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ABSTRACT
Recognizing transcription start sites is key to gene identification. Several approaches
have been employed in related problems such as detecting translation initiation sites
or promoters, many of the most recent ones based on machine learning. Deep learning
methods have been proven to be exceptionally effective for this task, but their use in
transcription start site identification has not yet been explored in depth. Also, the very
few existing works do not compare their methods to support vector machines (SVMs),
themost established technique in this area of study, nor provide the curated dataset used
in the study. The reduced amount of published papers in this specific problem could
be explained by this lack of datasets. Given that both support vector machines and
deep neural networks have been applied in related problems with remarkable results,
we compared their performance in transcription start site predictions, concluding that
SVMs are computationally much slower, and deep learning methods, specially long
short-term memory neural networks (LSTMs), are best suited to work with sequences
than SVMs. For such a purpose, we used the reference human genome GRCh38.
Additionally, we studied two different aspects related to data processing: the proper
way to generate training examples and the imbalanced nature of the data. Furthermore,
the generalization performance of the models studied was also tested using the mouse
genome, where the LSTM neural network stood out from the rest of the algorithms. To
sum up, this article provides an analysis of the best architecture choices in transcription
start site identification, as well as a method to generate transcription start site datasets
including negative instances on any species available in Ensembl. We found that deep
learning methods are better suited than SVMs to solve this problem, being more
efficient and better adapted to long sequences and large amounts of data. We also
create a transcription start site (TSS) dataset large enough to be used in deep learning
experiments.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning, Neural
Networks
Keywords Transcription start site, Bioinformatics, Machine learning, Deep learning, Support
vector machine, Long short-term memory, Convolutional neural network

INTRODUCTION
Since the emergence of next-generation sequencing (NGS) methods, understanding gene
expression has become one of the most important goals in bioinformatics. Therefore, the
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identification of each component affecting transcription is a key task in this field. Promoters
stand out among these components, being closely related to transcription initiation and
inhibition. Inside the promoter, a particular position is especially relevant: the transcription
start site (TSS). Being able to locate the TSS means locating the core promoter, which can
give us important information about where a particular transcript is initiated. Since the use
of the terms TSS and TIS in the literature is sometimes confusing, we want to clarify that
here we understand TSS as the base in DNA where the transcription of mRNA begins, and
the translation initiation site (TIS) as the codon of the mRNA where the protein synthesis
begins.

For TIS predictions, there is increasing evidence in recent publications that this problem
is practically solved (Wei et al., 2021), but TSS is a more difficult problem that poses several
additional difficulties. This is mainly due to the possibility that more than one TSS exists
in the same promoter, but also due to the lack of available sequences, since some databases
only include sequences of interest downstream of the TSS.

One of the consequences of better and cheaper sequencing technologies is the wide
availability of sequencing data, access to which has been made easier by international
efforts to have centralized databases accessible to researchers. Kodama, Shumway & RL
(2011) provide a good list of the main databases and present an interesting analysis of the
main contributors, sequencing technologies, sequenced organisms, types of studies, data
file format and metadata models.

This accessibility to large volumes of raw sequencing data explains the emergence of
numerous papers in which machine learning techniques are applied to the identification of
key elements in DNA sequences. Kim et al. (2020) use a deep learning model, DeepTFactor,
with three parallel subnets, each with three convolutional layers, to detect transcription
factors in amino acid sequences, obtaining performance higher than TFpredict (Eichner et
al., 2013), an SVM model.

Osmala & Lähdesmäki (2019) present a new method called the PRobabilistic Enhancer
Prediction Tool (PREPRINT) to predict genomic regulatory enhancers using chromatin
feature data. PREPRINT consists of several data processing and analysis steps, including
the statistical modeling of the coverage of the reference genome with the chromatin reads
as a Poisson distribution, whose mean parameter is estimated with two approximations,
using maximum likelihood (PREPRINT ML) and using Bayesian estimation (PREPRINT
Bayesian). From this, two probabilistic distance measures are used to obtain a matrix of
scores that is used to train an SVM classifier with a Gaussian kernel.

ADAPT-CAGE (Georgakilas, Perdikopanis & Hatzigeorgiou, 2020) is a tool for TSS
prediction that uses CAGE reads, Polymerase II motifs, and various DNA features
(duplex disrupt energy, duplex free energy, bending stiffness, denaturation, stacking
energy, bendability, propeller twist, z-DNA, A-philicity, nucleosome positioning, protein
deformation, B-DNA twist and protein-DNA twist). ADAPT-CAGE is a sophisticated
combination of models that includes several SVMs and Stochastic Gradient Boosting
trained with the different individual characteristics and whose outputs are combined to
obtain the final prediction.
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In the context of gene promoter identification, Xu, Zhang & Lu (2011) combine the
use of three statistical divergences (Kullback–Leibler, Symmetric and Jensen–Shannon),
to choose the best k-mers as differentiating features, three sparse autoencoder, and three
SVMs with radial basis function kernels to identify promoters in the human genome. Also,
for this problem, Bhandari et al. (2021) compare the performance of two deep learning
methods (one based onCNN and another using LSTM) and amachine learningmethod (an
ensemble of random trees). They use three different eukaryotic genomes, Yeast, A. Thaliana
and Human. In addition to one-hot encoding, they apply frequency-based tokenization
(FBT) for different k-mer sizes. Their conclusion is that the best results are achieved with
FBT and the CNN-based architecture.

A common denominator of all of these works is that, in the experimental validation of
the proposed methods, an important effort has been made to obtain a dataset adequate
for the application of the machine learning method. This involves steps such as curation
of sequences retrieved from public databases, application of data preprocessing methods,
and generation of negative examples, among others.

Much progress has beenmade since the first methods based on the recognition of certain
subsequences, motifs, or sequence features (Bajic et al., 2006) were developed, being deeply
influenced by the expertise of researchers, e.g., TATA boxes, CCAAT boxes, GpG islands,
k-mer frequencies, GC content, etc. (Werner, 1999;Abeel, de Peer & Saeys, 2009;Tatarinova
et al., 2013; Jorjani & Zavolan, 2013; Shahmuradov et al., 2016; Bajic et al., 2004).

However, the results obtained by these approaches did not agree with the
promoter frequencies in the human genome estimated by experts (Pedersen et al.,
1999). The success in other areas of multilayer perceptrons (Mahdi & Rouchka, 2009),
support vector machines (Sonnenburg, Zien & Rätsch, 2006) and convolutional neural
networks (Pachganov et al., 2019) has motivated their use in the context of bioinformatics
as well.

While in TIS prediction several methods based on deep neural networks (DNNs) have
emerged (Wei et al., 2021; Zhang et al., 2017; Zuallaert et al., 2018), in TSS prediction,
SVMs are yet the most popular models (Schaefer et al., 2010; Sonnenburg, Zien & Rätsch,
2006; Ohler, 2006; Towsey, Gordon & Hogan, 2006) even in recent times (Georgakilas,
Perdikopanis & Hatzigeorgiou, 2020). Due to the predominance of SVMs, it is hard to find
deep learning approaches to TSS identification, and the few available studies that do use
deep learning for TSS identification (Mahdi & Rouchka, 2009; Zheng, Li & Hu, 2020) do
not take into account SVMs as the referencemodel in this area. Deep learningmethods have
been proven effective in related tasks mentioned before, but TSS identification presents
certain aspects that can make this problem harder to solve than TIS identification, due to
the different nature of the sequences and the patterns usually found in them. This kind of
problems can be solved by using more complex models, as long as there is enough data
to train them. In this work, we prove that, even though SVMs are well established in the
transcription start site prediction field, because of their simplicity and explainability, deep
learning methods can be vastly superior in their results. To test that hypothesis, we have
developed a way to generate a dataset from the GRCh38 version of the human genome,
since, to the best of our knowledge, there is no publicly curated and ready-to-use dataset

Barbero-Aparicio et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1340 3/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1340


to obtain machine learning models to solve this specific problem. The availability of this
data set will facilitate the work of other researchers in this field. Furthermore, its size,
with more than a million instances, is suitable for obtaining models using deep learning
techniques. This dataset and the steps to replicate the creation of the dataset are publicly
available in GitHub (https://github.com/JoseBarbero/EnsemblTSSPrediction) allowing
future researchers to create a similar dataset with any other species available in Ensembl.
Additionally, we include a study of the proper positive to negative instances ratio in the
dataset, given that the negative instances are generated in a semisynthetic way. Also, we
analyze the performance of several deep neural network architectures, since very different
options have been proven to be effective in related problems, although there is no standard
architecture established as the state-of-the-art for TSS prediction. Finally, we tested the
prediction performance of deep learning and SVMmodels using a similar dataset based on
the mouse genome in order to study the generalization capabilities of each algorithm.

METHODS
Generation of the dataset
We used the reference sequence of the human genome in its GRCh38.p13 version to have
a reliable data source for our experiments. We chose this version because it is the most
recent one available in Ensembl at the moment. However, the DNA sequence by itself
is not enough, the specific TSS position of each transcript is needed. In this section, we
explain the steps followed to generate the final dataset (Fig. 1). These steps are: raw data
gathering, positive instances processing, negative instances generation, and data splitting
by chromosomes.

First, we need an interface to download the raw data, which are made up of every
transcript sequence in the human genome. We use Ensembl release 104 (Howe et al.,
2020) and its utility BioMart (Smedley et al., 2009), which allows us to easily obtain large
amounts of data. It also enables us to select a wide variety of interesting fields, including
the transcription start and end sites. After filtering instances that present null values in any
relevant field, this combination of the sequence and its flanks will form our raw dataset.

Once the sequences are available, we find the TSS position (given by Ensembl) and the
two following bases to treat it as a codon. After that, 700 bases before this codon and 300
bases after it were concatenated, giving the final sequence of 1,003 nucleotides that is going
to be used in our models. These specific window values have been used in Bhandari et al.
(2021) and we have kept them because we find them interesting for comparison purposes.

One of the most sensitive parts of this dataset is the generation of negative instances.
We cannot obtain this kind of data directly, so we need to generate them synthetically. To
get examples of negative instances, i.e., sequences that do not represent a transcript start
site, we select random DNA positions inside the transcripts that do not correspond to a
TSS. Once we have selected the specific position, we obtain 700 bases ahead and 300 bases
after it, as we did with the positive instances. Regarding the positive to negative ratio, in a
similar problem, but studying TIS instead of TSS (Zhang et al., 2017), a ratio of 10 negative
instances to each positive one was found optimal. Following this idea, we select 10 random
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Figure 1 Dataset generation process.
Full-size DOI: 10.7717/peerjcs.1340/fig-1

positions from the transcript sequence of each positive codon and label them as negative
instances.

After this process, we end up with 1,122,113 instances: 102,488 positive and 1,019,625
negative sequences. To validate and test our models, we need to split this dataset into three
parts: training, validation, and testing. We have decided to make this differentiation by
chromosomes, as in Perez-Rodriguez, Haro-Garcia & Garcia-Pedrajas (2020). Thus, we use
chromosome 16 as validation because it is a good example of a chromosome with average
characteristics. Then we selected samples from chromosomes 1, 3, 13, 19 and 21 to be part
of the test set and used the rest of them to train our models.

Every step of this process can be replicated using the scripts available in https:
//github.com/JoseBarbero/EnsemblTSSPrediction.

Sequence encoding
Most machine learning methods cannot read DNA sequences directly. One of the most
popular ways to encode nucleotides strings is one-hot encoding. Using this method, we
represent every base using a binary array of four positions, each representing one possible
base. Only one of the values of the array will be 1, while the others remain 0. Hence, we
have a simple way to represent four different characters: A, C, G, and T. Although some
approaches are using word embedding systems based on the natural language processing
field (Wu et al., 2021), we found one-hot encoding adequate for the purposes of this work
because of its simplicity. This is the encoding used for the deep learning methods. For SVM
methods, we have used both this encoding (for SVM with RBF kernel) and directly the raw
sequence (for SVM with string kernel).
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Support vector machines (SVMs)
SVMs (Cortes & Vapnik, 1995) are one of the most used methods in machine learning and
specially in binary classification. We find that SVMs are one of the few alternatives that can
keep up with DNNs in complex problems such as TSS identification. These methods have
some advantages over DNNs, like the possibility of introducing ‘‘biases’’ based on human
expertise in our models through its kernel. Since this is essentially a string classification
problem, we need to use a string kernel with our SVM. In Perez-Rodriguez, Haro-Garcia &
Garcia-Pedrajas (2020), it was found that the weighted degrees kernel consistently gives the
best results in the identification of TIS. Due to the similarity of the problem we are trying
to solve, we decided to use a weighted degree kernel as well. This kernel is also the one that
gave the best results in Sonnenburg et al. (2007), where they were compared with Markov
chains and SVMs using other kernels.

SVM algorithms integrate a mathematical function named kernel. The purpose of this
kernel is to implement the trick used by the SVM algorithms that allows instances to be
represented as a relationship metric between two data points instead of being explicitly
represented in a higher-dimensional space. In the case of string kernels, it is specially useful
to get numerical values from the string sequences, which originally could not be used by
the models.

As mentioned before, we used the weighted degrees (WD) kernel. This type of kernel
allows us to represent the similarity of two sequences by counting the amount of k-mers
of size k ∈ {1,...,d} that two specific sequences si and sj of length L share. This function is
defined by the Eq. (1), where I returns 1 when the k-mer starting in position l is the same
in sequences si and sj and 0 if not. βk is a weight factor defined by βk = 2 (d−k+1)

d(d+1) .

K (si,sj)=
d∑

k=1

βk

L−k+1∑
l=1

I
(
uk,l(si)=uk,l(sj)

)
(1)

To have a similar model to evaluate the benefits of a string kernel SVM, we additionally
used a numerical method, specifically an SVM with a radial basis function (RBF) kernel.
This kernel is commonly used in machine learning with SVM classifiers. Experimenting
with this kernel allows us to see the differences in performance between a string kernel and
a numerical one. In this case, the kernel function is described by Eq. (2), which is defined
by the squared Euclidean distance of two instances x and x′ and a γ value that determines
the influence of the support vectors in the model.

K (x,x′)= exp
(
−γ ‖ x−x′‖2

)
. (2)

The use of the RBF kernel requires the one-hot method to encode the instances, given
that this is a numerical kernel and it is not possible to use the string instances as we did
with the weighted degrees kernel.

All the parameters in Eqs. (1) and (2) as well as the regularization parameter in the
support vector classifier model were defined by an extensive grid search cross-validation
process.

Another advantage of SVMs is their interpretability, as opposed to the black-box nature
of DNNs. Given the robust mathematical theory behind the method and the simplicity
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that characterizes the kernels, the models are much easier to understand for humans than
DNNs. This simplicity also makes the model easier to tune, having fewer parameters to
optimize, needing less memory to store the trained model and having a lighter and faster
predictive model (Yoon et al., 2011). It is also a method without the problems of local
minima, being, in principle, less prone to overfitting.

Several works can be found on SVMs applied to DNA sequences that demonstrate a good
performance on similar problems. Specifically, great results were obtained in alternative
splicing recognition (Rätsch, Sonnenburg & Schölkopf, 2005), promoter (Wang et al., 2018;
Sato, 2018; Cassiano & Silva-Rocha, 2020) and promoter features prediction (Meng et
al., 2017), transcription start identification in eukaryotes (Sonnenburg, Zien & Rätsch,
2006; Georgakilas, Perdikopanis & Hatzigeorgiou, 2020) and prokaryotes (Towsey, Gordon
& Hogan, 2006) or translation initiation sites prediction (Perez-Rodriguez, Haro-Garcia &
Garcia-Pedrajas, 2020). SVMs have also been combinedwith convolutional neural networks
(Qian et al., 2018). This approach will be addressed in the next section.

The string kernel has been applied using Scikit-learn’s (Pedregosa et al., 2011) support
vector classifier implementation, which allows using custom kernels. However, the kernel
needs to be precomputed. This implies creating the gram matrix for the train and test
datasets, being a computationally slow process. We tried to minimize this issue by
parallelizing the process, although it is still noticeably slower than the deep learning
methods that will be presented in the next section. The main parameter to choose is the
value d, which represents the maximum length of k-mers to consider. We conducted a
preliminary experiment using a reduced dataset, formed by a sample of 1% of the positive
and negative instances, in order to test several values of d, the results of which can be seen
in Table 1. Higher values generally achieve better results, but at a much higher running
time. As we will address later, training times can be significant having to calculate the
kernel gram matrix: a problem implying quadratic growth. For that reason, we determined
that a d value of 10 is reasonable in this case. It improves the results significantly, being a
bit less precise than 20 but at a considerably lower running time.

The most relevant inconvenience of support vectors machines are their memory and
execution time requirements when used with very large data sets, precisely the data sets
that appear in bioinformatics. For reference, in one of our preliminary experiments we
needed to use a server with 1 TB of RAM, and the experiment took several months
to complete, even parallelizing using 20 cores. These execution times were reduced in
subsequent experiments using an approach similar to that suggested in Graf et al. (2004),
the Cascade SVM. Specifically, we have used the implementation of the method available
in https://github.com/fhebert/CascadeSVC for the RBF kernel, and a modified version to
work with the WD kernel. The idea of this method is to get the support vectors by levels. In
the first level, the original dataset is divided into several subsets (typically a number power
of two), then an SVM is used on each subset to obtain a set of support vectors. In the next
level of the cascade, two sets of support vectors from the previous level are combined and
used on a new SVM, which in turn will give a set of support vectors that will be combined
with others at the next level of the cascade. In the last level of the cascade, with only one
SVM, the final set of support vectors that is obtained is added to each of the subsets of the
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Table 1 SVMwith weighted degree kernel results with different d values.

d value Acc BC F1 AUC ROC Time (s)

1 0.82762 5.9535 0.2179 0.6460 202.63
3 0.8982 3.5130 0.2747 0.7292 522.51
10 0.9105 3.0880 0.1216 0.7834 917.69
20 0.9095 3.1224 0.0269 0.7971 1369.52
50 0.9080 3.1771 0.0008 0.7897 2567.18

Notes.
Bold values represent the best results.
Acc, Accuracy; BC, Binary Cross-Entropy; F1, F1-metric; AUC ROC, Area Under the Receiver Operating Characteristic
Curve.

first level of the cascade, and the process is repeated for a few additional iterations until
convergence is reached. The application of this procedure allows reducing the duration of
an experiment from several months to several hours. It also allows reducing the memory
requirements.

Deep learning
It could be said that the emergence of deep learning was a turning point for artificial
intelligence and, recently, also in bioinformatics. DNNs have set a new state-of-the-art
performance in tasks like variant calling (Poplin et al., 2018) or protein folding prediction
(Jumper et al., 2021), and have been found very valuable in promoter identification
(Bhandari et al., 2021). Since the first work using neural networks in promoter prediction
(Demeler & Zhou, 1991), models such as multilayer perceptrons (MLP) (Shahmuradov,
Umarov & Solovyev, 2017), convolutional neural networks (Umarov et al., 2019; Pachganov
et al., 2019; Wei et al., 2021) or a combination of CNN and recurrent neural networks
(RNNs) (Oubounyt et al., 2019; Zhang et al., 2017) have appeared in problems related to
promoter identification. Meanwhile, it is much harder to find deep learning approaches for
TSS identification than other related problems, and the ones available (Mahdi & Rouchka,
2009; Zheng, Li & Hu, 2020), do not offer a comparison that takes into account SVMs as
the most established method in this field.

Unlike SVMs, DNNs’ interpretability is a challenging task, but on the other hand, they
do not require as much expertise in the field of application as with SVMs kernel design.
DNNs can learn the particularities of the problem by themselves. Even though DNNs
do not need as much knowledge in the molecular biology field as SVMs do to create
appropriate kernels, they do need that expertise in the deep learning field to be able to
develop and fine-tune the model. Furthermore, DNNs need significantly more data to be
trained in complex problems such as TSS prediction, and can fall in local minima and tend
to overfit more than SVMs (Salman & Liu, 2019).

InKhan et al. (2020), in the context of promoter identification, the researchers concluded
that MLPs can achieve better results than SVMs. We believe that extending this research
to TSS identification could be promising. Furthermore, string kernels were not taken into
account, only RBF and sigmoid kernels were tested, and we think that the inclusion of
CNNs and RNNs will enrich the study.
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We selected three of the most representative types of DNNs that can work with one-hot
encoded sequences: a CNN, a LSTM (Hochreiter & Schmidhuber, 1997) and a combination
of both. We chose these architectures because they are well established in the deep learning
field and are good examples of the kind of models we can find used in related problems
research (Wei et al., 2021; Zhang et al., 2017; Zuallaert et al., 2018).

In the experiments, the deep learning models have been optimized using the validation
dataset mentioned in Section 2.1. The values of the hyperparameters have been found
using a grid search cross-validation process. A batch size of 32, a learning rate of 0.001,
and the Adam optimizer (Kingma & Ba, 2017) were used in the experiments for every
deep learning model. The number of epochs was set to 100, although an early stopping
mechanism would stop the training process after 10 epochs without any improvement. All
DNNs have been trained by applying binary cross entropy as their loss function.

Later, in the experiments, the architectures used for the neural networks are faithful
to those used in the papers in which these architectures are presented, with a number of
parameters ranging from 100,000 to 600,000. Modifications that increase the number of
parameters have been avoided, because this could lead to generalization problems in some
of the models.

Convolutional neural networks (CNNs)
CNNs are a kind of artificial neural network based on the use of filtering operations
called convolutions, which are usually used as a complement to classic perceptrons and
pooling layers. These convolutions allow the network to represent the input information
with different feature maps. CNNs have excelled in tasks related to image classification
(Krizhevsky, Sutskever & Hinton, 2012), to the point that it has even led scientists to look
for ways to encode all kinds of data as if they were images (Sharma et al., 2019) and
turn different problems, for example, variant calling (Poplin et al., 2018), into image
classification tasks, in which CNNs can achieve excellent results (Nguyen et al., 2016). In
this case, we are working with a similar representation of the data, coming from DNA
sequences of 1003 bases one-hot encoded in arrays of length 4. Thus, having N samples,
we start with an input of N ×1003×4, which can be seen as a set of 1D images with four
channels.

The structure of the CNN (Fig. 2A) is based on Bhandari et al. (2021) considering that
it has been proven effective and that we want to keep similar structures with comparison
purposes. Therefore, the network is composed by three 1D convolution layers of size 5,
stride 1 and 32 filters. Each convolution layer is followed by a max-pooling layer with size
4. Following these steps, there are three fully connected layers with 1,024, 512 and 128
units, each one followed by a 20% dropout step (Salman & Liu, 2019). Finally, there is a
classification layer using the sigmoid activation function.

Long short-term memory networks (LSTMs)
Recurrent neural networks (RNN) are a type of artificial neural network designed to work
with sequential problems. LSTMs are a specific kind of RNNs developed to improve RNNs
efficiency while solving issues like the vanishing gradient problem (Hochreiter, 1998).
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Figure 2 DNN architectures. (A) CNN. (B) LSTM. (C) Bidirectional LSTM.
Full-size DOI: 10.7717/peerjcs.1340/fig-2

LSTMs (Hochreiter & Schmidhuber, 1997) are one of the best-suited structures for our
problem, as they are designed to work with sequences, and DNA is a perfect example. The
decision to use this neural network architecture is influenced by the results obtained with
it in Bhandari et al. (2021), but in addition to the regular LSTM, a bidirectional LSTM has
also been used, as both have been shown to be effective in related problems such as DNA
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protein binding identification (Zhang et al., 2019). The disadvantages of LSTMs are their
higher computational cost and that their parallelization is harder than CNNs, making this
approach much slower.

The networks are composed of a regular (see Fig. 2B) or a bidirectional LSTM (Fig. 2C)
layer of 128 units followed by a dense layer of 64 units and a 50% dropout step. Finally,
the last layer is a binary classification using a sigmoid function.

LSTM + CNN
Finally, we have decided to use a model formed by a combination of CNNs and LSTMs.
This kind of model has been shown to be effective in Zhang et al. (2017) and Zhang et al.
(2019), achieving remarkable results in TIS and prediction of DNA proteins. The higher
complexity of this method makes it capable of finding more elaborate patterns. Our
architecture (Fig. 3A) starts with a 1D convolution layer of 64 filter and size 3, followed by
a max pooling layer of 3 and a 25% dropout. After that, there is an LSTM layer of 64 units
and an 80% dropout to avoid overfitting. The output classification is the result of a fully
connected layer with sigmoid activation.

We also consider a different version of this model using a bidirectional LSTM (Fig. 3B)
instead of a regular LSTM to assess whether the results compensate for the additional
complexity of the model.

RESULTS
Metrics
To evaluate the models, we have employed different metrics, each adapted to a different
context. The first one is the accuracy (Acc) (Eq. (3)) and it is acceptable as a first approach
to measure model performance.

Acc =
Number of correct predictions

Total number of predictions made
. (3)

However, accuracy is not the best option in situations involving imbalanced data.
Because of that, we decided to use more appropriate metrics, like binary cross-entropy
(BC) (Eq. (4)) which is a standard metric in binary classification

BC =−
1
N

∑
yi · log(p(yi))+ (1−yi) · log(1−p(yi)) (4)

where y is the actual class and p(yi) is the probability that the model assigns to the instance
i being positive. It will be 1 if the instance belongs to the positive class and 0 otherwise. A
good model gives low values of BC.

Another metric that works well in the context of imbalanced data is the F1-score (Eq.
(7)) which takes the harmonic mean of the precision and recall metrics, that are defined in
terms of the true positives (TP), false positives (FP), true negatives (TN) and false negatives
(FN) all obtained from the confusion matrix.

Precision=
TP

TP+FP
(5)
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Figure 3 Combined DNN architectures. (A) CNN + LSTM. (B) CNN + bidirectional LSTM.
Full-size DOI: 10.7717/peerjcs.1340/fig-3

Recall =
TP

TP+FN
(6)

F1=
2 ·Precision ·Recall
Precision+Recall

. (7)

Finally, we used the area under the ROC curve (AUC), a thoroughmetric for imbalanced
datasets, which is the area under the curve when plotting the sensitivity (Sn) against the
specificity (Sp):

Sn=
TP

TP+FN
(8)

Sp=
TN

FP+TN
. (9)

The AUC values are between 0 and 1 with values closer to 1 associated with better
predictions.

Each metric in this study was calculated using a five-fold validation process. This
process has a minor peculiarity since the training, validation and test sets are defined by
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chromosomes, which prevents the use of a classical five-fold cross-validation. In the case
of the deep leaning models, we retrained the models five times using different seeds. In
the cascade SVM experiments, we used random splits of the dataset in the first step of the
cascade process, which leads to five independent results.

Evaluation of the positive to negative ratio in the dataset generation
In this article, we also wanted to test whether the use of a ratio of one to ten between
positive and negative instances is the correct choice, as suggested in Zhang et al. (2017).
Different executions have been run with each method using a one to one and a one to ten
ratio between positive and negative instances. Although for the training process a ratio of
one to one has been used, for the test process, a one to ten ratio has been kept, given this
is the approximated ratio we could find in real data.

It consists of generating only one negative instance for each positive one instead of ten,
which could be considered a process of undersampling on the majority class.

We evaluated twomethods to obtain a one to one ratio of positive and negative instances.
The first is very simple, since the negative instances are generated synthetically with the
dataset. It consists of generating only one negative instance for each positive one, instead of
ten, which could be considered a process of undersampling on the majority class. For the
second method, we used SMOTE (Synthetic Minority Oversampling Technique), which
is based on generating synthetic instances to oversample the minority class, leading to a
ratio of one positive to one negative instance. The downside of SMOTE is that it needs to
be applied to numerical values, and the weighted degree kernels work with sequences. This
means that SMOTE can not be applied to our string kernel method.

As we can see in Table 2, most of the methods get the best results when they are trained
with a positive to negative ratio of one to ten, instead of one to one. Also, using SMOTE
does not seem to improve the performance either. This seems to be in line with the results
reported in Blagus & Lusa (2013) where the authors claim that SMOTE does not work well
with large numbers of features. This is precisely what is happening here, where in order
to apply SMOTE we are using one-hot encoding, what increases to 4012 the number of
characteristics of each sequence.

The conclusion that can be drawn from these results is that trying to balance the data
set, for example, applying a subsampling to the majority class, is not a good heuristic to
improve the results in this type of problem. Nor does any improvement seem to be obtained
by generating artificial instances with SMOTE. For this reason, the rest of the experiments
will be executed applying a positive to negative ratio of one to ten. Finally, from these
results we can deduce that the use of more negative instances is helping to obtain better
models and that the method chosen to generate these instances is adequate.

Comparing SVM and deep learning results
The first magnitude that we take into account is the training time of each model. Given
that the model only has to be trained once, it could be reasonable to use a model whose
training is slower if the predictions are significantly better. In this case, we find notable
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Table 2 Results training with 10 negative instances for each positive one and one negative instance for
each positive one.

Classifier Acc BC F1 AUC
ROC

Ratio

CNN 0.9176 0.2199 0.4968 0.8682
LSTM 0.9354 0.1776 0.5771 0.9144
BLSTM 0.9383 0.1697 0.6105 0.9216
CNN+LSTM 0.9329 0.1806 0.5913 0.9121 1 to 10
CNN+BLSTM 0.9325 0.1817 0.5880 0.9106
SVMWD 0.9090 3.1433 0.4124 0.8232
SVM RBF 0.5044× 17.1162 0.2386 0.7737
CNN 0.8946× 0.3487× 0.4831 0.8629
LSTM 0.9108 0.4118× 0.5316 0.8828
BLSTM 0.9116 0.3878× 0.5420 0.8914
CNN+LSTM 0.9078 0.3535× 0.5407 0.8948 1 to 1
CNN+BLSTM 0.8983 0.3646× 0.5033 0.8686
SVMWD 0.7757 7.7438× 0.3755 0.8429
SVM RBF 0.6121 13.3971 0.2744 0.7614
CNN 0.9355 0.2594 0.4341× 0.7773×
LSTM 0.8885× 0.2497 0.4590× 0.8108×
BLSTM 0.8993× 0.2496 0.4644× 0.8113×
CNN+LSTM 0.8910× 0.2444 0.4677× 0.8221× SMOTE
CNN+BLSTM 0.8935× 0.2469 0.4642× 0.8215×
SVMWD — — — —
SVM RBF 0.5919 14.0944× 0.2608× 0.7587×

Notes.
The best values are highlighted in bold, and the worst values marked with×
Acc, Accuracy; BC, Binary Cross-Entropy; F1, F1-metric; AUC ROC, Area Under the Receiver Operating Characteristic
Curve.

differences between the methods in Fig. 4, where the training times for each model can be
seen.

The times for the deep learning methods vary from nearly 2 h of the CNN to 12 h
of the bidirectional LSTM, while for the Cascade SVM method we got execution times
of almost 4 days using the string kernel. On the other hand, the SVM with an RBF
kernel can be trained in 2 h using the cascade approach and the Intel(R) Extension
(https://github.com/intel/scikit-learn-intelex) for Scikit-learn (which, unfortunately, cannot
be used when the SVM uses a string kernel). Without the cascade approach, the SVMwith a
string kernel could take several months before being able to complete the training process.

This has to do with the weighted degree kernel. This kind of kernel can achieve notably
better results working with strings, as seen in Perez-Rodriguez, Haro-Garcia & Garcia-
Pedrajas (2020), but it comes at a great computational cost. In this case, the kernel has been
developed in Python using the Scikit-learn (Pedregosa et al., 2011) tool to use personalized
kernels, which implies precomputing the entire kernel matrix. This kernel computation can
be optimized using faster languages like C, so we implemented the grammatrix calculation
in C to reduce computational time. To minimize these problems, the matrix computing
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Full-size DOI: 10.7717/peerjcs.1340/fig-4

step has also been programmed to be parallelized. In our case, the SVM experiments have
been run on an Intel(R) Xeon(R) Gold 6150 CPU @ 2.70 GHz using 20 cores. Despite that,
its training process is remarkably slower than that of the other methods.

In order to study the effects of the amount of training data on the performance of each
method we performed experiments using the 10% (Table 3) and 50% (Table 4) of the data
in order to have a fair comparison between SVM and the rest of the algorithms, given that
SVM methods could perform better than deep neural networks in situations with fewer
data available. Now, the reduction in training times achieved by working with smaller
datasets has allowed us to include regular SVM methods to analyze the effects of cascading
optimization on the results.

In Table 3 we can see how, even using only 10% of the data, SVM gets the worst results
due to a strong overfitting (note that the regularization parameter was the best found
after testing several values using a grid search), except in the case of the RBF kernel using
cascade SVM, which makes the model generalize better but notably reduces its prediction
performance. These results seem to indicate that, although SVMs are typically more
robust to overfitting than deep networks, for this particular problem the measures against
overfitting of deep networks, the dropout layers, are more effective than the regularization
of SVM. When using half of the data, in Table 4 we can see how, even though the results
experience a slight improvement, the SVMmodels keep overfitting with significantly lower
results than the rest of the methods. As we can see, SVMs consistently gets the worst results
in every metric but accuracy, which is related to the unbalanced nature of the data. In
metrics more suited to unbalanced data, SVM performs significantly worse than the deep
learning methods.
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Table 3 Results using 10% of the data.

Train Test

Classifier Acc BC F1 AUC
ROC

Acc BC F1 AUC
ROC

CNN 0.9171 0.2154 0.2319 0.8710 0.9124 0.2360 0.1811 0.8269
LSTM 0.9243 0.2071 0.2948 0.8761 0.9152 0.2329 0.2171 0.8319
BLSTM 0.9341 0.1723 0.3942 0.9282 0.9187 0.2297 0.2719 0.8493
CNN+LSTM 0.9392 0.1684 0.4707 0.9293 0.9214 0.2129 0.3308 0.8693
CNN+BLSTM 0.9356 0.1742 0.4295 0.9271 0.9189 0.2196 0.2893 0.8571
SVMWD 0.9999 0.0030 0.9995 0.9999 0.9142 2.9621 0.3397 0.8145
SVM RBF 0.9453 1.8867 0.5650 0.9999 0.9089 3.1453 0.0112 0.8053
Casc. SVMWD 0.9997 0.0082 0.9995 0.9999 0.9123 3.0257 0.3463 0.7981
Casc. SVM RBF 0.7733 7.8276 0.3539 0.7908 0.7124 9.9324 0.3153 0.7693

Notes.
The best values are highlighted in bold.
Acc, Accuracy; BC, Binary Cross-Entropy; F1, F1-metric; AUC ROC, Area Under the Receiver Operating Characteristic
Curve.

Table 4 Results using 50% of the data.

Train Test

Classifier Acc BC F1 AUC
ROC

Acc BC F1 AUC
ROC

CNN 0.9280 0.1947 0.3704 0.8954 0.9189 0.2823 0.2929 0.8645
LSTM 0.9444 0.1565 0.5086 0.9331 0.9294 0.1996 0.3967 0.8824
BLSTM 0.9488 0.1407 0.5596 0.9482 0.9341 0.1850 0.4489 0.9028
CNN+LSTM 0.9318 0.1834 0.4076 0.9105 0.9266 0.1976 0.3523 0.8918
CNN+BLSTM 0.9416 0.1587 0.5298 0.9340 0.9311 0.1844 0.4418 0.9074
SVMWD 0.9996 0.0105 0.9983 0.9998 0.9201 2.7569 0.4118 0.8411
SVM RBF 0.9521 1.6519 0.6457 0.9997 0.9105 3.0893 0.0683 0.8434
Cas. SVMWD 0.9991 0.0285 0.9986 0.9998 0.9118 3.0461 0.4056 0.8142
Cas. SVM RBF 0.6296 12.7913 0.2821 0.7848 0.5343 16.0832 0.2393 0.7702

Notes.
The best values are highlighted in bold.
Acc, Accuracy; BC, Binary Cross-Entropy; F1, F1-metric; AUC ROC, Area Under the Receiver Operating Characteristic
Curve.

Once SVM has been discarded as an adequate model for this problem, our purpose is
to analyze which of the five different architectures based on DNNs gets the best results,
now using the entire dataset. In Fig. 5 and Table 5, we can see how the CNN model is
unable to keep a similar performance to the rest of the methods. Apparently, the model is
too simple to detect complex patterns in the sequence. On the other hand, the addition of
LSTMsmakes themodels achieve better results, even higher than the algorithms including a
convolutional step in their architecture. This CNN addition makes the model a bit faster by
reducing the sequence length given to the LSTM, thus improving GPU parallelization, but
its results are slightly inferior. Something that actually helps the model is the bidirectional
structure of the LSTM, being the best model for every metric analyzed. This makes its
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Figure 5 Results using 100% of the data.
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training twice as slow as the standard LSTM, from an average training time of 6.69 to
11.4 h using an NVIDIA Titan Xp GPU, that is, a 70% increase in time. Because of the
significant difference in results between the RBF kernel and the rest of the methods showed
in Table 5, the RBF SVM is not included in Fig. 5 to provide a clearer visualization of the
other algorithms.

Generalization performance
In addition to the performance analysis of the models using the human genome dataset, to
test if the obtained models could be used on other datasets without retraining, we created
a new dataset from the mouse genome data in Ensembl. The process followed to generate
this dataset was the same as already described in Section 2.1, and the dataset is also available
from https://github.com/JoseBarbero/EnsemblTSSPrediction.

The results of this last experiment are shown in Table 6. The performance degrades
noticeably for all models, something that should not be a surprise, as we are using them
on sequences of a different species than the one used to train them. But within this worse
performance, it is interesting to see how the SVM models achieve slightly better results
than the rest of the models in accuracy and binary cross-entropy, specifically the string
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Table 5 Results using 100% of the data.

Train Test

Classifier Acc BC F1 AUC
ROC

Acc BC F1 AUC
ROC

CNN 0.9210 0.2085 0.5273 0.8818 0.9176 0.2199 0.4968 0.8682
LSTM 0.9470 0.1454 0.5105 0.9438 0.9354 0.1776 0.5771 0.9144
BLSTM 0.9474 0.1434 0.6602 0.9454 0.9383 0.1697 0.6105 0.9216
CNN+LSTM 0.9376 0.1674 0.6256 0.9264 0.9329 0.1806 0.5913 0.9121
CNN+BLSTM 0.9382 0.1665 0.6303 0.9269 0.9325 0.1817 0.5880 0.9106
Cas. SVMWD 0.9988 0.0405 0.9978 0.9996 0.9090 3.1433 0.4124 0.8232
Cas. SVM RBF 0.6109 13.8642 0.2693 0.7833 0.5044 17.1162 0.2386 0.7737

Notes.
The best values are highlighted in bold.

Table 6 Generalization performance on the mouse genome dataset.

Test

Classifier Acc BC F1 AUC
ROC

CNN 0.5477 0.5839 0.2926 0.6780
LSTM 0.5479 0.6910 0.4772 0.8288
BLSTM 0.5477 0.5994 0.3104 0.6984
CNN+LSTM 0.5479 0.6026 0.3118 0.7143
CNN+BLSTM 0.5478 0.6095 0.3226 0.7199
Cas. SVMWD 0.5487 0.4656 0.2109 0.5939
Cas. SVM RBF 0.5477 0.5676 0.2784 0.6592

Notes.
The best values are highlighted in bold.

kernel. Although, if we focus on the metrics best suited for unbalanced data, we can see
how the models that stand out are actually those using deep learning. In particular, it is
surprising how, according to the AUC-ROC metric, the LSTM has a generalization far
above the rest of the methods. The LSTM model has the simplest architecture of all the
deep neural networks evaluated, which could explain a lower overfit to the training dataset
leading to a better generalization ability, extending even to sequences of other species.

DISCUSSION
Even though the cascade implementation makes a major difference in SVM training
times, the poor performance of SVMs on large datasets is well known. In addition to
parallelization and the cascade optimization, other methods have been studied trying to
improve SVMs performance on large-scale data (Menon, 2009; Saha et al., 2021). However,
they are often not well suited to string kernels and make the model much more complex
to implement. Their high computational cost on large datasets makes SVMs hard to apply,
existing deep neural networks, being more efficient, and simpler to implement, although
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the interpretability and explainability of SVMs are vastly superior, which still makes them
the best alternative for certain problems.

On the contrary, DNNs are able to take advantage of large amounts of data, some of
them in a more efficient way than others. Specifically, methods using LSTMs can be much
slower, particularly the bidirectional ones. That inefficiency is explained by the complexities
of parallelizing this kind of models using a GPU, which can be easily solved in models like
CNNs.

In terms of performance, bidirectional LSTM has the best results in the human genome
dataset , closely followed by the regular LSTMmodel. From these results, we can derive that
the improvement may come from the ability of bidirectional LSTM to consider relevant
information not only from the 5′end to the 3′end of the sequence, but also from the
3′to the 5′end, allowing one to find patterns from the 3′end that influence the sequence
upstream. This makes us wonder if a slight improvement in the results is worth almost
doubling the training time. Given the similarity in performance between BLSTM and
LSTM, we performed a Student’s t -test and concluded that the difference between them is
not statistically significant (for α= 0.05). Moreover, LSTM got much better results than
BLSTM when the models obtained from training with the human genome were used on a
different species genome, that of the mouse. Taking these aspects into account, we conclude
that the LSTM model would be a better choice in this context.

It is also worth mentioning that more complex architectures, such as combined LSTMs
and CNNs, used in similar problems (Wei et al., 2021; Zhang et al., 2017; Zuallaert et al.,
2018) did not get the same results as a simpler model like the LSTM. This is probably
caused by the loss of information when applying the convolutional and max pooling filters,
which indicates a high sensitivity of the model to changes on single bases.

CONCLUSIONS
This article has evaluated the performance of SVMs and various DNN models for the
problem of identifying the transcription start site using our own custom-built datasets
based on open data available in Ensembl (Howe et al., 2020). These datasets and the
instructions to generate them for any other species are publicly available on GitHub and
can be used in future papers in this field. Due to their sizes, they are suitable to be use in
combination with deep learning methods. These datasets are very simple to download and
use, or even generate from scratch, if any researcher wants to alter any step of the process.
We have also studied the correct ratio of positive and negative instances in these datasets
and concluded that a bigger ratio of negative semi-synthetically generated instances can
provide valuable information to the model.

Although SVMs are the most established method in TSS identification, we found that
they are poorly adapted to this problem compared to deep learning methods, even those
based on string kernels. Meanwhile, DNNs can be much more efficient working with large
datasets. We also found that simpler deep learning architectures can work better for this
problem than more complicated ones.

We can finally conclude that the SVMs, despite their interpretability and explainability,
could not keep up with the DNNs. However, the most complex models that combine
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LSTMs and CNNs are not always the best solution. What is clear is that there are models
best suited for sequences like LSTMs or SVMswith string kernels, andmodels best suited for
large amounts of data, like those based on DNNs. If we get the best from both perspectives,
we can comprehend how LSTMs are the best alternatives in these kinds of problems.

Lastly, we suggest some future research lines for this problem. The first could be to test
different encoding techniques, as proposed in Wu et al. (2021). Another interesting work
line is the adaptation of popular recent NLP models like BERT, as suggested in Ji et al.
(2021) to this specific problem. Although transformers have been shown to be effective in
this type of tasks, they can be overcome by simplermodels like gatedmultilayer perceptrons,
as studied in Liu et al. (2021). One last interesting research line would be to apply these
mentioned models to the transcription start site problem, having the opportunity to study
the relationship between complexity and efficiency of the methods in this problem.
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