we define two factors which represent the completion of the maintenance tasks:

• Correctness of solution: We determine the correctness of the solution by examining
the changed source code if the solution satisfies the change requirements. We use the
scoring presented previously where we summarize the points each developer gathers
for each of the four tasks. The score is added next to each of the participants for both
treatments, with and without using coupled file changes.
• Time of task completion (ts): This represents the time measured in minutes the
developers spent to solve the maintenance tasks. Having a scenario where the developers
only need to solve the tasks, the selection of the coupled files is not included in the total
time for the tasks. It does not include the time needed to determine the relatedness of the
coupled files for a specific task. The completion time could be automatically determined
using a tool implementation or as part of an analysis procedure and does not represent
part of the developer task solution. We use a screen capturing device to record the time
that each participant spends solving each of the four tasks. We record the time needed
for each task in both treatments.
• Time required to determine the relevance of the coupled files (tr): This represents the
time needed to determine the change context of each of the coupled files related to the
tasks. Considering a worst-case scenario, the selection of the coupled files has to be
performed by the developers and the time needs to be calculated for the group using
coupled file change suggestions. In this case, the total time needed for each of the tasks
is the sum (tr + ts) of the time needed to select the coupled files and the time to solve
the task. Given the task list, the coupled files list and the issue list, we record the time
the developers need to go through the process of determining the change context of the
coupled files we examine for a given task. We use three additional developers to measure
the time required to determine the context of each of the coupled file changes related to
the tasks.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 14/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

Data analysis procedure
To be able to test our hypotheses, we need to analyze the usefulness of the coupled file
changes and the usefulness of the attributes from the software repository. We perform the
analysis using the SPSS statistical software.

Usefulness of coupled file changes
The main part of the analysis is the investigation of the usefulness of the coupled changes.
For this purpose we compare the scores of each task solution and the amount of time
needed for solving the tasks in both groups: without using coupled file suggestions and
with using of coupled file suggestions.

For the time needed for the solution, we only use the values for the accomplished tasks.
This way we assure that the values for the unsolved tasks do not corrupt the overall values
for the time needed to successfully solve the tasks.

Here we have two main scenarios. The first one includes only the time the developers
need to solve the tasks. The second scenario also includes the time needed to select the
coupled files set related to a specific maintenance task. We calculate the mean time for a
particular task. Furthermore, we repeat the calculation for each participant on the task. At
last, we determine the grand mean as the average of all the means of the time values for
each of the tasks determined by the participants, weighted by the sample size. In our case
this is the number of coupled files.

Having k populations or tasks, the ith observation is tri which is the j(i)th coupled files
set. We write j(i) to indicate the group associated with the observation i. Let i vary from
1 to n, which is the total number of samples, in our case, these are the coupled files, j
varies from 1 to k, the total number of tasks. There are a total of n observations with nj
observations in sample j: n= n1+···+nk . The grand mean of all observations is calculated
using the formula:

tr =
k∑

j=1

(nj
n

)
trj (2)

here, tr is the average of the sample means, weighted by the sample size (Hanlon &
Larget, 2011).

To determine the usefulness of coupled file changes, we test the overall difference in the
correctness of solving the tasks using the two-tailed Mann–WhitneyU test. It is used to test
hypotheses where two samples from the same population have the same medians or that
one of them has larger values, so we test the statistical significance of difference between
two value sets.

Determining an appropriate significance threshold defines whether the null hypothesis
must be rejected (Nachar, 2008). If the p-value is small, the null hypothesis can be rejected
meaning that the value sets are different. If the p-value is large, the values do not differ.
Usually a 0.05-level of significance is used as threshold. The p-value is not enough to
determine the strength of the relationship between variables. For that purpose we report
the effect size estimate (Tomczak & Tomczak, 2014).

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 15/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

We use a conservative approach where we test the difference in the correctness of our
tasks. Without differentiating the tasks, we compare all the solutions of the tasks using
coupled file changes and the tasks performed without any suggestion. We repeat the
same approach to test the overall difference between the time needed to solve the tasks
using coupled change suggestions against the tasks solved without the help of coupled
file changes.

We use the SPSS statistical software and its typical output for the Mann–Whitney U
Test whereby the p-value of the statistical significance in the difference between the two
groups is reported. The mean ranking determines how each group scored in the test. To
support statistical difference between the samples, we calculate the r-value of the effect size
proposed in (Cohen, 1988) using the z value from the SPSS output (Fritz, Morris & Richler,
2012). A value of 0.5 determines a large effect, 0.3 means medium effect and 0.1 identifies
a small effect (Coolican & Taylor, 2009). Given that we have a study which is restricted to
a small number of comparisons, we do not adjust the p-value using a procedure like the
Bonferroni correction (Armstrong, 2014).

Usefulness of attributes
We analyze the feedback from the questionnaire investigating which attributes are useful.
We investigate every attribute in the set extracted from the versioning system, the issue
tracking system and the documentation as previously presented. For that purpose we use
the Kruskal–Wallis H test, an extension of the Mann–Whitney U test. Using this test, we
determine if there are statistically significant differences between the medians of more
than two independent groups. We test the statistical significance between more than two
value sets. The significance level determines if we can reject the null hypothesis. p-values
bellow 0.05 mean that there is a significant difference between the groups (Pohlert, 2014).
To determine the effect size for the Kruskal-Wallis H test, we calculate the effect sizes for
the pairwise Mann–Whitney U tests for each of the attributes using the z statistic. We
individually calculate the r-value for the effect size for each pair comparison. The r-value
is calculated using the following formula:

r =
z
√
N
. (3)

Our approach tests the differences in the feedback about the usefulness between all the
attributes for all 36 participants. This way we identify which attributes we should offer to
the participants when solving their tasks together with the coupled file change suggestions.
Using SPSS, we provide the statistical significance values of the difference between all eight
attributes. The ranking of the means for the feedback on the usefulness values determine
the most useful attributes.

Execution procedure
• Log Extraction: We extract the information from the Git log containing the committed
file changes and the attributes. The log data is exported as a text file and the output is
managed using proper log commands.
• Data preprocessing: After the text files with the log data have been generated, we
continue with the preparation of the data for mining. Various data mining frameworks

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 16/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

use their own format, so the input for the data mining algorithm and framework needs
to be adjusted.
• Support threshold: To begin the investigation, we need to extract coupled file changes
from the software repository. We extract the coupled changes by defining the threshold
value of the support for the frequent item set algorithm. We use the thresholds that
give us a frequent yet still manageable number of couplings. This threshold is normally
defined by the user. We use the technique presented in (Fournier-Viger, 2013) to identify
the support level. These values vary from developer to developer, so we test the highest
possible value that delivers frequent item sets. If the support value does not yield any
useful results for a particular developer, we drop the value of the threshold. We did not
consider item sets with a support rate below 0.2, meaning the coupled changes should
have been found in 20 percent of the commits.
• Mining Framework: There is a variety of commercial and open-source products
offering data mining techniques and algorithms. For the analysis, we use an open-source
framework specializing in mining frequent item sets and association rules called the
SPMF-Framework (http://www.philippe-fournier-viger.com/spmf). It consists of a large
collection of algorithms supported by appropriate documentation.
• Experiment preparation: We prepare the environment by setting up the source code
and the Eclipse where the participants will work on the tasks. We define the maintenance
tasks and provide the free text description. We prepare the coupled file changes and
the attributes from the software repository to be presented to the participants in the
experiment.
• Solving tasks: The participants in both groups work for two hours in two labs and
provide solutions for the maintenance tasks. The solution and the screen recording are
saved for further analysis.
• Material gathering: We gather the questionnaires, the edited source codes and the video
files of the participants screens for further analysis.
• Solution analysis: We analyze the scores for the correctness of the maintenance tasks,
calculate the time needed for solving the tasks and determine the influence of the coupled
file changes on the task solution.

RESULTS AND DISCUSSION
The complete list of themaintenance tasks, the coupled file changes, the software repository
attributes, the questionnaires and the analysis results can be found in the supplemental
material of this paper.

Participants
The participants’ feedback about their background reports that most of them have around
one year of programming experience and less than one year of experience with versioning
and issue tracking systems. None of them answered to be in any way involved on the
A-STPA project.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 17/33

https://peerj.com
http://www.philippe-fournier-viger.com/spmf
http://dx.doi.org/10.7717/peerj-cs.135

Table 5 Issue classification.

Issue category Frequency %

Corrective 217 31.77
Implementation 169 24.74
Perfective 146 21.38
Adaptive 85 12.45
Other 66 9.66

Table 6 Perfective issues.

Change category Frequency %

Views 74 49,01
Control structure 34 22,52
Menus 22 14,57
Non functional source changes 13 8,61

Issues classification
Based on the proposed classification from Hindle, German & Holt (2008), we classified
the issues from the issue tracking system related to commits in the Git version history
as presented in Table 5. Here we can see that most changes of the system are corrective,
implementation and perfective issues.

Further, we examined the perfective issues in more detail to determine to which parts of
the system they are related. We have identified several classes of perfective issues related to
the main functionalities of the system that we investigated in the experiment as presented
in Table 6.

The most frequent perfective issues are related to changes to the view elements of the
system user interface responsible for the visualization of the hazard analysis steps including
their layout, tables, grids, text fields, buttons, icons and labels. These changes have been
organized in the class called Views.

The next class called Control Structure is composed by the issues which handle the
changes related to the control structure functionality of the user interface. It is responsible
for drawing the diagrams, connects the layout components and includes changes on the
diagram elements like objects, labels and connections.

The following class we callMenus is related to the issues associated to the user interface
menus which are used to manipulate the creating and editing of project elements including
changes in the wizards, the actions, labels and icons.

The last class includes the issues covering non-functional changes in the source code
like cleanups, refactoring or formatting.

The task distribution in the experiment corresponds to this classification. We have
defined two tasks for the application views, one task for the menus and one task for the
control structure of the user interface.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 18/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

Figure 2 Task correctness distribution.
Full-size DOI: 10.7717/peerjcs.135/fig-2

Usefulness of coupled file changes
As we already explained, we operationalize the usefulness of coupled file changes by their
influence on the correctness of the solutions and the time needed to solve the tasks.

Correctness
We summarize the correctness distribution as presented in Fig. 2. On the y-axis we have
the frequency of occurrence and on the x-axis the score of solving of the tasks. Here, the
observations are grouped based on the presence of coupled change suggestions during the
maintenance task solution. From this figure we see that the participants achieved better
scores using the coupled file change suggestions we provided.

We investigate the correctness difference of both groups by testing the first null
hypothesis of the first research question claiming that there is no significant difference in
the correctness of the task solutions.

Applying the Mann–Whitney U Test results in a p-value of 0.000 as presented in
Table 7. This result has to be lower than the threshold of 0.05, so this null hypothesis can
be rejected. This means that there is a statistically significant difference in the correctness
of the solution for the provided tasks when using coupled file change suggestions against
the correctness of the solutions only using the provided task description. The r-value of
the effect size for the correctness is 0.448 which describes a strong statistical difference in
the correctness of the maintenance task solutions between the groups that did or did not
coupled change suggestions.

In Table 8, we represent the descriptive statistics for the correctness of the task solutions.
The participants which used the suggestions solved 63.8% of the tasks completely, whereby

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 19/33

https://peerj.com
https://doi.org/10.7717/peerjcs.135/fig-2
http://dx.doi.org/10.7717/peerj-cs.135

Table 7 Statistical significance (Coupled changes).

Depend. Variable p-value r-value

Correctness 0.000 0.448
Time effort 0.041 0.259

Table 8 Descriptive statistics for the correctness of the tasks.

Without suggestions (−) With suggestions (+)

Completely solved tasks Median MAD Completely solved tasks Median MAD

22% 1 1 63.8% 2 0

the participants not using suggestions solved only 22%of the tasks. This shows a significantly
higher score for the group using coupled change suggestions.

The median absolute deviation (MAD) value for the group using coupled changes is 0,
whereby the value for the group not using coupled changes is 1. These values show that
the correctness score is spread very close to the median for the score of the first group. The
statistical results provide evidence that the coupled file changes significantly influenced the
correctness of the maintenance tasks in the experiment. Inexperienced developers solved
more tasks when using our suggestions which means they used the benefit of hints related
to similar tasks. The coupled change suggestions allow the developer to follow a set of
files and remind him/her that similar tasks include changes in various locations in the
source code.

The improvement in the number of solved tasks for the group using the coupled change
suggestions shows that developers have used the benefits of additional help in locating the
features and the files to be modified to solve their tasks successfully. The group that did
not use this kind of help did not succeed in solving the same or a higher number of tasks
which points to the usefulness of our approach.

The use of coupled file changes has been especially noticed in cases where the developer
needs to perform similar changes in several locations, like editing different views of the
application GUI. Here, the developers not using coupled change suggestions missed
implementing the change in all the files where the change should have been performed.
Coupled file change suggestions help the developers not to miss other source code locations
they need for their task.

Time
We analyzed the influence of using coupled file change suggestions on the time needed to
successfully perform the tasks versus not using them. Many participants used split-screen
and kept the documentation window open so we were not able to subtract the time spent
reading the documentation from the total amount needed to solve the tasks.

The distribution of the values for the time needed to solve the tasks is presented in
Fig. 3. We see that the distributions are similar with a slight tendency for more time needed
to solve the tasks without suggestions.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 20/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

Figure 3 Time Boxplots (ts).
Full-size DOI: 10.7717/peerjcs.135/fig-3

We test the second null hypothesis which claims that there is no influence of the coupled
file changes on the time needed to solve the tasks.

The distribution including the time to determine the relatedness of the coupled files is
presented in Fig. 4. Considering only the time needed to solve the tasks (ts), the p-value for
the two tailed test is 0.041. This value is slightly below the 0.05 threshold for the significance
of the difference in the time needed to solve the tasks by the group using coupled file changes
versus the group that didn’t. Therefore, we reject the null hypothesis. The r-value for the
time needed to solve the maintenance tasks is 0.259 which shows a relatively small statistical
difference between the group that used coupled change suggestions and the group that did
not.

Considering the case where we include the time to select the coupled files to the time
needed to solve the tasks (tr+ ts), we can see that there is almost no difference in the time
measured for the group not using the coupled files and the group using coupled files. Here,
the p-value for the total time is 0.987, which means that in this case the null hypothesis
cannot not be rejected.

The r-value for the total time is 0.02, which emphasizes this small difference between
using and not using coupled file change suggestions.

After calculating the grand mean for tr , we added three more minutes to the amount
of time for the task solution and included it in the analysis of the difference between both

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 21/33

https://peerj.com
https://doi.org/10.7717/peerjcs.135/fig-3
http://dx.doi.org/10.7717/peerj-cs.135

Figure 4 Time Boxplots (tr+ ts).
Full-size DOI: 10.7717/peerjcs.135/fig-4

groups regarding the use of coupled file change suggestions. The time needed to determine
the related coupled files for the additional participants is presented in Table 9.

For the total time including the time needed to select the coupled files, we add the
number of considered coupled files per task and the mean time the developers needed to
select the coupled files for the particular task.

The descriptive statistics in Table 10 for the time needed to solve the tasks report a
decrease in the means for the time needed to solve the tasks by 26% for the group using
coupled change suggestions. The means ranking reports slightly better results for the group
using coupled file changes, which means that the participants of this group solved their
tasks slightly faster. The standard deviation for the group using coupled changes is twice
lower than for the group not using coupled changes which shows a higher spread-out for
the first group. Including the time needed to select the coupled files, the values are almost
the same for both groups.

From the results, we can see that in this case, because of the additional time we added
for each of the participants, there is almost no difference between the mean values which
tells us that the group using coupled files did not manage to solve the tasks faster.

The results related to the task selection time show a small improvement for the time
needed to solve the tasks. The developers using coupled change suggestions needed less
time to find the files to be changed. Without coupled file changes, they would need to
search for the features and files in the source code they need to edit.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 22/33

https://peerj.com
https://doi.org/10.7717/peerjcs.135/fig-4
http://dx.doi.org/10.7717/peerj-cs.135

Table 9 Time to determine related coupled files.

Time (minutes)

Task 1 Task 2 Task 3 Task 4

Participant 1
Coupled files 1 3 4 3 3
Coupled files 2 5 3 2 2
Coupled files 3 3 2 – –

Participant 2
Coupled files 1 2 2 2 3
Coupled files 2 2 2 2 2
Coupled files 3 2 2 – –

Participant 3
Coupled files 1 2 4 5 2
Coupled files 2 2 4 2 2
Coupled files 3 2 2 – –

All participants
Mean (coupled files) 2.55 2.55 2.66 2.33
Grand mean (tasks) 3.41

Table 10 Descriptive statistics for the time needed in minutes.

Median Mean Stand. Dev.

Without suggestions 12 13.50 7.403
With suggestions (ts) 9 9.11 3.837
With suggestions (tr+ ts) 12 12.33 4.158

The improvement in the time needed to solve the tasks for the group using the coupled
file changes is not as strong as the improvement in the correctness of the task solutions.
It does not eliminate the time that the developers need to understand the features and
the changes they need to perform in the source code. They still need time to organize this
information and use it. Furthermore, they need to read and understand the suggestions.
Coupled file change suggestions do not automatically provide a solution for solving their
tasks.

If we include the time needed to select the coupled files, the results show that there is
no improvement for the group using the coupled file change suggestions. If the coupled
files need to be determined by the developers as a part of the task solution procedure, the
small advantage for the groups using the suggestions disappears. An automated extraction
of coupled file change suggestions including the determination of their relatedness could
therefore be beneficial.

Usefulness of software repository attributes
The distribution of the usefulness of each repository attribute is presented in Fig. 5. The
mean values for the usefulness of each of the repository attributes have been determined
using the feedback of all participants in the experiment.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 23/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

Figure 5 Usefulness of attributes.
Full-size DOI: 10.7717/peerjcs.135/fig-5

We test the third null hypothesis which claims that there is no difference in the usefulness
between the attributes using the p-value of the Kruskal-Wallis H Test. In our case, the p-
value for this test is 0.000 which is lower than the 0.05 threshold. This result leads us to
reject the null hypothesis. This means that the alternative hypothesis claiming that there is
a significant difference in the perceived usefulness among the attributes from the software
repository is true.

We reported a set of various software attributes from the software repository. The
participants reported their feedback on their usefulness at the end of the experiment lab
after the tasks had been performed.

We gathered the descriptive statistics for the participants’ feedback on the usefulness
of each attribute presented in Table 11. The median values vary from 3 for the commit
ID, the commit author, the commit time, the issue author and the issue time, to 4 for the
commit message and the package description. This places the cutoff between ‘‘neutral’’
and ‘‘somewhat interesting’’ for most of the attributes. The MAD value for all attributes is
1, which shows a low spread out of the usefulness values around the median.

We calculated the r-value of the size effect for the repository attributes by creating pairs
of each of the attributes where we determined the z-value of the Mann–Whitney test for
each pair as presented in Table 12. We have 28 pairs of attributes.

The greatest difference in the usefulness is between the commit time and the issue
description where the r-value is 0.566, followed by the difference between the commit
time and the package description with an r-value of 0.557. This indicates a high statistical
significance between these pairs of attributes. The lowest difference is between the commit

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 24/33

https://peerj.com
https://doi.org/10.7717/peerjcs.135/fig-5
http://dx.doi.org/10.7717/peerj-cs.135

Table 11 Descriptive statistics (attributes usefulness).

Attribute Median MAD

Package description 4 1
Issue description 4 1
Commit message 4 1
Issue type 3 1
Commit ID 3 1
Commit author 3 1
Issue author 3 1
Commit time 3 1

Table 12 Statistical significance (coupled changes).

p-value r-value Repository attribute pairs

0.180 0.279 commit ID Commit message
0.972 0.004 commit ID Commit author
0.249 0.136 Commit ID Commit time
0.000 0.467 Commit ID Issue description
0.108 0.190 Commit ID Issue type
0.624 0.058 Commit ID Issue author
0.000 0.465 Commit ID Package description
0.022 0.270 Commit message Commit author
0.001 0.400 Commit message Commit time
0.048 0.233 Commit message Issue description
0.582 0.065 Commit message Issue type
0.004 0.336 Commit message Issue author
0.220 0.269 Commit message Package description
0.228 0.142 Commit author Commit time
0.000 0.459 Commit author Issue description
0.122 0.182 Commit author Issue type
0.599 0.062 Commit author Issue author
0.000 0.464 Commit author Package description
0.000 0.566 Commit time Issue description
0.008 0.311 Commit time Issue type
0.476 0.084 Commit time Issue author
0.000 0.557 Commit time Package description
0.118 0.279 Issue description Issue type
0.000 0.526 Issue description Issue author
0.530 0.074 Issue description Package description
0.039 0.244 Issue type Issue author
0.009 0.308 Issue type Package description
0.000 0.515 Issue author Package description

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 25/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

ID and the commit author, here the r-value is 0.004, followed by the difference between
the commit ID and the issue author with an r-value of 0.058. This shows that there are
significant differences in the usefulness between individual attributes.

We determined that the attributes have different usefulness using the feedback of the
participants. The median ranking defines which of the attributes are most useful. As the
most useful attribute we identify the package description followed by the issue description
and the commit message. This leads us to the conclusion that the inexperienced developers
seek for help about the features of the source code that they need to edit and the task that
they have to complete.

The issue type and the commit time are in the middle of the list. The most useless
attribute is the commit author followed by the issue author and the commit id. Here, we
suppose that the developers are not interested in the information regarding who performed
the changes because they do not know this person. This could change if the developers
were included in the project for a longer time.

Although we produced a list of typical repository attributes, the participants have
identified a smaller set of attributes to be useful for them than we provided in this
experiment. This means that we do not have to present all the attributes to the developers
together with the coupled files for the reason that different developers can happen to
find some attributes as obsolete to be included in the coupled file change suggestions. An
individual choice of useful attributes can avoid confusion and increase the acceptance of
the coupled file change suggestions concept.

Threats to validity
• Internal Validity: Potential internal validity threats can rise from the experiment design.
To limit the learning effect, we use a counterbalanced design where every developer
solves four different tasks where each of them solves two tasks without and two tasks
using coupled change suggestions. This way the results are not directly influenced by the
task supported by the coupled file suggestions.
Other validity threats related to the experiment design are the selection of the coupled
file changes, the creation of the maintenance tasks as well as their definition and solution.
We extracted coupled files using a relatively high threshold which limits the possibility
to provide suggestions for coupled changes that happened by chance.
We selected the most frequent coupled files for each of the developers to avoid subjective
interference. We also avoided delivering unrelated changes in order not to confuse the
developer by providing suggestions out of the context.
The maintenance tasks were constructed manually. However, they are related to issues
from the issue tracking system and fulfill the conditions set in the experiment to be
perfective and related to changes of the user interface.
We classified the issues on the system based on the maintenance categories to show the
representativeness of ourmaintenance tasks. The content includes a simple description of
the functionalities and the required actions in order not to overwhelm the inexperienced
developers by providing unnecessary information.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 26/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

The set of files included in the solution of the tasks was provided by manually analyzing
related issue solutions. We validated the task solutions using a third party.
The judgment of correctness of the developers’ task solutions represents another internal
threat whereby we test the solutions to determine the level of correctness.
The time needed to determine the relatedness of the coupled files can differ. To avoid
an influence by particular tasks, we calculate the average time per coupled file set and
calculate the grand mean for all tasks. We used independent student participants for the
measurement of the time needed to select the related coupled files.
Also the metrics that we used to determine the usefulness can represent a threat. The
subjective usefulness rating represents another construct validity whereby we evaluate
the provided task solutions pairwise to minimize the errors in conducting the score
distribution. For the time needed to solve the tasks, we play the captured screens of the
participants to calculate the time the developers needed to solve the tasks.
• External Validity: The external validity threat concerns the generalization of the
experiment. The main threats here are related to the choice of the coupled file changes,
the type and description of the maintenance tasks as well as the participants and the
system we investigate.
We used a data mining technique that can be easily performed on other Git repositories
to extract coupled file changes. Our approach uses mapping between the commits and
the issues which excludes the projects not using them. However, this practice is used very
often today.We can findmany projects in various on-line software repository collections
like GitHub using this kind of mapping and providing issue and project description.
We chose simple perfective tasks that can be easily replicated and do not require
large changes in the source code. The description of the tasks is simple and includes
the source code functionalities to be changed and the activities without any specific
format or structure. This way we maintain the possibility to repeat the process for other
projects and limit the possibility of creating artificial conditions specially tailored for
our experiment. Yet, it is not clear whether the results can be generalized for other types
of maintenance tasks.
The student participants in the experiment have basic programming experience which
corresponds to the target group of our study to address inexperienced developers.
The system we used for the experiment is an open source Java project with a clear project
structure and repository. It does not contain specific information that can challenge the
replication of the analysis.

CONCLUSION AND FUTURE WORK
From the provided results, we summarize that the coupled file change approach was
successfully tested in the performed experiment. The participants working with coupled
change suggestions provided significantly more correct solutions than the participants
without these suggestions.

The participants using coupled file change suggestions did not manage to solve their
tasks significantly faster in comparison to the participants working only with the issue
descriptions.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 27/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135

We conclude that the coupled file change suggestions can be positively judged to be
useful for inexperienced developers working on perfectivemaintenance tasks. The influence
is particularly positive on the correctness of the solutions. The influence of the coupled
change suggestions on the effort for solving the tasks is much lower than on the correctness
of the solutions. Considering the time needed for the selection of the coupled files as part
of the task solution procedure, the use of the coupled files does not give any advantage.

We extended the findings of Ramadani & Wagner (2016) where the participants judged
the coupled file changes and the attributes as neutral to use in maintenance tasks. Our
experiment outcomes are more positive compared to the results in Ramadani & Wagner
(2016). Working on real maintenance tasks and a real software product increases the
acceptance of coupled change suggestions by the developers. Also, we rounded up the set
of useful attributes based on the set of attributes presented in this study.

The next steps would be to transform the results and the findings into full-fledged tool
implementation to support the developers working on maintenance tasks with the visual
presentation of suggestions of the files they should also change. The final set of attributes
presented in the tool should be adjustable so the developers will not be overwhelmed with
information which could negate the positive effect we have found in this study.

ACKNOWLEDGEMENTS
We would like to thank Dr. Asim Abdulkhaleq for his help in the evaluation of the
coupled files, the tasks and their solutions, the process of scoring and the analysis of the
questionnaires. We also thank Nakharin Donsupae, Dominik Kesim and Adrian Weller for
their help in the process of selecting the coupled files.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Jasmin Ramadani conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, performed the computation work, reviewed drafts
of the paper.
• Stefan Wagner conceived and designed the experiments, performed the experiments,
wrote the paper, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The raw data has been supplied as a Supplementary File.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 28/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.135

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.135#supplemental-information.

REFERENCES
Abran A, NguyenkimH. 1991. Analysis of maintenance work categories through

measurement. In: Proceedings of the international conference on software maintenance.
Washington, D.C.: IEEE, 104–113 DOI 10.1109/ICSM.1991.160315.

Agrawal R, Srikant R. 1994. Fast algorithms for mining association rules in large
databases. In: Bocca JB, Jarke M, Zaniolo C, eds. Proceedings of the international
conference on very large data bases. San Francisco: Morgan Kaufmann Publishers Inc.,
487–499.

Armstrong RA. 2014.When to use the Bonferroni correction. Ophthalmic and Physiologi-
cal Optics 34(5):502–508 DOI 10.1111/opo.12131.

Basili VR. 1990. Viewing maintenance as reuse-oriented software development. IEEE
Software 7:19–25 DOI 10.1109/52.43045.

Basili VR, Caldiera G, Rombach HD. 1994. The goal question metric approach. In:
Encyclopedia of software engineering. Los Alamitos: John Wiley and Sons, Inc.

Bavota G, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A. 2013. An Empirical
study on the developers perception of software coupling. In: Notkin D, Cheng BHC,
Pohl K, eds. Proceedings of the international conference on software engineering.
Washington, D.C.: IEEE, 692–701.

Bieman J, Andrews A, Yang H. 2003. Understanding change-proneness in OO software
through visualization. In: Proceedings of the IEEE international workshop on program
comprehension. Washington, D.C.: IEEE, 44–53 DOI 10.1109/WPC.2003.1199188.

Bird C, Rigby PC, Barr ET, Hamilton DJ, Germán DM, Devanbu PT. 2009. The
promises and perils of mining git. In: Proceedings of the working conference on mining
software repositories. Washington, D.C.: IEEE, 1–10 DOI 10.1109/MSR.2009.5069475.

Briand L, Morasca S, Basili V. 2002. An operational process for goal-driven defi-
nition of measures. IEEE Transactions on Software Engineering 28:1106–1125
DOI 10.1109/TSE.2002.1158285.

Canfora G, Cerulo L. 2005. Impact analysis by mining software and change request
repositories. In: Proceedings of the IEEE international software metrics symposium
(METRICS’05). Washington, D.C.: IEEE, 9–29 DOI 10.1109/METRICS.2005.28.

Carlsson E. 2013.Mining git repositories: an introduction to repository mining.
Available at https://www.diva-portal.org/ smash/ get/diva2:638844/FULLTEXT01.pdf
(accessed on 13 March 2017).

Chan T. 2008. Impact of programming and application-specific knowledge on mainte-
nance effort: a hazard rate model. In: Proceedings of the IEEE international conference
on software maintenance. Beijing: IEEE, 47–56 DOI 10.1109/ICSM.2008.4658053.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 29/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.135#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.135#supplemental-information
http://dx.doi.org/10.1109/ICSM.1991.160315
http://dx.doi.org/10.1111/opo.12131
http://dx.doi.org/10.1109/52.43045
http://dx.doi.org/10.1109/WPC.2003.1199188
http://dx.doi.org/10.1109/MSR.2009.5069475
http://dx.doi.org/10.1109/TSE.2002.1158285
http://dx.doi.org/10.1109/METRICS.2005.28
https://www.diva-portal.org/smash/get/diva2:638844/FULLTEXT01.pdf
http://dx.doi.org/10.1109/ICSM.2008.4658053
http://dx.doi.org/10.7717/peerj-cs.135

Cohen J. 1988. Statistical power analysis for the behavioral sciences. L Hillsdale: Lawrence
Erlbaum Associates.

Coolican H, Taylor F. 2009. Research methods and statistics in psychology. London:
Hodder Education.

D’Ambros M, LanzaM, Robbes R. 2009. On the relationship between change coupling
and software defects. In: Proceedings of the working conference on reverse engineering.
Washington, D.C.: IEEE, 135–144 DOI 10.1109/WCRE.2009.19.

De Lucia A, Pompella E, Stefanucci S. 2002. Effort estimation for corrective software
maintenance. In: Proceedings of the international conference on software engineering
and knowledge engineering. New York: Association for Computing Machinery,
409–416 DOI 10.1145/568760.568831.

Fischer M, Pinzger M, Gall H. 2003. Populating a release history database from version
control and bug tracking systems. In: Proceedings of the international conference on
software maintenance. Washington, D.C.: IEEE, 23 DOI 10.1109/ICSM.2003.1235403.

Fluri B, Gall H, Pinzger M. 2005. Fine-grained analysis of change couplings. In: Pro-
ceedings of the IEEE international workshop on source code analysis and manipulation.
Washington, D.C.: IEEE, 66–74 DOI 10.1109/SCAM.2005.14.

Fournier-Viger P. 2013.How to auto-adjust the minimum support threshold according
to the data size. Available at http://data-mining.philippe-fournier-viger.com/
(accessed on 13 March 2017).

Fritz CO, Morris PE, Richler JJ. 2012. Effect size estimates: Current use, calcula-
tions, and interpretation. Journal of Experimental Psychology: General 141:2–18
DOI 10.1037/a0024338.

Gall H, Hajek K, Jazayeri M. 1998. Detection of logical coupling based on product
release history. In: Proceedings of the international conference on software maintenance.
Washington, D.C.: IEEE, 190 DOI 10.1109/ICSM.1998.738508.

Gall H, Jazayeri M, Krajewski J. 2003. CVS release history data for detecting logical
couplings. In: Proceedings of the international workshop on principles of software
evolution. Washington, D.C.: IEEE, 13–23 DOI 10.1109/IWPSE.2003.1231205.

German DM. 2004.Mining CVS repositories, the softchange experience. In: Pro-
ceedings of the international workshop on mining software repositories. 17–21
DOI 10.1049/ic:20040469.

Györödi C, Györödi R. 2004. A comparative study of association rules mining algo-
rithms. Available at http:// citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.
2771rep=rep1type=pdf (accessed on 13 March 2017).

Han J. 2005.Data mining: concepts and techniques. Burlington: Morgan Kaufmann
Publishers Inc.

Han J, Pei J, Yin Y. 2000.Mining frequent patterns without candidate genera-
tion. In: Proceedings of the ACM SIGMOD international conference on man-
agement of data. New York: Association for Computing Machinery, 1–12
DOI 10.1145/335191.335372.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 30/33

https://peerj.com
http://dx.doi.org/10.1109/WCRE.2009.19
http://dx.doi.org/10.1145/568760.568831
http://dx.doi.org/10.1109/ICSM.2003.1235403
http://dx.doi.org/10.1109/SCAM.2005.14
http://data-mining.philippe-fournier-viger.com/
http://dx.doi.org/10.1037/a0024338
http://dx.doi.org/10.1109/ICSM.1998.738508
http://dx.doi.org/10.1109/IWPSE.2003.1231205
http://dx.doi.org/10.1049/ic:20040469
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.2771rep=rep1type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.2771rep=rep1type=pdf
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.7717/peerj-cs.135

Hanlon B, Larget B. 2011. Analysis of variance. Available at http://www.stat.wisc.edu/
~st571-1/13-anova-4.pdf (accessed on 2 June 2017).

Hassan AE. 2008. The road ahead for Mining Software Repositories. In: Frontiers of
software maintenance, 2008. FoSM 2008. Washington, D.C.: IEEE, 48–57.

Hassan AE, Holt RC. 2004. Predicting change propagation in software systems. In:
Proceedings of the IEEE international conference on software maintenance. Washington,
D.C.: IEEE, 284–293 DOI 10.1109/ICSM.2004.1357812.

Hattori L, Dos Santos Jr G, Cardoso F, SampaioM. 2008.Mining software repositories
for software change impact analysis: a case study. In: Proceedings of the Brazilian
symposium on databases. Porto Alegre: Sociedade Brasileira de Computação,
210–223.

Hindle A, German DM, Holt R. 2008.What do large commits tell us?: a taxonomical
study of large commits. In: Proceedings of the 2008 international working conference
on mining software repositories. New York: Association for Computing Machinery,
99–108 DOI 10.1145/1370750.1370773.

Hutton A,Welland R. 2007. An experiment measuring the effects of maintenance tasks
on program knowledge. In: Kitchenham B, Brereton P, Turner M, eds. Proceedings
of the international conference on evaluation and assessment in software engineering.
London: British Computer Society, 43–52.

IEEE. 1998. IEEE standard for software maintenance. IEEE Std 1219-1998. Washington,
D.C.: IEEE.

ISO/IEC ISO/IEC 14764: Software Engineering-Software Maintenance. 2006. Available
at https://www.iso.org/ standard/39064.html (accessed on 13 March 2017).

ISO/IEC ISO/IEC 12207: information Technology-Software life cycle processes. 2008.
Available at https://www.iso.org/ standard/43447.html (accessed on 13 March 2017).

Kagdi H. 2007. Improving change prediction with fine-grained source code mining.
In: Proceedings of the IEEE/ACM international conference on automated software
engineering. Washington, D.C.: IEEE, 559–562 DOI 10.1145/1321631.1321742.

Kagdi H, Yusuf S, Maletic JI. 2006.Mining sequences of changed-files from version
histories. In: Proceedings of the international workshop on mining software repositories.
Washington, D.C.: IEEE, 47–53 DOI 10.1145/1137983.1137996.

Lientz BP, Swanson EB. 1980. Software maintenance management. Boston: Addison-
Wesley Longman Publishing Co., Inc.

Nachar N. 2008. The Mann–Whitney U: a test for assessing whether two independent
samples come from the same distribution. Tutorials in Quantitative Methods for
Psychology 4:13–20 DOI 10.20982/tqmp.04.1.p013.

Nguyen V, Boehm B, Danphitsanuphan P. 2011. A controlled experiment in assessing
and estimating software maintenance tasks. Information and Software Technology
53:682–691 DOI 10.1016/j.infsof.2010.11.003.

Pigoski TM. 1996. Practical software maintenance: best practices for managing your
software investment. 1st Edition. Hoboken: Wiley Publishing.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 31/33

https://peerj.com
http://www.stat.wisc.edu/~st571-1/13-anova-4.pdf
http://www.stat.wisc.edu/~st571-1/13-anova-4.pdf
http://dx.doi.org/10.1109/ICSM.2004.1357812
http://dx.doi.org/10.1145/1370750.1370773
https://www.iso.org/standard/39064.html
https://www.iso.org/standard/43447.html
http://dx.doi.org/10.1145/1321631.1321742
http://dx.doi.org/10.1145/1137983.1137996
http://dx.doi.org/10.20982/tqmp.04.1.p013
http://dx.doi.org/10.1016/j.infsof.2010.11.003
http://dx.doi.org/10.7717/peerj-cs.135

Pohlert T. 2014. The pairwise multiple comparison of mean ranks package. Available at
https:// cran.r-project.org/web/packages/PMCMR/vignettes/PMCMR.pdf (accessed
on 13 March 2017).

Purushothaman R, Perry DE. 2005. Toward understanding the rhetoric of small
source code changes. IEEE Transactions on Software Engineering 31(6):511–526
DOI 10.1109/TSE.2005.74.

Ramadani J, Wagner S. 2016. Are suggestions of coupled file changes interesting? In:
Maciaszek L, Filipe J, eds. Proceedings of the international conference on evaluation
of novel software approaches to software engineering. Setúbal: ENASE, 15–26
DOI 10.5220/0005854400150026.

Revelle M, Gethers M, Poshyvanyk D. 2011. Using structural and textual information to
capture feature coupling in object-oriented software. Empirical Software Engineering
16:773–811 DOI 10.1007/s10664-011-9159-7.

Ricca F, Leotta M, Reggio G, Tiso A, Guerrini G, TorchianoM. 2012. Using UniMod
for maintenance tasks: an experimental assessment in the context of model driven
development. In: Proceedings of the international workshop on modeling in software
engineering. Piscataway: IEEE Press, 77–83 DOI 10.1109/MISE.2012.6226018.

Shelly GB, Cashman TJ, Rosenblatt HJ. 1998. Systems analysis and design. 3rd Edition.
Cambridge: International Thomson Publishing.

Shirabad J, Lethbridge T, Matwin S. 2003.Mining the maintenance history of a legacy
software system. In: Proceedings of the international conference on software mainte-
nance. Washington, D.C.: IEEE, 95–104 DOI 10.1109/ICSM.2003.1235410.

Stafford JA. 2003. Software maintenance as part of the software life cycle. Available at
http://hepguru.com/maintenance/Final_121603_v6.pdf (accessed on 13 March 2017).

StevensWP, Myers GJ, Constantine LL. 1974. Structured design. IBM Systems Journal
13:115–139 DOI 10.1147/sj.132.0115.

Swanson EB. 1976. The dimensions of maintenance. In: Proceedings of the international
conference on software engineering. Los Alamitos: IEEE, 492–497.

TomczakM, Tomczak E. 2014. The need to report effect size estimates revisited. An
overview of some recommended measures of effect size. Trends in Sport Sciences
21:19–25.

Van Rysselberghe F, Demeyer S. 2004.Mining Version Control Systems for FACs
(frequently Applied changes). In: Hassan AE, Holt RC, Mockus A, eds. Proceedings
of the international workshop on mining repositories. 48–52.

Van Vliet H, Van Vliet H, Van Vliet J. 1993. Software engineering: principles and practice.
New York: Wiley.

WuR, Zhang H, Kim S, Cheung S-C. 2011. ReLink: recovering links between bugs and
changes. In: Proceedings of the ACM SIGSOFT symposium and the 13th european con-
ference on foundations of software engineering. New York: Association for Computing
Machinery, 15–25 DOI 10.1145/2025113.2025120.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 32/33

https://peerj.com
https://cran.r-project.org/web/packages/PMCMR/vignettes/PMCMR.pdf
http://dx.doi.org/10.1109/TSE.2005.74
http://dx.doi.org/10.5220/0005854400150026
http://dx.doi.org/10.1007/s10664-011-9159-7
http://dx.doi.org/10.1109/MISE.2012.6226018
http://dx.doi.org/10.1109/ICSM.2003.1235410
http://hepguru.com/maintenance/Final_121603_v6.pdf
http://dx.doi.org/10.1147/sj.132.0115
http://dx.doi.org/10.1145/2025113.2025120
http://dx.doi.org/10.7717/peerj-cs.135

Ying ATT, Murphy GC, Ng RT, Chu-Carroll M. 2004. Predicting source code changes
by mining change history. IEEE Transactions on Software Engineering 30:574–586
DOI 10.1109/TSE.2004.52.

Zimmermann T, Kim S, Zeller A,Whitehead Jr EJ. 2006.Mining version archives
for co-changed lines. In: Proceedings of the international workshop on mining
software repositories. New York: Association for Computing Machinery, 72–75
DOI 10.1145/1137983.1138001.

Zimmermann T,Weisgerber P, Diehl S, Zeller A. 2004.Mining version histories
to guide software changes. In: Proceedings of the international conference on soft-
ware engineering. New York: Association for Computing Machinery, 563–572
DOI 10.1145/1137983.1138001.

Ramadani and Wagner (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.135 33/33

https://peerj.com
http://dx.doi.org/10.1109/TSE.2004.52
http://dx.doi.org/10.1145/1137983.1138001
http://dx.doi.org/10.1145/1137983.1138001
http://dx.doi.org/10.7717/peerj-cs.135

