
Submitted 23 November 2022
Accepted 9 March 2023
Published 21 April 2023

Corresponding author
Muhammad Irfan Yousuf,
irfan.yousuf@uet.edu.pk,
dr.yousuf.irfan@gmail.com

Academic editor
Nz Jhanjhi

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.1319

Copyright
2023 Yousuf et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Windows malware detection based on
static analysis with multiple features
Muhammad Irfan Yousuf1, Izza Anwer2, Ayesha Riasat3, Khawaja Tahir Zia1 and
Suhyun Kim4

1Department of Computer Science, University of Engineering and Technology Lahore, Lahore, Pakistan
2Department of Transportation Engineering and Management, University of Engineering and Technology
Lahore, Lahore, Pakistan

3Department of Basic Sciences and Humanities, University of Engineering and Technology Lahore, Lahore,
Pakistan

4Centre for Artificial Intelligence, Korea Institute of Science and Technology, Seoul, Republic of Korea

ABSTRACT
Malware or malicious software is an intrusive software that infects or performs harmful
activities on a computer under attack. Malware has been a threat to individuals and
organizations since the dawn of computers and the research community has been
struggling to develop efficient methods to detect malware. In this work, we present
a static malware detection system to detect Portable Executable (PE) malware in
Windows environment and classify them as benign or malware with high accuracy.
First, we collect a total of 27,920 Windows PE malware samples divided into six
categories and create a new dataset by extracting four types of information including
the list of imported DLLs and API functions called by these samples, values of 52
attributes from PE Header and 100 attributes of PE Section. We also amalgamate this
information to create two integrated feature sets. Second, we apply seven machine
learning models; gradient boosting, decision tree, random forest, support vector
machine, K-nearest neighbor, naive Bayes, and nearest centroid, and three ensemble
learning techniques including Majority Voting, Stack Generalization, and AdaBoost
to classify the malware. Third, to further improve the performance of our malware
detection system, we also deploy two dimensionality reduction techniques: Information
Gain and Principal Component Analysis. We perform a number of experiments to test
the performance and robustness of our system on both raw and selected features and
show its supremacy over previous studies. By combining machine learning, ensemble
learning and dimensionality reduction techniques, we construct a static malware
detection system which achieves a detection rate of 99.5% and error rate of only 0.47%.

Subjects Data Mining and Machine Learning, Security and Privacy
Keywords Static malware analysis, Windows PE, Machine learning, Multiple features

INTRODUCTION
Malicious software, commonly called malware, can be classified into viruses, worms,
Trojans, spyware, ransomware, logic bomb, etc. based on their behavior and
characteristics (Gibert, Mateu & Planes, 2020). Computer malware pose a major threat
to computer and network security. This is the reason that research on developing new
systems to detect malware is a hot topic in data mining, machine learning, and deep

How to cite this article Yousuf MI, Anwer I, Riasat A, Zia KT, Kim S. 2023. Windows malware detection based on static analysis with
multiple features. PeerJ Comput. Sci. 9:e1319 http://doi.org/10.7717/peerj-cs.1319

https://peerj.com/computer-science
mailto:irfan.yousuf@uet.edu.pk
mailto:dr.yousuf.irfan@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1319
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1319


learning. Our work is aimed at developing a static malware detection system to detect
Portable Executable (PE) malware using multiple features. We not only extract multiple
features from PE malware but also combine these features to create integrated features in
a bid to improve the accuracy of our malware detection system. Presumably, the multiple
and integrated features used in this work have never been considered together in detecting
malware.

Most commercial anti-virus software rely on signature-based detection of malware,
however, it is not effective against unknown malware or zero-day attacks. In the last
decade or so, the research on malware detection has focused on finding generalized and
scalable features to identify previously unknown malware and counter zero-day attacks
effectively (Guo, 2023). There are two basic types of malware analyses; static analysis and
dynamic analysis (Damaševičius et al., 2021). In static analysis, features are extracted from
the code and structure of a program without actually running it whereas in dynamic
analysis features are gathered after running the program in a virtual environment.

During the last decade, machine learning has solved many problems in different sectors
including cyber security. It is now believed that AI-powered anti-virus tools can help in
detecting zero-day attacks (Alhaidari et al., 2022). A typical machine learning workflow in
detecting malware involves data collection, data cleaning and pre-processing, building and
training models, validating, and deploying into production. In this regard, the success of
supervised machine learning models depends on two factors: (1) the amount of labeled
data used to train the model and (2) the features extracted from the malware. There have
been numerous studies (Sharma, Rama Krishna & Sahay, 2019; Chowdhury, Rahman &
Islam, 2017; Kim et al., 2021; Patidar & Khandelwal, 2019; Zhang, Kuo & Yang, 2019) on
static malware analysis using machine learning but most of these studies train their models
on one or two types of features and have their own limitations.

In this work, we propose a malware detection system for detecting Portable Executable
(PE)malware based on static analysis withmultiple features.We extract four types of feature
sets and also merge them to create two additional feature sets. The research contributions
made by the authors are listed below.
1. Collection of latest samples to create a new dataset of PE malware and benign files.
2. We extract four feature sets including the list of imported DLLs and API functions

called by these samples, values of 52 attributes from the PE Header and 100 attributes
of the PE Section.

3. We merge extracted features for creating new integrated features of PE samples.
4. Comprehensive analysis and evaluation of different machine learning classifiers,

ensemble learning and feature selection techniques to maximize the malware detection
rate.
The remainder of this article is organized as follows. We discuss the some previous

studies on static malware detection in the Literature Review section. The Research Method
section describes our main approach to detect malware in Windows environment and
explains the process of data collection, feature extraction, and feature selection. We present
our empirical results in the Experimental Results section along with the evaluation criteria,

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 2/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


details of different experiments and our findings. We conclude our work in the Conclusion
section.

LITERATURE REVIEW
In this section, we cover previous works done on detecting malware in Windows
environment using machine learning methods. Mainly, we will cover some related works
in this field which deals with malware detection using static analysis on Windows Portable
Executables (PEs).

Several studies have applied machine learning for malware classification and detection.
The authors (Catak, Yazi & Elezaj, 2020) proposed a long short-term memory (LSTM)
method for classifying sequential data of Windows exe API calls. They also contributed
to the ongoing research on malware detection by developing a new dataset that contains
API calls made on the Windows operating system to represent the behavior of malware.
They achieved an accuracy of up to 95%. Sharma, Rama Krishna & Sahay (2019) proposed
a system based on the frequency of opcode occurrence for detecting malware. The authors
used Fisher score, information gain, gain ratio, Chi-square and symmetric uncertainty
for selecting top-20 features. They found that five machine learning methods namely
random forest, LMT, NBT, J48 Graft and REPTree detect the malware with almost 100%
accuracy. Naval et al. (2015) focus on proposing an evasion-proof solution that is not
vulnerable to system-call injection attacks. They proposed an approach that characterizes
program semantics using asymptotic equipartition property to extract information-rich
call sequences. These call sequences are further quantified to detect malicious binaries. The
results showed that the solution is effective in identifying real malware instances with 95.4%
accuracy.Tang & Qian (2019) detectedmalicious code based on the API call sequence. They
converted the API call sequence into a characteristic image that can represent the behavior
of the malicious code. The convolutional neural network was used to classify the malicious
code into nine families and achieved a true positive rate of 99%. The authors (Raff et al.,
2018) introduced malware detection from raw byte sequences of the entire executable file
using neural networks. In this initial work, they discussedmany interesting challenges faced
in building a neural network for processing raw byte sequences. Fuyong & Tiezhu (2017)
proposed a new malware detection and classification method based on n-grams attribute
similarity. We extract all n-grams of byte codes from training samples and select the most
relevant as attributes. After calculating the average value of attributes in malware and
benign separately, we determine a test sample is malware or benign by attribute similarity.
The results of this study show that the proposed system outperforms traditional machine
learning methods. Wojnowicz et al. (2016) developed a method to quantify the extent to
which patterned variations in a fileâôs entropy signal make it suspicious. By extracting
only string and entropy features from samples, they can obtain almost 99% detection of
parasitic malware.

Zhang et al. (2020) explored function call graph vectorization representation (FCGV)
as the input feature to machine learning algorithms for classification and noted that this
representation loses some critical features of PE files due to the hash technique being

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 3/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


used. They improved the classification accuracy of the FCGV-based machine learning
model by applying both graph and non-graph features and achieved a maximum accuracy
of 99.5% with non-graph, i.e., statistical features. The authors (Chowdhury, Rahman
& Islam, 2017) used the n-gram approach on PE files. First, they extracted PE Header
and 5-grams as features and then applied PCA to reduce and focus on the important
features only. They achieved an accuracy of 97.7% using an artificial neural network.
Cepeda, Chia Tien & Ordóñez (2016) found that nine features are enough to distinguish
malware from benign files with an accuracy of 99.60%. Kim et al. (2021) proposed a static
analysis automation technique for detecting malicious code using a portable executable
structure. They extracted 12 attributes from 54 attributes of PE structure based on the
importance score, however, the system achieved a maximum of 80% accuracy of malicious
code classification. The Zero-DayVigilante (ZeVigilante) system (Alhaidari et al., 2022) can
detect the malware considering both static and dynamic analyses. They applied six different
classifiers and observed that RF achieved the best accuracy for both static and dynamic
analyses, 98.21% and 98.92%, respectively. Similarly, the studies (Patidar & Khandelwal,
2019; Gupta & Rani, 2018; Kumar & Singh, 2018; Venkatraman & Alazab, 2018) claim
zero-day malware detection using machine learning techniques. The study (Zhang, Kuo &
Yang, 2019) focuses on malware type detection or classification of malware family instead
of binary classification. The work uses several machine learning models to build static
malware type classifiers on PE-format files. The evaluation results show that random forest
can achieve high performance with a micro average F1-score of 0.96 and a macro average
F1-score of 0.89. The work (Pham, Le & Vu, 2018) proposes a static malware detection
method by Portable Executable analysis and Gradient Boosting decision tree algorithm.
The method reduces the training time by appropriately reducing the feature dimension
and achieves 99.3% accuracy.

Zhang, Liu & Jiang (2022) argued that most malware solutions only detect malware
families that were included in the training data. They proposed to use a soft relevance
value based on multiple trained models. They used features such as file sizes, function call
names, DLLs, n-grams, etc. When the models are trained, we try to predict which malware
family from the dataset they belong to. By using the trained models, the soft relevance
value is applied to find if the malware belongs to one of the original malware families or
not. Singh & Singh (2020) proposed a behavior-based malware detection technique. Firstly,
printable strings are processed word by word using text mining techniques. Secondly,
Shannon entropy is computed over the printable strings and API calls to consider the
randomness of API and finally, all features are integrated to develop the malware classifiers
using the machine learning algorithms. Cannarile et al. (2022) presented a benchmark to
compare deep learning and shallow learning techniques for API calls malware detection.
They considered random forest, CatBoost, XGBoost, and ExtraTrees as shallow learning
methods whereas TabNet and NODE (Neural Oblivious Decision Ensembles) were used as
deep learningmethods. Based on experimental results, they concluded that shallow learning
techniques tend to perform better and converge faster(with less training time) to a suitable
solution. Euh et al. (2020) propose low-dimensional but effective features for a malware
detection system and analyze them with tree-based ensemble models. They extract the five

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 4/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


types of malware features represented from binary or disassembly files. The experimental
work shows that the tree-based ensemble model is effective and efficient for malware
classification concerning training time and generalization performance. Amer & Zelinka
(2020) introduced the use of word embedding to understand the contextual relationship
that exists between API functions in the malware call sequence. Their experimental results
prove that there is a significant distinction between malware and goodware call sequences.
Next, they introduce a new system to detect and predict malware based on the Markov
chain.

In conclusion, there is a vast amount of research on malware detection using machine
learning and deep learning. Upon reviewing prior studies, a few key points can be noted.
Firstly, most prior works only utilize one or two raw features in their malware detection
efforts. Only a limited number of studies have combined raw features to create new ones.
Secondly, feature selection is usually done through either Information Gain or principal
component analysis, with few studies employing both methods. Thirdly, ensemble learning
is not widely used in these studies. Our study, however, extracts four raw features and creates
two integrated features. We also apply both Information Gain and principal component
analysis for feature selection, use seven different classifiers for malware classification, and
incorporate three ensemble learning techniques to increase classification accuracy.

RESEARCH METHODS
In this section, we discuss our approach to detect PE malware in Windows environment.
Our approach can be divided into two phases; malware collection and malware detection.

Malware collection
We collected the data from MalwareBazaar Database (https://bazaar.abuse.ch/) using its
API. The MalwareBazaar Database offers a Comma Separated Values (CSV) file containing
the basic information such as SHA256 hash, file name, file type, and signature of all
the malware samples available in the database. It also provides an API to download the
samples using the information given in the CSV file. We wrote a small script in Python and
downloaded more than 30,000 samples of different types of malware. We targeted only
PE files in our API calls. The motivation for using PE files was arrived at by monitoring
the submissions received over different malware databases. For example, more than 26%
malware samples in the malwarebazaar database are PEmalware andmake it a common file
type for spreading malware. Similarly, 47.8% files submitted to Virustotal for analysis are
PE files Kumar, Kuppusamy & Aghila (2019). We discarded samples with incorrect values
of PE header and samples with code obfuscationO’Kane, Sezer & McLaughlin (2011). After
discarding unwanted samples, we have a total of 27,920 samples divided into six categories
in our dataset as described in Table 1. We also collected 1,878 benign files from various
sources including files from Windows installation. We will make this dataset public very
soon.

Feature sets
We create four feature sets from our data. Moreover, we also create two integrated feature
sets by combining these features.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 5/29

https://peerj.com
https://bazaar.abuse.ch/
http://dx.doi.org/10.7717/peerj-cs.1319


Table 1 Description of KIET dataset.

Malware Type Count Description

RedLineStealer 5,090 This is a password stealer type of Spyware. It steals
passwords, credit card information and other sensitive
data and sends it to a remote location.

Downloader 5,047 This is a Trojan downloader used by attackers to distribute
malware on a large scale. This dataset contains both
GuLoader and SmokerLoader samples.

RAT 4,973 These are Remote Access Trojans (RAT) that allow an
attacker to remotely control an infected computer. The
samples include AveMariaRAT and njRAT.

BankingTrojan 4,864 This is a banking Trojan that targets both businesses and
consumers for their data, such as banking information,
account credentials and bitcoins etc. This dataset contains
both TrickBot and QuakBot samples.

SnakeKeyLogger 4,240 This is a KeyLogger that keeps track of and records victim’s
keystrokes as s/he types. It is also a spyware and send the
recorded information to the hecker through a command
and control server.

Spyware 3,706 This is AgentTesla Spyware that is used by attackers to spy
on victims. It can record keystrokes and user interactions
on supported programs and web browsers.

Total 27,920
Benign 1,877 Legitimate or goodware files collected from different

sources including Windows installation files.
Grand Total 29,797

Dynamic link libraries: The first set of features is a list of dynamic link libraries (or
DLLs for short) used by each Windows executable. A DLL is a library that contains
code, data, and resources that can be used by more than one program at the same time.
Windows programs use DLLs to share functionality and resources between themselves. For
example, the Comdlg32 DLL performs common dialog box related functions in Windows.
A program’s certain characteristics can be inferred from the set of DLLs it uses. Therefore,
we make a list of DLLs called by malware and benign files to help distinguish between
them.

API functions: The second set of features is a list of API (Application Program Interface)
function names called within the DLLs discovered in the first feature set. Windows APIs
are implemented through DLLs and each DLL may contain hundreds of functions in it. A
program can be distinguished from others based on the API functions it imports from a
DLL. By collecting the list of API functions, we supplement our first feature set in the hope
of further improving our ability to differentiate between benign and malware files. The list
of API functions can reveal the behavior of the program.

PEHeader: PE header contains useful information about the executable. A PE file
contains a number of headers including MS-DOS Stub, COFF file header, an optional
header, etc. They contain metadata about the file itself such as the number of sections, the
size of the code, the characteristics of the file, etc. We collect the values of 52 fields of PE

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 6/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 2 The list of 52 fields of PE Header in our 3rd feature set.

Header Name Field Name

DOS Header e_magic, e_cblp, e_cp, e_crlc, e_cparhdr, e_minalloc,
e_maxalloc, e_ss, e_sp, e_csum, e_ip, e_cs, e_lfarlc, e_ovno,
e_oemid, e_oeminfo, e_lfanew

File Header Machine, NumberOfSections, TimeDateStamp,
PointerToSymbolTable, NumberOfSymbols,
SizeOfOptionalHeader, Characteristics

Optional Header Magic, MajorLinkerVersion, MinorLinkerVersion,
SizeOfCode, SizeOfInitializedData,
SizeOfUninitializedData, AddressOfEntryPoint,
BaseOfCode, ImageBase, SectionAlignment,
FileAlignment, MajorOperatingSystemVersion,
MinorOperatingSystemVersion, MajorImageVersion,
MinorImageVersion, MajorSubsystemVersion,
MinorSubsystemVersion, Reserved1, SizeOfImage,
SizeOfHeaders, CheckSum, Subsystem, DllCharacteristics,
SizeOfStackReserve, SizeOfHeapReserve,
SizeOfHeapCommit, LoaderFlags, NumberOfRvaAndSizes

Header as our third feature set as detailed in Table 2. We get 17 fields from DOS Header,
7 from File Header and 28 from the Optional Header.

PE sections: A PE file contains many sections such as executable code section (.text),
data sections (.data, .rdata, .bss), and resource section (.rsrc), etc. These sections provide a
logical and physical separation of the different parts of a program. Since different programs
need different sections depending on their functionality, therefore, collecting information
about PE sections could be useful in distinguishing files from each other. Each section in
PE has properties such as VirtualAddress, VirtualSize, SizeofRawData, etc. We collect the
values of ten properties of each of the ten sections (.text, .data, .rdata, .bss, .idata, .edata,
.rsrc, .reloc, .tls, .pdata) as our fourth feature set. In a nutshell, this feature set contains 100
features of the PE section as detailed in Table 3.

Integrated feature set1 (IFS1): We combine DLLs referred and API functions called
by a sample to create our first integrated feature set. Since both the original feature sets
contain names of the DLLs and API functions, therefore, we can simply merge them to
create an integrated feature set.

Integrated feature set2 (IFS2): We combine the PE header and section feature sets to
create our second integrated feature set as both the sets contain numeric values and hence
can be merged efficiently.

Extracting raw feature
In static malware analysis, we can extract useful information from PE files without running
the executable. Our PE extractor extracts all the information such as DLLs, API functions,
PE Header and Section information and stores them in separate CSV files. We run our PE
extractor on all 27,920 malware and 1,877 benign files and store the raw features in four
CSV files, one CSV file per feature set.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 7/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 3 Ten PE sections and their ten fields in our 4th feature set.

Section Name Description

.text This section contains the executable code. It also contains
program entry point.

.data This section contains initialized data of a program.

.rdata It contains data that is to be only readable, such as literal
strings, and constants.

.bss It represents uninitialized data to reduce the size of
executable file.

.idata This section has data about imported functions.

.edata This section contains symbols related information that can
be accessed through dynamic linking by other images.

.rsrc This resource-container section contains resource
information.

.reloc Relocation information is saved in this section.

.tls TLS stands for Thread Local Storage. Each thread running
in Windows uses its own storage called TLS.

.pdata It stores function table entries for exception handling.
Field Name Description
Name An 8-byte encoded string contains name of the section.
Misc_VirtualSize The total size of the section when loaded into memory.
VirtualAddress The address of the first byte of a section.
SizeOfRawData The size of the section.
PointerToRawData The file pointer to the first page of the section within the

COFF file.
PointerToRelocations The file pointer to the beginning of relocation entries for

the section.
PointerToLinenumbers The file pointer to the beginning of line-number entries for

the section.
NumberOfRelocations The number of relocation entries for the section.
NumberOfLinenumbers The number of line-number entries for the section.Â
Characteristics The flags that describe the characteristics of the section.

DLLs imported:We pass all the PE files, both malware and benign, to our PE extractor
and enlist the names of DLLs called by them. On average, amalware calls four DLLs whereas
a benign file calls three DLLs in this study. Overall, malware files import 531 unique DLLs
whereas benign files import 186 unique DLLs. The normalized frequency of the top 20
DLLs imported by malware and benign are given in Appendix A. (see Table A1).

To feed DLLs raw features to our classifiers, we apply a Bag-of-Words (BoW) approach
for representing the DLLs for each sample. That is, we make a large list of unique names of
the DLLs and construct a feature vector for each sample such that each index corresponds
to a specific DLL whose value could be either 1 or 0, indicating whether that DLL was called
in the file or not. The overall dimensionality, the names of DLLs in the bag, found for our
data set was 629.

API functions:We extract the names of API functions called within the DLLs extracted
above. On average, a malware calls seven API functions whereas a benign calls eight

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 8/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


functions. Overall, malware files call 18,432 unique API functions whereas benign files call
4,256 unique API functions. The normalized frequency of the top 20 API functions called
by malware and benign are given in Appendix A (see Table A2).

Similar to the DLLs feature set, we create a Bag-of-Words, i.e., a bag of API functions
for constructing a feature vector for each file. The dimensionality of this feature vector was
found to be 21,918.

PEHeader: We extract the values of 17 fields from the DOS header, 7 from the COFF
file header, and 28 from the optional header; a total of 52 fields from the PE header. Since
these are numeric values, therefore, we normalize them and create a 52 dimensional vector
for each file to represent this feature set.

PE section: We extract the values of ten fields each from ten sections of PE. (see Table
3). All ten fields are numeric except the Name field so we omit this field and use the
normalized values of the other nine fields from each section. This gives us a feature vector
of 90 dimensions.

Integrated feature set1 (IFS1): We simply merge the first two feature sets, i.e, DLLs
imported and API Functions to form this integrated feature set. The integrated feature
vector contains 22,575 features in total.

Integrated feature set2 (IFS2): We form this integrated feature set by merging 52 fields
of the PE header and 90 fields of the PE section. The integrated feature vector has 142
dimensions.

Feature selection
The raw features are numerous especially in the case of DLLs imported and API functions
called by a sample and it is possible that some featuresmight not contain useful information
for amachine learningmodel. Therefore, we applied two feature selection or dimensionality
reduction techniques namely Information Gain (IG), and principal component analysis
(PCA). By applying these feature selection techniques, we are able to reduce the number
of features in each feature set significantly. As a result, we decrease the processing time
to train and test the classifiers and possibly also improve their accuracy in detecting the
malware. The total number of features in raw feature sets and selected feature sets after
applying Information Gain and principal component analysis are given in Table 4.

EXPERIMENTAL RESULTS
Our dataset consists of a total of 29,797 PE samples, of them 27,920 are malware and
1,877 are benign or goodware. We apply seven machine learning classifiers, two feature
selection techniques, and three ensemble learning methods to detect malware as depicted
in Fig. 1. We use standard 10-fold cross-validation for training and testing our models.
It means we randomly divide our dataset into 10 smaller subsets such that nine subsets
are used for training and 1 subset is used for testing. We repeat this process 10 times for
every combination. This methodology helps evaluate the robustness of any approach to
detect malware without any a priori information. Moreover, the dataset was split into 70:30
ratio for training and testing purposes respectively, i.e., 70% data is used for training the
classifiers whereas 30% is used for testing them.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 9/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 4 The number of features in raw feature sets and selected feature sets after applying Informa-
tion Gain and principal component analysis.

Feature Type Raw Features After PCA After IG

DLLs Imported 629 195 125
API Functions 21,918 494 219
PE Header 52 19 10
PE Section 90 26 18
Integrated Feature Set1 22,547 563 225
integrated Feature Set2 142 49 28

Figure 1 Malware detection phase.
Full-size DOI: 10.7717/peerjcs.1319/fig-1

Evaluation criteria
To evaluate the performance of our system, we create a confusion matrix for each classifier.
A confusion matrix summarizes the performance of a classifier in the form of a table with
the help of four quantities namely True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). It helps in measuring the accuracy, recall, precision, and
F-score of a classifier. We briefly define the metrics we used to measure the performance
of our system.

True Positive (TP): A malware classified as a malware.
True Negative (TN): A benign classified as a benign.
False Positive (FP): A benign classified as a malware.
False Negative (FN): A malware classified as a benign.

Accuracy (ACC): It calculates the correctly classified or predicted samples by the system
as the ratio of correct predictions to the total predictions.

ACC =
TP+TN

TP+TN +FP+FN

Error rate (ERR): It is calculated as the ratio of the number of incorrect predictions to the
total predictions. It is also called misclassification.

ERR=
FP+FN

TP+TN +FP+FN

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 10/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1319/fig-1
http://dx.doi.org/10.7717/peerj-cs.1319


Recall: The recall is calculated as the number of correct positive predictions divided by the
total number of positives. It is also called True Positive Rate (TPR).

Recall =
TP

TP+FN
Precision: The precision is calculated as the number of correct positive predictions divided
by the total number of positive predictions.

Precision=
TP

TP+FP
F-score It is a harmonic mean of precision and recall.

F− score= 2∗
Precision∗Recall
Precision+Recall

.

Experimental setup
To validate the proposed system shown in Fig. 1, we create an experimental setup on the
Windows operating system running on AMD Ryzen 7 4800H @4.2 GHz processor and 16
GB of main memory. We use the Scikit-learn (Pedregosa et al., 2011) library of Python to
run all the experiments. It has the implementation of many classifiers and helps in splitting
the data into training and testing, 10-fold cross-validation, and comparing the performance
of different classifiers using confusion matrix and other metrics.

Testing with raw features
In the first experiment, we evaluate our system on raw features. We apply all the classifiers
and ensemble learning methods on individual and integrated features, and the results are
presented in Table 5. We see that in the case of imported DLLs, the random forest model
outperforms other classifiers with an accuracy of 96.41% and an error rate of only 3.59%.
The Stack Generalization gives the best accuracy of 96.47% on this feature set. We see the
same trend in other feature sets. The random forest model achieves the best accuracy of
99.36% on the PE Header feature set while the worst performance with 92.0% accuracy is
attained by the Nearest Centroid method on the PE Section feature set.

Regarding the integrated features, the decision tree model and AdaBoost ensemble
learning method outperform with accuracies of 97.69% and 97.85% respectively when
we integrate DLLs and API functions into one feature set, i.e, IFS1. For combined PE
Header and Section, i.e, IFS2, random forest, and Stack Generalization give the best results
with accuracies of 99.41% and 99.48% respectively whereas naive Bayes gives the worst
results. On average, we detect malware with an accuracy of more than 97% using raw
features. The maximum F-score of 0.997 is delivered by both the random forest model
and Stack Generalization method on IFS2 while the minimum error rate is given by Stack
Generalization on the same feature set.

Testing with selected features
In the second experiment, we evaluate the performance of our system on selected features
after applying Information Gain (IG) and principal component analysis (PCA) methods to

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 11/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 5 The performance of different classifiers and ensemble learning techniques on individual and
integrated raw features.

Feature Classifier ACC (%) ERR (%) Recall Precision F-Score

Naïve Bayes 96.03 3.97 0.998 0.961 0.979
SVM 96.27 3.73 0.998 0.964 0.981
Decision Tree 96.37 3.63 0.998 0.965 0.981
Random Forest 96.41 3.59 1.000 0.964 0.981
KNN 96.20 3.80 0.999 0.962 0.980
Nearest Centroid 95.73 4.27 0.996 0.960 0.978
Gradient Boost 96.08 3.92 1.000 0.960 0.980

Ensemble Learning
Majority Voting 96.31 3.69 0.999 0.963 0.981
Stacking Generalization 96.47 3.53 0.999 0.965 0.982

DLLs
Imported

AdaBoost 96.41 3.59 0.998 0.965 0.981
Naïve Bayes 95.42 4.58 0.988 0.965 0.976
SVM 94.84 5.15 1.000 0.948 0.973
Decision Tree 96.46 3.54 0.999 0.965 0.982
Random Forest 96.59 3.41 0.999 0.966 0.982
KNN 95.56 4.44 0.999 0.955 0.977
Nearest Centroid 95.80 4.20 0.994 0.963 0.978
Gradient Boost 96.51 3.49 0.999 0.965 0.982

Ensemble Learning
Majority Voting 96.19 3.81 1.000 0.961 0.980
Stacking Generalization 96.37 3.63 0.999 0.964 0.981

API
Functions

AdaBoost 96.36 3.64 0.999 0.963 0.981
Naïve Bayes 95.09 4.91 0.994 0.956 0.974
SVM 97.10 2.90 0.995 0.975 0.985
Decision Tree 99.11 0.89 0.997 0.994 0.995
Random Forest 99.36 0.64 0.999 0.994 0.997
KNN 98.71 1.29 0.994 0.992 0.993
Nearest Centroid 93.74 6.26 0.978 0.957 0.967
Gradient Boost 98.86 1.14 0.997 0.991 0.994

Ensemble Learning
Majority Voting 98.83 1.17 0.998 0.989 0.994
Stacking Generalization 99.31 0.69 0.998 0.994 0.996

PE
Header

AdaBoost 99.11 0.89 0.997 0.994 0.995

(continued on next page)

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 12/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 5 (continued)

Feature Classifier ACC (%) ERR (%) Recall Precision F-Score

Naïve Bayes 94.02 5.98 0.989 0.949 0.969
SVM 95.80 4.20 0.996 0.961 0.978
Decision Tree 96.47 3.53 0.981 0.981 0.981
Random Forest 97.32 2.67 0.991 0.981 0.986
KNN 96.72 3.28 0.988 0.978 0.983
Nearest Centroid 92.00 8.00 0.956 0.959 0.958
Gradient Boost 97.01 2.99 0.996 0.973 0.984

Ensemble Learning
Majority Voting 97.03 2.97 0.998 0.972 0.984
Stacking Generalization 97.31 2.70 0.992 0.980 0.986

PE
Section

AdaBoost 96.69 3.31 0.984 0.981 0.982
Naïve Bayes 95.97 4.03 0.988 0.970 0.979
SVM 95.69 4.31 1.000 0.956 0.978
Decision Tree 97.69 2.31 0.999 0.977 0.988
Random Forest 97.53 2.47 0.999 0.975 0.987
KNN 95.80 4.20 0.999 0.958 0.978
Nearest Centroid 95.64 4.36 0.993 0.962 0.977
Gradient Boost 97.24 2.76 1.000 0.972 0.986

Ensemble Learning
Majority Voting 97.05 2.95 1.000 0.970 0.985
Stacking Generalization 97.68 2.32 0.998 0.977 0.988

Integrated
Feature
Set1

AdaBoost 97.85 2.15 0.999 0.979 0.989
Naïve Bayes 93.23 6.77 0.973 0.956 0.964
SVM 97.61 2.39 0.998 0.977 0.987
Decision Tree 99.14 0.86 0.996 0.995 0.995
Random Forest 99.41 0.59 0.999 0.995 0.997
KNN 98.52 1.48 0.994 0.991 0.992
Nearest Centroid 93.67 6.33 0.974 0.960 0.967
Gradient Boost 98.91 1.09 0.998 0.991 0.994

Ensemble Learning
Majority Voting 98.87 1.13 0.999 0.989 0.994
Stacking Generalization 99.48 0.52 0.999 0.996 0.997

Integrated
Feature
Set2

AdaBoost 99.14 0.86 0.996 0.995 0.995

choose important features. The results obtainedwith the features selected using Information
Gain are presented in Table 6. The table shows that the performance of different classifiers
slightly decreases when compared to their performance on raw features. However, overall
the performance improves on integrated feature sets. Moreover, using selected features
we can lessen the training time significantly. We achieve the best accuracy of 99.5% and
the best F-score of 0.998 with the Stack Generalization method on IFS2 when we apply it
to the top 20% features ranked by their IG score. Similarly, the results shown in Table 7
depict that the contribution of PCA transformation slimly deteriorates the performance.
We achieve the best accuracy of 99.41% and the best F-score of 0.997 with the Stack
Generalization method on IFS2 when we apply it to the top 30% features selected by their

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 13/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


principal components. The reason that the accuracy does not improve significantly with
selected features is that, on average, we select only 20% and 30% most important features
after applying IG and PCA respectively (In the case of API Functions we use the top 1%
features). The main purpose of selecting a small number of important features was to
reduce the training time significantly while maintaining a good overall performance. On
the other side, the ensemble learning techniques show promising results on both the raw
and selected features and their performance improves marginally on selected integrated
features.

ROC curves
Receiver operating characteristic (ROC) curve graphically shows the performance of a
classifier at all classification thresholds. It is created by plotting Recall or True Positive Rate
(TPR) against Specificity or False Positive Rate (FPR) where Specificity is calculated as

TN
TN+FP . ROC curve depicts the discriminative ability of a binary classifier and is considered
a good metric when class imbalance might lead to accuracy paradox (Gibert, Mateu &
Planes, 2020).

Figure 2 shows the ROC curves for six classifiers on raw feature sets. It excludes the NC
classifier as we cannot compute probabilities in NC. The figure also shows the AUC or Area
Under the Curve for each ROC. Both ROC and AUC values confirm that all the classifiers
give a good performance because the feature sets help them in discriminating different
classes of malware at all thresholds. The figure also shows that the AUC values of IFS2 are
very promising and reach the maximum values of 1.00 and 0.99 for RF and GB classifiers
respectively whereas these values are 1.00 and 0.98 with the PE Header feature set. We
can see similar trends for other classifiers where the integrated feature sets improve the
discriminating ability of a classifier as its AUC values increase. Random Forest outperforms
all other classifiers on both individual and integrated features. The ROC curves on selected
features after applying IG and PCA are given in Appendix A (See Figs. A1 and A2).

10-fold cross validation
As mentioned above, we use 10-fold cross-validation for training and testing the models.
Since a single train-test split has limitations such as the split might not represent each class
proportionally, therefore, the roust cross-validation method is becoming a default. For
10-fold cross-validation, we split the dataset into 10 folds and for 10 times the 9 folds are
used for training and the one fold is used for testing. The final result is given as the average
of all 10 folds.

Figure 3 shows the accuracy of each model during 10-fold cross-validation in the form
of a box plot for each classifier. The figure shows that there is more variation in the case
of DLLs Imported and API Functions feature sets. Though the variation decreases when
we combine these features in IFS1, it is still more than that of other features. A possible
reason is that in every fold the feature vectors had very different words from the bag of
words and the sparseness of these vectors gave diverse results. We can also see that there are
more outliers in this case compared to other feature sets. On the other hand, PE Header,
PE Section, and IFS2 have low variation as their feature vectors have normalized numeric

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 14/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 6 The performance of different classifiers and ensemble learning techniques on individual and
integrated features selected using the Information Gain method.

Feature Classifier ACC (%) ERR (%) Recall Precision F-Score

Naïve Bayes 95.36 4.64 0.997 0.956 0.976
SVM 95.80 4.20 0.999 0.958 0.978
Decision Tree 95.83 4.17 0.999 0.959 0.978
Random Forest 95.78 4.22 0.999 0.958 0.978
KNN 95.78 4.22 0.999 0.958 0.978
Nearest Centroid 95.49 4.51 0.997 0.957 0.977
Gradient Boost 95.73 4.27 1.000 0.957 0.978

Ensemble Learning
Majority Voting 96.31 3.69 1.000 0.963 0.981
Stacking Generalization 96.46 3.54 0.998 0.965 0.982

DLLs
Imported

AdaBoost 96.47 3.53 0.999 0.965 0.982
Naïve Bayes 93.65 6.35 0.969 0.964 0.966
SVM 96.58 3.42 1.000 0.965 0.982
Decision Tree 96.37 3.63 0.997 0.965 0.981
Random Forest 96.48 3.52 0.998 0.965 0.982
KNN 96.39 3.61 0.998 0.965 0.981
Nearest Centroid 94.41 5.59 0.978 0.963 0.971
Gradient Boost 96.49 3.51 1.000 0.964 0.982

Ensemble Learning
Majority Voting 96.58 3.42 1.000 0.965 0.982
Stacking Generalization 96.42 3.58 0.998 0.965 0.981

API
Functions

AdaBoost 96.37 3.63 0.998 0.965 0.981
Naïve Bayes 94.21 5.79 1.000 0.942 0.970
SVM 95.54 4.46 0.995 0.959 0.977
Decision Tree 98.76 1.24 0.995 0.992 0.993
Random Forest 99.11 0.89 0.997 0.993 0.995
KNN 98.59 1.41 0.995 0.990 0.993
Nearest Centroid 94.75 5.25 0.988 0.958 0.973
Gradient Boost 98.64 1.36 0.996 0.990 0.993

Ensemble Learning
Majority Voting 98.78 1.22 0.998 0.989 0.994
Stacking Generalization 99.31 0.70 0.998 0.994 0.996

PE
Header

AdaBoost 99.08 0.92 0.997 0.993 0.995

(continued on next page)

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 15/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 6 (continued)

Feature Classifier ACC (%) ERR (%) Recall Precision F-Score

Naïve Bayes 94.19 5.81 1.000 0.942 0.970
SVM 95.41 4.59 0.997 0.956 0.976
Decision Tree 96.14 3.86 0.980 0.979 0.980
Random Forest 96.89 3.11 0.991 0.976 0.984
KNN 96.44 3.56 0.989 0.973 0.981
Nearest Centroid 92.89 7.11 0.967 0.958 0.962
Gradient Boost 96.66 3.34 0.996 0.969 0.982

Ensemble Learning
Majority Voting 96.98 3.02 0.997 0.971 0.984
Stacking Generalization 97.33 2.67 0.993 0.979 0.986

PE
Section

AdaBoost 96.49 3.51 0.982 0.981 0.981
Naïve Bayes 94.37 5.63 0.971 0.969 0.970
SVM 97.03 2.97 0.997 0.972 0.984
Decision Tree 96.97 3.07 0.997 0.971 0.984
Random Forest 97.05 2.92 0.997 0.973 0.985
KNN 96.92 3.08 0.997 0.971 0.984
Nearest Centroid 94.37 5.63 0.977 0.964 0.970
Gradient Boost 96.95 3.05 0.997 0.971 0.984

Ensemble Learning
Majority Voting 97.02 2.98 0.997 0.972 0.984
Stacking Generalization 97.07 2.92 0.997 0.973 0.985

Integrated
Feature
Set1

AdaBoost 97.07 2.93 0.997 0.973 0.985
Naïve Bayes 95.35 4.65 0.996 0.956 0.976
SVM 95.73 4.27 0.998 0.959 0.978
Decision Tree 99.13 0.86 0.995 0.996 0.995
Random Forest 99.36 0.60 0.999 0.994 0.997
KNN 98.20 1.80 0.994 0.987 0.990
Nearest Centroid 94.81 5.19 0.991 0.956 0.973
Gradient Boost 98.99 1.01 0.997 0.992 0.995

Ensemble Learning
Majority Voting 98.56 1.48 0.999 0.986 0.992
Stacking Generalization 99.50 0.47 0.999 0.996 0.998

Integrated
Feature
Set2

AdaBoost 99.16 0.76 0.996 0.996 0.996

values and there is no chance of having a sparse vector in training or testing. In a nutshell,
all the classifiers give high accuracy on all the features but there is more variation in IFS1
and its components compared to IFS2 and its components. The accuracy of different
classifiers on selected features after applying PCA and IG with 10-fold cross validation is
given in Appendix A. (see Fig. A3 and Fig. A4).

Performance on raw vs. selected features
Table 8 summarizes the maximum accuracy achieved by our system on raw and selected
features. Our system is composed of seven classifiers and three ensemble learning techniques
as shown in Fig. 1 and we pick the best results in each case for comparison. Table 8 shows

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 7 The performance of different classifiers and ensemble learning techniques on individual and
integrated features selected using principal component analysis method.

Feature Classifier ACC (%) ERR (%) Recall Precision F-Score

Naïve Bayes 95.47 4.53 0.999 0.955 0.977
SVM 95.73 4.27 0.999 0.957 0.978
Decision Tree 95.64 4.36 1.000 0.956 0.977
Random Forest 95.61 4.39 1.000 0.956 0.977
KNN 95.44 4.56 0.999 0.954 0.976
Nearest Centroid 95.54 4.46 0.997 0.957 0.977
Gradient Boost 95.39 4.61 1.000 0.954 0.976

Ensemble Learning
Majority Voting 95.66 4.34 1.000 0.956 0.977
Stacking Generalization 95.69 4.31 0.999 0.957 0.978

DLLs
Imported

AdaBoost 95.71 4.29 1.000 0.957 0.978
Naïve Bayes 94.75 5.25 0.999 0.948 0.973
SVM 94.70 5.30 0.998 0.948 0.973
Decision Tree 94.80 5.20 0.999 0.948 0.973
Random Forest 94.78 5.22 0.999 0.948 0.973
KNN 94.53 5.47 1.000 0.945 0.972
Nearest Centroid 94.56 5.44 0.994 0.951 0.972
Gradient Boost 94.42 5.58 1.000 0.944 0.971

Ensemble Learning
Majority Voting 94.81 5.20 1.000 0.948 0.973
Stacking Generalization 94.76 5.24 0.996 0.951 0.973

API
Functions

AdaBoost 94.81 5.19 0.999 0.948 0.973
Naïve Bayes 94.21 5.79 1.000 0.942 0.970
SVM 96.09 3.91 0.995 0.964 0.980
Decision Tree 98.66 1.34 0.994 0.992 0.993
Random Forest 99.20 0.81 0.999 0.993 0.996
KNN 98.54 1.46 0.994 0.991 0.992
Nearest Centroid 90.81 9.19 0.936 0.965 0.950
Gradient Boost 98.39 1.61 0.996 0.987 0.991

Ensemble Learning
Majority Voting 98.46 1.54 0.999 0.985 0.992
Stacking Generalization 99.26 0.74 0.999 0.993 0.996

PE
Header

AdaBoost 99.11 0.89 0.998 0.992 0.995

(continued on next page)

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 17/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table 7 (continued)

Feature Classifier ACC (%) ERR (%) Recall Precision F-Score

Naïve Bayes 94.22 5.78 1.000 0.942 0.970
SVM 95.70 4.30 0.996 0.960 0.978
Decision Tree 96.62 3.38 0.981 0.983 0.982
Random Forest 97.63 2.37 0.993 0.983 0.987
KNN 96.77 3.23 0.988 0.978 0.983
Nearest Centroid 92.89 7.11 0.967 0.958 0.962
Gradient Boost 96.84 3.16 0.997 0.970 0.983

Ensemble Learning
Majority Voting 96.89 3.11 0.998 0.970 0.984
Stacking Generalization 97.60 2.40 0.993 0.982 0.987

PE
Section

AdaBoost 96.91 3.09 0.986 0.981 0.984
Naïve Bayes 94.92 5.08 0.998 0.950 0.974
SVM 94.97 5.03 0.998 0.951 0.974
Decision Tree 94.95 5.05 0.999 0.950 0.974
Random Forest 94.93 5.07 0.999 0.949 0.974
KNN 94.68 5.32 0.999 0.948 0.972
Nearest Centroid 94.64 5.36 0.992 0.953 0.972
Gradient Boost 94.49 5.51 1.000 0.945 0.972

Ensemble Learning
Majority Voting 94.95 5.05 0.999 0.950 0.974
Stacking Generalization 94.93 5.07 0.998 0.950 0.974

Integrated
Feature
Set1

AdaBoost 95.05 4.95 0.999 0.951 0.974
Naïve Bayes 94.28 5.76 1.000 0.942 0.970
SVM 96.47 3.53 0.997 0.966 0.982
Decision Tree 98.98 1.02 0.995 0.994 0.995
Random Forest 99.31 0.69 0.999 0.993 0.996
KNN 98.66 1.34 0.996 0.990 0.993
Nearest Centroid 96.11 3.89 0.988 0.962 0.953
Gradient Boost 98.92 1.08 0.997 0.992 0.994

Ensemble Learning
Majority Voting 98.94 1.06 1.000 0.989 0.994
Stacking Generalization 99.41 0.59 0.999 0.995 0.997

Integrated
Feature
Set2

AdaBoost 99.16 0.84 0.996 0.995 0.996

that IFS2 gives the best results on both raw and selected features. It is also clear from
the table that our system achieves the best accuracy of 99.50% on this set after selecting
important features using the Information Gain method. The table also highlights a very
interesting pattern. When we apply IG to select features, the accuracy of our system slightly
improves on IFS2 while it marginally decreases on IFS1. On the other side, PCA does not
seem to play its role and the accuracy of our system slightly decreases on both raw and
selected features. The table also shows that the system performs consistently better on the
PE Header feature set than other feature sets. It seems that the PE Header feature set alone
or integrated with another feature set (e.g., PE Section) is a good candidate for developing
a malware detection system for filtering zero-day malware.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 18/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Figure 2 ROC curves for different classifiers on raw feature sets.
Full-size DOI: 10.7717/peerjcs.1319/fig-2

Comparison with previous work
In this section, we compare the performance of our system with previous systems or
studies to detect malware. We compare our work with some recent works that also applied
static malware analysis to detect malware using classic machine learning models. We
reproduce these works so that we have a fair comparison. There are more works related to
this proposed work. However, either they used different feature sets such as byte-n-gram,
opcode-n-gram or they applied deep learning neural networks to detect malware, therefore,
we skipped them as they are less relevant.

Table 9 summarizes the accuracy and error rate of the proposed work and the previous
works. The work presented by Kumar, Kuppusamy & Aghila (2019) uses 53 field values
of the PE header as raw features and then creates an integrated feature set having 68
features. The work then applies six classification models on both raw and integrated
features. Random Forest model achieves the maximum accuracy of 98.4% and an error
rate of 1.47% on integrated features in this work. Azmee et al. (2020) extract 77 features
of the PE header and deploy nine classifiers to classify malware samples. They achieve the

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 19/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1319/fig-2
http://dx.doi.org/10.7717/peerj-cs.1319


Figure 3 Accuracy of different classifiers on raw feature sets with 10-fold cross validation.
Full-size DOI: 10.7717/peerjcs.1319/fig-3

Table 8 The maximum accuracy (in percentage) achieved by our system on raw feature sets and se-
lected feature sets after applying Information Gain and principal component analysis.

Feature type Raw features After PCA After IG

DLLs Imported 96.47 95.73 96.47
API Functions 96.59 94.81 96.58
PE Header 99.36 99.26 99.31
PE Section 97.32 97.63 97.33
Integrated Feature Set1 97.85 95.05 97.07
Integrated Feature Set2 99.48 99.41 99.50

maximum accuracy and minimum error rate of 98.6% and 1.41% respectively with the
XGBoost model. The work Damaševičius et al. (2021) implements both machine learning
and deep learning models for Windows PE malware detection. ExtraTrees model achieves
an accuracy of 98.7% and an error rate of 1.32% on the 68-dimensional feature set of the
PE header in this work. Kim et al. (2021) first extract 54 attributes from the PE structure
and then use the top 12 most important features to classify malware. Their work achieves

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 20/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1319/fig-3
http://dx.doi.org/10.7717/peerj-cs.1319


Table 9 Comparison of the proposed work with the previous works.

Work Accuracy Error
rate

Classifier Feature set

Proposed work 99.5% 0.47% Random
forest

Integrated
feature set

Kumar, Kuppusamy & Aghila (2019) 98.3% 1.47% Random
forest

Integrated feature set

Azmee et al. (2020) 98.6% 1.41% XGBoost 77 features of PE header
Damaševičius et al. (2021) 98.7% 1.32% ExtraTrees 68 features of PE header

98.7% 1.31% AdaBoost PE Structure

a maximum accuracy of 98.7% and a minimum error rate of 1.31% using the AdaBoost
model. It is clear from Table 9 that our proposed work with an accuracy of 99.5% and
error rate of only 0.47% on integrated feature set outperforms previous works. The table
shows that the proposed system produces a very small error. In other words, the probability
of misclassification in the proposed system is much lower than in the previous systems.
We agree that in terms of accuracy the system improvement is marginal, however, when
combined with other metrics, the proposed system gives better results, especially in terms
of a very small error rate.

CONCLUSION
The work presents a static malware detection system based on mining DLLs, and API
calls from each DLL, PE Header, and PE Section and also combines the features to create
integrated features. A new dataset of a total of 27,920 PE samples is collected and the
features are extracted to feed them to seven machine learning models and three ensemble
learning techniques. Moreover, Information Gain and principal component analysis are
used to finding a reduced set of features. The empirical results show that random forest
outperforms all other classifiers while decision tree stands second. An accuracy of 99.5%
with an error rate of only 0.47% is achieved on the integrated feature set, a combination
of PE Header and PE Section. On average, the system’s accuracy is greater than 96% while
the error rate is below 3.5%. The feature set having the values of PE Header turns out to be
the best feature set and when combined with PE Section, the resulting integrated feature
set gives the maximum accuracy. Furthermore, the system surpasses the previous studies
in terms of higher accuracy and lower error rate.

As a tangible outcome, a preprocessed dataset having 27,920 malware samples is
created and available on request along with raw and integrated feature sets for comparing
future work with the proposed work. We tested the proposed malware detection system
extensively and performedmultiple experiments on raw and integrated features to check its
performance. By applying two feature selection methods, seven machine learning classifiers
and three ensemble learning techniques on multiple features, we tried to bridge the gap in
the previous works on malware detection.

Our experiments show that PE Header forms the best feature set and gives the maximum
accuracy and minimum error rate when integrated with PE Section. However, real-world

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 21/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


scenario can be different from the experimental environment, hence, we cannot recommend
using PE Header alone to detect malware. But, we do assert that this could be a starting
point to further explore PE Header and its fields to develop a feature set for detecting
zero-day attacks accurately and quickly. In future studies, we can add more file formats
such as image, pdf, audio, video, etc. We can also work on adding mobile environments
such as iOS and android.

APPENDIX A

Table A1 The normalized frequency of top 20 DLLs imported by malware and benign files.

Malware Benign

No. DLL Normalized frequency DLL Normalized frequency

1 kernel32.dll 0.1782 mscoree.dll 0.2041
2 mscoree.dll 0.1465 kernel32.dll 0.1589
3 user32.dll 0.1399 msvcrt.dll 0.0911
4 gdi32.dll 0.0978 user32.dll 0.0653
5 advapi32.dll 0.0820 advapi32.dll 0.0552
6 comctl32.dll 0.0468 ole32.dll 0.0369
7 msvbvm60.dll 0.0406 libintl-8.dll 0.0357
8 shell32.dll 0.0403 libglib-2.0-0.dll 0.0351
9 oleaut32.dll 0.0386 shell32.dll 0.0343
10 ole32.dll 0.0376 libgimp-2.0-0.dll 0.0335
11 version.dll 0.0219 libgimpbase-2.0-0.dll 0.0335
12 winmm.dll 0.0218 libgobject-2.0-0.dll 0.0288
13 msvcrt.dll 0.0206 libgimpui-2.0-0.dll 0.0286
14 comdlg32.dll 0.0190 libgtk-win32-2.0-0.dll 0.0274
15 shlwapi.dll 0.0161 oleaut32.dll 0.0270
16 mfc42.dll 0.0134 libgimpwidgets-2.0-0.dll 0.0270
17 msimg32.dll 0.0121 gdi32.dll 0.0219
18 winhttp.dll 0.0101 shlwapi.dll 0.0187
19 winspool.drv 0.0084 comctl32.dll 0.0187
20 gdiplus.dll 0.0082 ntdll.dll 0.0181

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 22/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Table A2 The normalized frequency of top 20 API functions imported by malware and benign files.

Malware Benign

No. API
functions

Normalized
frequency

API
functions

Normalized
frequency

1 getprocaddress 0.0693 corexemain 0.0754
2 corexemain 0.0610 getcurrentthreadid 0.0548
3 exitprocess 0.0602 getsystemtimeasfiletime 0.0536
4 loadlibrarya 0.0565 queryperformancecounter 0.0532
5 getlasterror 0.0541 getcurrentprocessid 0.0532
6 getcurrentprocess 0.0530 getcurrentprocess 0.0514
7 writefile 0.0515 exit 0.0512
8 sleep 0.0512 getlasterror 0.0509
9 multibytetowidechar 0.0507 sleep 0.0497
10 widechartomultibyte 0.0507 unhandledexceptionfilter 0.0492
11 getmodulehandlea 0.0487 terminateprocess 0.0487
12 getcurrentthreadid 0.0464 setunhandledexceptionfilter 0.0486
13 closehandle 0.0458 gettickcount 0.0476
14 unhandledexceptionfilter 0.0442 cexit 0.0459
15 gettickcount 0.0440 initterm 0.0459
16 leavecriticalsection 0.0430 setusermatherr 0.0457
17 entercriticalsection 0.0429 setapptype 0.0457
18 deletecriticalsection 0.0428 memcpy 0.0440
19 terminateprocess 0.0420 amsgexit 0.0432
20 getstdhandle 0.0419 getprocaddress 0.0421

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The work was supported by the Korea Institute of Science and Technology under the KIST
School Partnership Project for its alumni. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Korea Institute of Science and Technology under the KIST School Partnership Project for
its alumni.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Muhammad Irfan Yousuf conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 23/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1319


Figure A1 ROC curves for different classifiers on selected feature sets after applying Information
Gain.

Full-size DOI: 10.7717/peerjcs.1319/fig-A1

• Izza Anwer conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, and approved the final draft.
• Ayesha Riasat conceived and designed the experiments, analyzed the data, performed
the computation work, authored or reviewed drafts of the article, and approved the final
draft.
• Khawaja Tahir Zia conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.
• Suhyun Kim conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 24/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1319/fig-A1
http://dx.doi.org/10.7717/peerj-cs.1319


Figure A2 ROC curves for different classifiers on selected feature sets after applying principal compo-
nent analysis.

Full-size DOI: 10.7717/peerjcs.1319/fig-A2

The data is available at FigShare: Yousuf, Irfan (2023): Windows Malware Detection
Dataset. figshare. Dataset. https://doi.org/10.6084/m9.figshare.21608262.v1

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1319#supplemental-information.

REFERENCES
Alhaidari F, Shaib N, Alsafi M, Alharbi H, AlawamiM, Aljindan R, Rahman A,

Zagrouba R. 2022. ZeVigilante: detecting zero-day malware using machine learning
and sandboxing analysis techniques. Computational Intelligence and Neuroscience
1615528.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 25/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1319/fig-A2
https://doi.org/10.6084/m9.figshare.21608262.v1
http://dx.doi.org/10.7717/peerj-cs.1319#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1319#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1319


Figure A3 Box plots for different classifiers on selected feature sets after applying Information Gain.
Full-size DOI: 10.7717/peerjcs.1319/fig-A3

Amer E, Zelinka I. 2020. A dynamic Windows malware detection and prediction method
based on contextual understanding of API call sequence. Computers and Security
92:101760 DOI 10.1016/j.cose.2020.101760.

Azmee AA, Choudhury PP, AlamM, Dutta O, HossainMI. 2020. Performance analysis
of machine learning classifiers for detecting PE malware. International Journal of
Advanced Computer Science and Applications 11(1).

Cannarile A, Dentamaro V, Galantucci S, Iannacone A, Impedovo D, Pirlo G. 2022.
Comparing deep learning and shallow learning techniques for API calls malware
prediction: a study. Applied Sciences 12(3):1645.

Catak FO, Yazi A, Elezaj O. 2020. Deep learning based Sequential model for mal-
ware analysis using Windows exe API calls. PeerJ Computer Science 6:e285
DOI 10.7717/peerj-cs.285.

Cepeda C, Chia Tien DL, Ordóñez P. 2016. Feature selection and improving classifi-
cation performance for malware detection. In: 2016 IEEE international conferences
on big data and cloud computing (BDCloud), social computing and networking

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 26/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1319/fig-A3
http://dx.doi.org/10.1016/j.cose.2020.101760
http://dx.doi.org/10.7717/peerj-cs.285
http://dx.doi.org/10.7717/peerj-cs.1319


Figure A4 Box plots for different classifiers on selected feature sets after applying principal compo-
nent analysis.

Full-size DOI: 10.7717/peerjcs.1319/fig-A4

(SocialCom), sustainable computing and communications (SustainCom) (BDCloud-
SocialCom-SustainCom). Piscataway: IEEE, 560–566.

ChowdhuryM, Rahman A, Islam R. 2017. Protecting data from malware threats using
machine learning technique. In: 2017 12th IEEE conference on industrial electronics
and applications (ICIEA). Piscataway: IEEE, 1691–1694.

Damaševičius R, Venčkauskas A, Toldinas J, Grigaliũnas A. 2021. Ensemble-based
classification using neural networks and machine learning models for windows PE
malware detection. Electronics 10(4):485.

Euh S, Lee H, KimD, Hwang D. 2020. Comparative analysis of low-dimensional
features and tree-based ensembles for malware detection systems. IEEE Access
8:76796–76808 DOI 10.1109/ACCESS.2020.2986014.

Fuyong Z, Tiezhu Z. 2017.Malware detection and classification based on N-grams
attribute similarity. In: 2017 IEEE international conference on computational science
and engineering (CSE) and IEEE international conference on embedded and ubiquitous
computing (EUC), vol. 1. Piscataway: IEEE, 793–796.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 27/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1319/fig-A4
http://dx.doi.org/10.1109/ACCESS.2020.2986014
http://dx.doi.org/10.7717/peerj-cs.1319


Gibert D, Mateu C, Planes J. 2020. The rise of machine learning for detection and
classification of malware: research developments, trends and challenges. Journal of
Network and Computer Applications 153:102526.

Guo Y. 2023. A review of machine learning-based zero-day attack detection: challenges
and future directions. Computer Communications 198(C):175–185.

Gupta D, Rani R. 2018. Big data framework for zero-day malware detection. Cybernetics
and Systems 49(2):103–121 DOI 10.1080/01969722.2018.1429835.

Kim S, Yeom S, OhH, Shin D, Shin D. 2021. Automatic malicious code classification
system through static analysis using machine learning. Symmetry 13(1):35.

Kumar A, Kuppusamy K, Aghila G. 2019. A learning model to detect maliciousness of
portable executable using integrated feature set. Journal of King Saud University—
Computer and Information Sciences 31(2):252–265 DOI 10.1016/j.jksuci.2017.01.003.

Kumar S, Singh CBB. 2018. A zero-day resistant malware detection method for securing
cloud using SVM and sandboxing techniques. In: 2018 second international conference
on inventive communication and computational technologies (ICICCT). Piscataway:
IEEE, 1397–1402.

Naval S, Laxmi V, RajarajanM, GaurMS, Conti M. 2015. Employing program semantics
for malware detection. IEEE Transactions on Information Forensics and Security
10(12):2591–2604 DOI 10.1109/TIFS.2015.2469253.

O’Kane P, Sezer S, McLaughlin K. 2011. Obfuscation: the hidden malware. IEEE Security
& Privacy 9(5):41–47.

Patidar P, Khandelwal H. 2019. Zero-day attack detection using machine learning
techniques. International Journal of Research and Analytical Reviews 6(1):1364–1367.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. 2011. Scikit-learn: machine learning in Python.
Journal of Machine Learning Research 12:2825–2830.

PhamH-D, Le TD, Vu TN. 2018. Static PE malware detection using gradient boosting
decision trees algorithm. In: International conference on future data and security
engineering. Cham: Springer, 228–236.

Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B, Nicholas CK. 2018.Malware
detection by eating a whole EXE. ArXiv preprint. arXiv:1710.09435.

Sharma S, Rama Krishna C, Sahay SK. 2019. Detection of advanced malware by ma-
chine learning techniques. In: Soft Computing: Theories and Applications: Proceedings
of SoCTA 2017. 333–342.

Singh J, Singh J. 2020. Detection of malicious software by analyzing the behavioral
artifacts using machine learning algorithms. Information and Software Technology
121:106273 DOI 10.1016/j.infsof.2020.106273.

TangM, Qian Q. 2019. Dynamic API call sequence visualisation for malware classifica-
tion. IET Information Security 13(4):367–377 DOI 10.1049/iet-ifs.2018.5268.

Venkatraman S, AlazabM. 2018. Use of data visualisation for zero-day malware
detection. Security and Communication Networks 2018.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 28/29

https://peerj.com
http://dx.doi.org/10.1080/01969722.2018.1429835
http://dx.doi.org/10.1016/j.jksuci.2017.01.003
http://dx.doi.org/10.1109/TIFS.2015.2469253
http://arXiv.org/abs/1710.09435
http://dx.doi.org/10.1016/j.infsof.2020.106273
http://dx.doi.org/10.1049/iet-ifs.2018.5268
http://dx.doi.org/10.7717/peerj-cs.1319


Wojnowicz M, Chisholm G,Wolff M, Zhao X. 2016.Wavelet decomposition of software
entropy reveals symptoms of malicious code. Journal of Innovation in Digital
Ecosystems 3(2):130–140 DOI 10.1016/j.jides.2016.10.009.

Zhang S-H, Kuo C-C, Yang C-S. 2019. Static PE malware type classification using ma-
chine learning techniques. In: 2019 international conference on intelligent computing
and its emerging applications (ICEA). 81–86.

Zhang Y, Chang X, Lin Y, Mišić J, Mišić VB. 2020. Exploring function call graph
vectorization and file statistical features in malicious PE file classification. IEEE
Access 8:44652–44660 DOI 10.1109/ACCESS.2020.2978335.

Zhang Y, Liu Z, Jiang Y. 2022. The classification and detection of malware us-
ing soft relevance evaluation. IEEE Transactions on Reliability 71(1):309–320
DOI 10.1109/TR.2020.3020954.

Yousuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1319 29/29

https://peerj.com
http://dx.doi.org/10.1016/j.jides.2016.10.009
http://dx.doi.org/10.1109/ACCESS.2020.2978335
http://dx.doi.org/10.1109/TR.2020.3020954
http://dx.doi.org/10.7717/peerj-cs.1319

