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ABSTRACT
This work is motivated by applications of parsimonious cladograms for the purpose
of analyzing non-biological data. Parsimonious cladograms were introduced as a
means to help understanding the tree of life, and are now used in fields related to
biological sciences at large, e.g., to analyze viruses or to predict the structure of
proteins. We revisit parsimonious cladograms through the lens of clustering and
compare cladograms optimized for parsimony with dendograms obtained from
single linkage hierarchical clustering. We show that despite similarities in both
approaches, there exist datasets whose clustering dendogram is incompatible with
parsimony optimization. Furthermore, we provide numerical examples to compare
via F-scores the clustering obtained through both parsimonious cladograms and
single linkage hierarchical dendograms.

Subjects Bioinformatics, Computational Biology, Data Science
Keywords Parsimony, Clustering

INTRODUCTION
Systematics is a field of biology that seeks to reconstruct the evolutionary history
(phylogeny) of life, namely how different kinds of organisms on earth evolved to become
the currently known diversity of species (Lipscomb, 1998). Phylogeny is usually
represented by a leaf-labeled tree where the non-leaf nodes refer to (possibly hypothetical)
ancestors and the leaves are labeled by the species. A phylogenetic tree is also known as a
cladogram. Apart from understanding the history of life, phylogeny has other applications
(Sung, 2009), for instance, to analyze rapidly mutating viruses (such as the HIV virus, or
the SARS-CoV-2 virus, for example, Morel et al. (2020), Thornlow et al. (2022) and
Hadfield et al. (2018), National Institutes of Health (2023) for datasets), for multiple
sequence alignment (alignment of three or more biological sequences, protein or nucleic
acid, of similar length), for the prediction of the structure of proteins and ribonucleic acid
(RNA), to predict gene expression and ligand structures for drug design.

The problem of phylogenetic tree reconstruction is to predict or estimate the phylogeny
for some input data. Two types of methods can be used: (1) character-based methods
(maximum parsimony (for example, Robinson (1971) and maximum likelihood), where
character refers to any observable feature or trait of an organism, (2) distance-based
methods (for example, unweighted pair group with arithmetic mean (for example, Saitou
& Nei (1987), transformed distance and neighbour relation). In this work we focus on the
parsimony approach, and use the term parsimonious cladograms to refer to cladograms
considered with the parsimony criterion.
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The notion of parsimony can be traced back to Hennig (1950) and Edwards & Cavalli-
Sforza (1963); see Farris & Kluge (1997) for a historical perspective around the notion of
parsimony. Trees following the principle of parsimony minimize the number of changes
from one node to another. In other words, parsimony states that the simplest explanation
that explains the greatest number of observations is the preferred one. Different variants of
parsimony exist, depending on properties that characters may have. Characters are
reversible if changes may happen several times (otherwise, each character changes at most
once). Characters are ordered if changes have to happen in a particular order.

In this work, we consider only Fitch’s parsimony (Fitch, 1971), where characters are
unordered, multistate, and reversible. Other variations include perfect phylogeny, Wagner,
Dollo and Camin-Sokal parsimony (see chapter 4 of Kitching et al. (1998)), which are
outside the scope of this initial study.

Trying to best group objects based on their shared properties is the goal of clustering.
Since there is an enormous amount of literature on clustering (see for example, Xu & Tian
(2015) and Saxena et al. (2017), we will narrow our discussion to agglomerative
hierarchical clustering: given points to be clustered, a distance is used to compare them; an
initial grouping is performed, the process is then iterative, and at each iteration, existing
groups are agglomerated until there is a single cluster. The resulting clustering can be
visualized via a dendogram (while the term dendogram is also used in the context of
parsimony, we will use cladogram in the context of parsimony, and dendogram in the
context of clustering). Hierarchical clustering is a well known classical technique (see
Nielsen (2016), Defays (1977), Sibson (1973)). The reason for which we consider it, rather
than say a more modern approach, is because the variant called ‘single linkage’ (Sibson,
1973) resembles closely with the parsimony method that we explore.

The question addressed in this work pertains to the usage of parsimony as a clustering
measure, and could be phrased as: what are the congruences, if any, between the cladograms
obtained using Fitch parsimony as an optimization criterion, and dendograms obtained
from agglomerative hierarchical clustering? It is a partial question to a more ambitious one:
what are the connections, if any, between the cladograms obtained using maximum
parsimony as an optimization criterion, and dendograms obtained from agglomerative
hierarchical clustering? The relations between evolution on the one hand and
discoverability of characters, hierarchy and parsimony on the other hand were addressed
in Brower (2000). This question is motivated by the use of maximum parsimony
cladograms for analyzing non-biological, and more more generally, non-ancestry based
data (for instance, volcanoes in Hone et al. (2007)). If agglomerative clustering could lead
to good enough parsimonious trees for (very) large datasets, this would provide
computationally efficient approximation algorithms. Computing parsimonious trees is not
as computationally efficient as hierarchical clustering; the latter has been carried out with
up to 100 gigabytes of data (Sun et al., 2009). If on the other hand, parsimonious trees
cluster data in a unique manner, it would be meaningful to compare what features of the
data are being captured with parsimony compared with respect to those captured by a
standard clustering algorithm. This could prove useful for non-biological (not necessarily
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ancestry-based) applications, with not too large datasets. While this work certainly does
not contain all the answers, it provides a first insight into these questions.

Recent works have studied parsimonious trees and clustering, but in different contexts.
InMawhorter & Libeskind-Hadas (2019), hierarchical clustering is used for the purpose of
phylogenetic reconciliation, which consists of inserting a phylogenetic tree representing
the evolution of an entity into the phylogenetic tree of an encompassing entity to reveal
some possible shared history. In Brucker & Gély (2009), a new clustering structure, named
parsimonious cluster systems, is introduced as a generalization of phylogenetic trees.

In “Parsimonious cladograms”, we formalize the optimization involved in finding
parsimonious cladograms, and given a set S of sequences as input data, we provide a simple
algorithm (Algorithm 1) to compute a cladogram for S whose parsimony is the weight of a
minimum spanning tree computed from S. In “Hierarchical clustering and dendograms”,
we recall the principles behind single linkage hierarchical clustering, and propose a second
algorithm (Algorithm 3), which, given a set S of sequences to be clustered, outputs a
dendogram which also forms a parsimonious cladogram. The combination of both
algorithms enables us to compare parsimonious cladograms with guaranteed parsimony
with single linkage dendograms. We exhibit examples of datasets for which the parsimony
achieved by Algorithm 1 cannot possibly be achieved by a single linkage dendogram, even
though Algorithm 3 provides a single linkage dendogram but with worse parsimony.
Numerical experiments are provided in “Numerical exploration”. Four methods to
construct parsimonious trees are compared (via F-score) in terms of the clusterings they

Algorithm 1: An algorithm to compute a parsimonious tree from a minimum spanning tree.

Data: T1 a minimum spanning tree, with edge set EðT1Þ
Result: T2 a labeled tree, with edge set EðT2Þ
EðT2Þ  [;

while jEðT1Þj 6¼ 0 do

L leavesðT1Þ;
P predecessorsðLÞ;
if P 6¼ L then

EðT2Þ  EðT2Þ þ fðu; v; dðu; vÞÞ; u 2 L; v 2 Pg;
EðT2Þ  EðT2Þ þ fðv; v; 0Þ; v 2 Pg;
EðT1Þ  EðT1Þ � fðu; v; dðu; vÞÞ; u 2 L; v 2 Pg;

else

EðT2Þ  EðT2Þ þ fðL½0�; L½1�; dðL½0�; L½1�ÞÞg;
EðT2Þ  EðT2Þ þ fðL½1�; L½1�; 0Þg;
EðT1Þ  EðT1Þ � fðL½0�; L½1�; dðL½0�; L½1�ÞÞ; g;

end

end
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Algorithm 2: A standard agglomerative hierarchical clustering.

Data: n points P1; . . . ; Pn

Result: A hierarchical clustering of P1; . . . ; Pn

Ci  Pi; i ¼ 1; . . . ; n;

C  fC1; . . . ;Cng;
while jCj. 1 do

Dij  dBCðCi;CjÞ for Ci;Cj 2 C;

Ĉi; Ĉj  argminDij;

C  C þ Ĉi [ Ĉj;

C  C � fĈi; Ĉjg;
end

Algorithm 3: A modified agglomerative hierarchical clustering.

Data: n points P1; . . . ; Pn

Result: A parsimonious tree T for P1; . . . ; Pn

Ci  Pi; i ¼ 1; . . . ; n;

EðTÞ  [;

labels [;

C  fC1; . . . ;Cng;
while jCj. 1 do

Dij  dBCðCi;CjÞ for Ci;Cj 2 C;

Ĉi; Ĉj  argminCi;CjDij;

P̂i; P̂j  argminx2Ĉi;y2Ĉj
dHðx; yÞ;

C  C þ Ĉi [ Ĉj;

EðTÞ  EðTÞ þ fðĈi; Ĉi [ ĈjÞ; ðĈj; Ĉi [ ĈjÞg;
if Ĉi is a leaf then

labelðĈiÞ  Pi;

else

labelðĈiÞ  P̂i;

end

if Ĉj is a leaf then

labelðĈjÞ  Pj;

else

labelðĈjÞ  P̂j;

end

labels labelsþ flabelðĈiÞ; labelðĈjÞ;
C  C � fĈi; Ĉjg;

end
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yield. These show divergent patterns between parsimony and tree structures, in the sense
that having a parsimony that decreases does not imply tree structures and thus clusters
becoming more similar.

PARSIMONIOUS CLADOGRAMS
Formal definitions
A tree T is an undirected graph with no cycle, with vertex set VðTÞ and edge set EðTÞ. We
will consider rooted trees.

Let Sn be the set of all possible sequences (not necessarily observed) of length n over a
finite alphabet. For example, the alphabet may be binary to state the presence or absence of
a trait, or multistate, for instance, A, C, T, G for a multiple sequence alignment.

We need a distance function on sequences x; y 2Sn. Recall that a distance function d
satisfies the following axioms: (i) dðx; yÞ � 0 and dðx; yÞ ¼ 0() x ¼ y; (ii)
dðx; yÞ ¼ dðy; xÞ and (iii) the triangle inequality: dðx; yÞ þ dðy; zÞ � dðx; zÞ, for all
x; y 2Sn. Recall also that we consider only the case of unordered characters in this work.
Definition 1. Let d be a distance function. Let T be a rooted tree whose leaves are a subset S
of sequences in Sn, and each non-leaf node is assigned a sequence in Sn. The weight or
parsimony length of T is defined by

wðTÞ ¼
X

ðx;yÞ2EðTÞ
dðx; yÞ

where dðx; yÞ denotes the distance between x and y, and we identify nodes in the graph
with their sequence. Given a set S, the most parsimonious tree (or most parsimonious
cladogram) is a tree T� whose parsimony length wðT�Þ is minimized over all possible trees
whose leaves are labeled by S and all possible sequence assignments of the non-leaf nodes.
We note that any tree with label has an associated parsimony. As such, there is a certain
abuse of the nomenclature ‘parsimonious tree’ or ‘parsimonious cladogram’, with which
we refer to any tree with a label that may however not be optimal. This phrasing
nonetheless allows us to refer to such trees succinctly and is also consistent with the notion
of most (or maximum) parsimonious tree.

Let dHðx; yÞ be the Hamming distance between two sequences x 6¼ y 2Sn. The
Hamming distance counts the number of positions in which x; y differ. In Fig. 1, a tree for
the sequence set S = {ACGT, ACCT, ACCG, CCGT} is shown (see Fig. 1B), where d ¼ dH .
The tree has S for leaves, and the choice of labels for the non-leaf nodes gives a parsimony

Figure 1 An example of tree (from Sung (2009)) for the sequence set S = {ACGT, ACCT, ACCG,
CCGT} using the Hamming distance. Full-size DOI: 10.7717/peerj-cs.1339/fig-1
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length wðTÞ ¼ 5. In Fig. 1A, the objects or species W, X, Y, Z are identified with the
sequences representing their properties or characters.

There are two standard problems associated to parsimony (Sung, 2009):

� The ‘small parsimony’ problem: it consists of finding the optimal labels for internal
nodes given a tree with labelled leaves. This has been solved in Fitch (1971).

� The ‘large parsimony’ problem: it refers to the tree reconstruction problem, namely,
given a set S of sequences, to find the most parsimonious tree. Since this problem is NP-
complete (Sung, 2009, 7.2.1.2), in practice, approximation algorithms to identify good (if
not optimal) solutions are used.

Large parsimony
Let S be a set of sequences. Let GðSÞ be the complete graph with vertex set S. Every edge
ðx; yÞ has weight dðx; yÞ, where x; y are sequences in S, identified with their nodes. Let T be
the minimum spanning tree of GðSÞ, and let T� be the most parsimonious tree given S. The
following bound on the parsimony length of a tree T is known (Sung, 2009, Lemma 7.2.).
Proposition 1. Let T be a minimum spanning tree of GðSÞ, and let T� be the most
parsimonious tree for S. Then

wðTÞ � 2wðT�Þ:

Proof. Let C be an Euler tour of T�. Without loss of generality, assume that the tour
starts at the root. It will then traverse T� in such a way that each vertex is added to the tour
when it is visited (either moving down from a parent vertex or returning from a child
vertex). The tour returns to the starting node after visiting all the vertices of T�, in the
process traversing every edge twice (and revisiting nodes in the process). Thus

wðCÞ ¼ 2wðT�Þ:

Consider now a walk on GðSÞ which visits the vertices in the same order in which they
appear in C, and return to the start node at the end. Then, since the distance function
satisfies the triangle inequality, the length of this walk is less than or equal to wðCÞ. Now, if
we remove any edge from this walk, it creates a shorter walk P, which is in turn also shorter
than or equal to the length of the original walk. Consequently, we have

wðPÞ � wðCÞ:

Finally, since P is a superset of a spanning tree, we have

wðTÞ � wðPÞ � wðCÞ ¼ 2wðT�Þ
for T is a minimal spanning tree.

There are two ways to interpret this inequality. Foremost, the optimal parsimony tree
weight wðT�Þ is at least half the weight of the minimum spanning tree. Conversely, the
minimum spanning tree can be harnessed to design a two-approximation polynomial time
algorithm for parsimonious tree construction. Furthermore, while the inequality

Oggier and Datta (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1339 6/17

http://dx.doi.org/10.7717/peerj-cs.1339
https://peerj.com/computer-science/


guarantees a tree so constructed to have a parsimony no worse than twice that of the most
parsimonious tree, a keen inspection of the last line of the proof of the inequality suggests
that in practice this would generally yield significantly better parsimonious tree instances.
We note that better than two-approximation polynomial algorithms have been proposed,
for instance, Alon et al., (2008) achieving 1.55-approximation asymptotically. More
recently, Jones, Kelk & Stougie (2021) showed that the maximum parsimony problem is
fixed parameter tractable, in that deciding whether the maximum parsimony is greater or
equal to a fixed threshold can be solved in polynomial time.

Consider the example in Fig. 2, with d the Hamming distance, the minimum spanning
tree T shown on Fig. 2A has weight wðTÞ ¼ 3 � 2wðT�Þ, so we know that wðT�Þ � 1:5. A
tree with weight 3 is also shown on Fig. 2B, which improves on the tree from Fig. 1.

In Algorithm 1 we explicit how a parsimonious tree T2 can be derived from a minimum
spanning tree T1 of the complete graph GðSÞ, such that wðT1Þ ¼ wðT2Þ. Combining
Proposition 1 and Algorithm 1 gives

1
2
wðTÞ � wðT�Þ � wðTÞ

where T� is the most parsimonious tree for S and T is a minimum spanning tree for GðSÞ.
The algorithm starts with the leaves of T1, which becomes leaves of T2, and furthermore,

for each predecessor p in the set of predecessors of these leaves, an edge ðp; pÞ of weight 0 is
added. Since both leaves of T1 and non-leaves of T1 all become leaves in T2, and by
definition of minimum spanning tree, this means all and only elements of S are leaves in
T2, T2 is indeed a parsimonious tree, with the specificity that the labels of intermediate
nodes are in S. Since the edge set EðT2Þ of T2 is built from that of EðT1Þ, apart from the
edges of weight 0 which do not contribute to the weight, we have wðT1Þ ¼ wðT2Þ.

Algorithm 1 does not optimize labelings for the constructed tree, it merely exhibits a
tree whose weight is guaranteed to be that of the minimum spanning tree, which we will
use later on in this work. Once the tree is formed, the labeling can be optimzed using
(Fitch, 1971).

HIERARCHICAL CLUSTERING AND DENDOGRAMS
Agglomerative hierarchical clustering clusters n points P1; . . . ; Pn iteratively, starting from
individual points up to having one cluster with all points (by contrast, divisive hierarchical

Figure 2 For the set S = {ACGT, ACCT, ACCG, CCGT}, its complete graph GðSÞ whose edges have
for weight the Hamming distance between the nodes they connect, a minimum spanning tree of GðSÞ
and the resulting cladogram. Full-size DOI: 10.7717/peerj-cs.1339/fig-2
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clustering starts from one cluster and iterates top down). This process is formalized in
Algorithm 2.

While there are more than one clusters, a distance matrix D containing between-cluster
distances is computed (there are different possibilities for what the between-cluster
distance dBC should be, it is also referred to as ‘linkage’ distance). The two closest clusters
as per dDB are agglomerated, and the individual clusters are discarded. For computational
efficiency, one would update the matrix D by computing the between-cluster distance
between existing clusters and the newly created one, and delete the obsolete rows rather
than recompute the whole matrix.

An example of between-cluster distance is single linkage, given by:

dBCðCi;CjÞ ¼ min
x2Ci;y2Cj

dðx; yÞ;

Meaning that the smallest pairwise distance between elements of Ci and Cj becomes the
distance between the two clusters.

As an example, the set S from previous examples (see Figs. 1 and 2) is clustered using the
Hamming distance d ¼ dH and single linkage. The resulting dendogram is shown on
Fig. 3A. It is easy to understand since we already know that the minimum spanning tree is
made of only edges with weight 1. Thus two closest sequences are first combined (there are
three choices: (ACCT, ACCG), (ACCT, ACGT), (ACGT, CCGT)), they are at distance one
from each other. But then, every sequence not already chosen will be at distance 1 from one
sequence in the chosen set. Thus all sequences are at the same level, namely at distance 1=4
in the dendogram (the dendogram distance of 1 is normalized by the length of 4).

We observe that:

� A dendogram resulting from clustering gives a tree structure, not a labeling of this tree.

� Once the dendogram and thus the tree structure is obtained, several labelings are
possible, this is in effect the small parsimony problem defined in “Formal definitions”.

Figure 3 Hierarchical clustering the set S = {ACGT, ACCT, ACCG, CCGT} with respect to the Hamming distance and using single linkage,
resulting in a single linkage distance of 0.25 in every case. Full-size DOI: 10.7717/peerj-cs.1339/fig-3
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We propose Algorithm 3 in which we modify the single linkage agglomerative clustering
to include a labeling which comprises only points to be clustered.

The leaves are labeled by the points. Then the labels are attributed after the next level of
agglomeration is decided, and the points that decide the agglomeration are a posteriori
used to label the intermediate nodes. By construction, the output tree T has labels all in
S ¼ fP1; . . . ;Png. This is illustrated on Fig. 3B.

Connections between minimum spanning trees and single linkage clustering are well
known (Gower & Ross, 1969). The knowledge of a minimum spanning tree is enough to
construct clusters from a single linkage hierarchical clustering (Gower & Ross, 1969): group
all points into disjoint sets by joining all dendogram segments of length less or equal to a
given threshold. This will give clusters, which can be obtained from a minimum spanning
tree by removing all edges of weight more than the chosen threshold. Thus the above
algorithm constructs a minimum spanning tree, and also a dendogram, whose clusters are
in correspondence with the obtained minimum spanning tree. This provides a solution to
the large parsimony problem, in that it fixes a tree structure, however there is no guarantee
on the weight of the resulting dendogram, since there is no guarantee on the optimality of
the labeling, even though they are restricted in S. Furthermore, for better parsimony, the
labeling could be optimized by searching for labels outside S.

We show next that the dendogram structure obtained from the single linkage
hierarchical clustering may in fact have no labeling with weight smaller or equal than that
of a minimum spanning tree.
Proposition 2. There exist sequence sets S whose single linkage dendograms have no labeling
with weight smaller or equal than that of a minimum spanning tree of GðSÞ.

Proof. Consider the set S ¼ f1111111, 1110000, 1100000, 0000000g. Its complete graph,
minimum spanning tree and dendogram are shown on Figs. 4A and 4B. By construction,
the dendogram starts with grouping 1110000 and 1100000 which are at distance 1 from
each other. Any intermediate label X brings a weight of

dHð1110000;XÞ þ dHðX; 1100000Þ:

At the second iteration of the dendogram construction, 0000000 is added, because it is
at distance 2 from 1100000. Then again, any intermediate label Y brings a weight of

Figure 4 The set S ¼ f1111111, 1110000, 1100000, 0000000g with its the corresponding graph GðSÞ
and dendogram. Full-size DOI: 10.7717/peerj-cs.1339/fig-4
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dHðX;YÞ þ dHðY; 0000000Þ:

Similarly, for Z, any intermediate label adds a further weight of

dHðY ;ZÞ þ dHðZ; 1111111Þ:

Any labeling X, Y, Z thus yields for the obtained dendogram a weight of

dHð1110000;XÞ
þ dHðX; 1100000Þ þ dHðX;YÞ þ dHðY ; 0000000Þ þ dHðY;ZÞ þ dHðZ; 1111111Þ
� dHð1110000;XÞ þ dHðX; 1100000Þ þ dHðX;YÞ þ dHðY ; 0000000Þ þ dHðY ; 1111111Þ
¼ dHð1110000;XÞ þ dHðX; 1100000Þ þ dHðX;YÞ þ 7

using first the triangle inequality, and then that

dHðY ; 1111111Þ ¼ 7� dHðY ; 0000000Þ

since the left hand-side term counts the number of coordinates of Y that are 0, the right
hand-side term removes the number of coordinates that are one from seven. Since the
weight of the minimum spanning tree is 7, any labeling will give a weight strictly larger
than 7 if and only if

dHð1110000;XÞ þ dHðX; 1100000Þ þ dHðX;YÞ. 0:

This is always the case, because in order to have equality, we would need all the three
distances to be 0, which is impossible.

The example given in the above proof is not isolated. Suppose a sequence s1 is far away
from all other sequences in S (it is the case of s1 ¼ 1111111 in the proof). When the
sequence s1 and the lastly added sequence s2 form an edge ðs1; s2Þ 2 GðSÞ which not only is
not in a minimum spanning tree of GðSÞ, but in fact has weight large enough that it cannot
be compensated (s2 ¼ 0000000 in the proof), even if there were weights less than those of
the minimum spanning tree added before, then no labeling exist. The proof provides an
extreme example where dHðs1; s2Þ ¼ n which is the length of the sequences, thus the largest
possible distance, and also in this case the weight of the minimum spanning tree.

An insight that could be learned from the above proof is that the weight of the tree can
be explicitly written in terms of distances between leaves and intermediate nodes, or
between two intermediate nodes. Minimizing the weight globally forces the sum of these
distances to be reduced. By the triangle inequality, this means that upper bounds on the
distances between leaves is also globally reduced. However, going through intermediate
nodes adds constraints that are not there when only considering distances among leaves,
which is the case in a hierarchical clustering.

Let us compare Algorithms 1 and 3. The first algorithm shows that it is always possible
to build a tree with weight that of a minimum spanning tree (and the bound of Proposition
1 tells us that a better weight could be possible). The second algorithm provides a tree
whose structure is that of a single linkage hierarchical clustering dendogram, however the
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example in the above proof illustrates that there are sequences for which this tree structure
will give a weight strictly worse than that of a minimum spanning tree.

Let us exemplify the difference using the above example, see Figs. 5A and 5B.
Algorithm 1 groups 1111111 and 1110000 in the same cluster, while both of them will only
find themselves in the same cluster at the last step of Algorithm 3, when all sequences form
a single cluster. This is because the hierarchical clustering algorithm starts with a local
optimization, which groups first sequences that are the closest. The sequence 1111111 is
further away from other sequences, it will be added last. Both algorithms agree on the fact
that the ancestor of 1100000 and 0000000 is 1100000.

Figure 5 Comparison between the output of Algorithm 1 and Algorithm 3.
Full-size DOI: 10.7717/peerj-cs.1339/fig-5

Figure 6 The parsimonious tree constructed via the NNITreeSearcher by the
ParsimonyTreeConstructor of Biopython from an initial tree found by the neighbor joining
algorithm. Full-size DOI: 10.7717/peerj-cs.1339/fig-6
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Figure 7 The parsimonious tree obtained from Algorithm 1.
Full-size DOI: 10.7717/peerj-cs.1339/fig-7

Figure 8 The dendogram resulting from the clustering of the US flu dataset with respect to the Hamming distance and using single linkage.
Full-size DOI: 10.7717/peerj-cs.1339/fig-8
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NUMERICAL EXPLORATION
For validating the algorithms, and getting some sense of the quality of the obtained
clusterings, we explore a dataset S of 80 DNA sequences for different influenza strains
collected from 1993 to 2008 in the US (available at adegenet (2023)). Each sequence in S has
the length of 1,701.

We consider four methods, Methods 1 and 2 rely on Biopython (Cock et al., 2009), while
Methods 3 and 4 are derived from the proposed algorithms. Biopython provides a tree
constructor, ParsimonyTreeConstructor, which takes as input a searcher
(NNITTreeSearcher, see Robinson (1971) for the Nearest Neighbor Interchanges (NNI)
algorithm), and optionally an initial tree.

� Method 1: a parsimonious tree is constructed using Biopython, and no initial tree. This
initial tree is thus computed by default. This results in a tree with a parsimony length of
543.

� Method 2: a parsimonious tree is obtained using Biopython from an initial tree found
through the Neighbor Joining algorithm (NJ) (Saitou & Nei, 1987), resulting in a
parsimony length of 540, see Fig. 6.

� Method 3: we implemented Algorithm 1 which creates a parsimony tree whose weight is
that of a minimum spanning tree for GðSÞ, namely 671, see Fig. 7.

� Method 4: we implemented Algorithm 3 which assigns labels to minimize parsimony on
the dendogram tree obtained from single linkage hierarchical clustering in python,
relying on the libraries networkx (Hagberg & Conway, 2020) and scipy (Virtanen et al.
2020). The corresponding dendogram is shown on Fig. 8. It has weight 988.

We note here that when comparing the obtained parsimony lengths or weights, namely
543, 540, 671 and 988, it should be remembered that the sequences have length 1,701.

Table 1 F-scores for clusters obtained through four different methods.

(A) Comparisons between 4, 4, 6 and 4 clusters

C1ð4Þ C2ð4Þ C3ð6Þ C4ð4Þ
C1ð4Þ 1 0.8566 0.7006 0.7736

C2ð4Þ 1 0.5857 0.8579

C3ð6Þ 1 0.6010

C4ð6Þ 1

(B) Comparisons between 6, 7, 6 and 8 clusters

C1ð6Þ C2ð7Þ C3ð6Þ C4ð8Þ
C1ð6Þ 1

C2ð7Þ 0.9177 1

C3ð6Þ 0.5655 0.5076 1

C4ð8Þ 0.5333 0.5666 0.4513 1
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While it may be possible to look at the three plots in Figs. 6–8 to identify patterns, such
visual comparison is complicated and difficult to quantify similarities and differences. As
such, we use the F-score of two clusters (Pfitzner, Leibbrandt & Powers, 2009) as a
quantitative way to compare the resulting clusterings. The F-score applies even if different
numbers of clusters are available.

The pairwise F-score of the resulting clusters are summarized in Table 1. We use the
following notations:

� C1, C2, C3 and C4 respectively corresponds to Method 1 (a parsimonious tree obtained
from scratch and optimized with NNI), Method 2 (the parsimonious tree obtained from
the NJ algorithm), Method 3 (the tree obtained from Algorithm 1) and Method 4 (the
tree obtained from Algorithm 3).

� The index k in CiðkÞ for i ¼ 1; 2; 3; 4 refers to the number of clusters considered.
Clusters are obtained by truncating each tree at different depths from the root. Since
trees have different structures, it may not be possible to obtain the same number of
clusters.
We make the following observations: (a) clusters obtained using NNI and NJ algorithms
for parsimony tree construction are relatively closer to each other across the different
granularities of clustering studied; (b) the MST based (Algorithm 1) approach results in
the most distinct clusters; (c) the hierarchical Algorithm 3 yields something
intermediate and closer to the clusters obtained with NJ algorithm; (d) overall, scores are
lower in Table 1B compared to Table 1A, at the exception of C1ð7Þ;C2ð7Þ.
This illustrates divergent patterns between parsimony behaviour and tree structures.

The parsimony is highest with Method 4 (980), and then decreases through Method 3
(671), Method 1 (543) and is the lowest with Method 2 (541). However, the clusters
obtained from Method 3 give the lowest F-scores and are thus most distinct from the
others.

CONCLUDING REMARKS
This work looked at the cluster structure obtained from parsimonious trees, using Fitch’s
parsimony, in particular in comparison with the clusters obtained from hierarchical
clustering. While it gave a first glance into the problem, particularly, Proposition 2
establishes a clear demarcation: optimal parsimonious trees have parsimony less than or
equal to the weight of the minimum spanning tree, while there exists datasets where single
linkage hierarchical clustering would necessarily lead to tree structures whose parsimony
would be larger, many questions remain, in terms of understanding the tree structure that
parsimony as a criterion is trying to optimize. It could be interesting to categorize datasets
and possibly find some for which this demarcation is different. Also, while single linkage is
one form of linkage that looked the most natural to consider, another forms of linkage
could be studied. Alternatively, single linkage hierarchical clustering could be used as a
seed for further heuristics. Further extensions include Wagner parsimony and distance-
based methods. For instance, for the case of Wagner’s method, a software such as TNT
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(Goloboff, Farris & Nixon, 2008) could be used to obtain comparison results. A different
direction would be to compare forests of cladograms vs. forests of dendogram instead.
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