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ABSTRACT
Machine learning applications in the medical sector face a lack of medical data due to
privacy issues. For instance, brain tumor image-based classification suffers from the lack
of brain images. The lack of such images produces some classification problems, i.e.,
class imbalance issues which can cause a bias toward one class over the others. This study
aims to solve the imbalance problem of the ‘‘no tumor’’ class in the publicly available
brain magnetic resonance imaging (MRI) dataset. Generative adversarial network
(GAN)-based augmentation techniques were used to solve the imbalance classification
problem. Specifically, deep convolutional GAN (DCGAN) and single GAN (SinGAN).
Moreover, the traditional-based augmentation techniques were implemented using
the rotation method. Thus, several VGG16 classification experiments were conducted,
including (i) the original dataset, (ii) theDCGAN-based dataset, (iii) the SinGAN-based
dataset, (iv) a combination of the DCGAN and SinGAN dataset, and (v) the rotation-
based dataset. However, the results show that the original dataset achieved the highest
accuracy, 73%. Additionally, SinGANoutperformedDCGANby a significantmargin of
4%. In contrast, experimenting with the non-augmented original dataset resulted in the
highest classification loss value, which explains the effect of the imbalance issue. These
results provide a general view of the effect of different image augmentation techniques
on enlarging the healthy brain dataset.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Neural Networks
Keywords Brain tumors magnetic resonance imagings (MRIs), Generative adversarial networks
(GANs), Image augmentation

INTRODUCTION
Medical images are highly used in the technical field to automate several tasks. Automation
helps enhance the repetitive tasks related to detecting diseases, finding relations between
diseases, etc.Moreover, automation of repetitive tasks helps to reduce time and cost besides,
assists in early disease detection. Early detection of the diseases helps patients’ response to
treatment and prevents the exacerbation of the disease and death in some cases.

The brain tumor is a cancer type considered a common cause of death globally (Elazab
et al., 2020). Thus, brain tumors have a critical need for early detection. A brain tumor is
an abnormal growth of brain cells that seriously affects the central nervous system (Arbane
et al., 2021). Researchers and developers work on training machine learning models to
identify abnormal cases. However, due to the patients’ privacy, there is a lack of available
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medical images, including brain tumor images. The lack of datasets causes an imbalanced
classification problem. Imbalance classification occurs when the model trains with unequal
distribution of classes (Thabtah et al., 2020).

Several studies resorted to augmentation methods to generate more data. Hence, some
studies used traditional augmentation techniques to generate medical images (Naseer et al.,
2021). However, conventional techniques may not be suitable for all types of images. Thus,
advanced augmentation methods have been developed, such as generative adversarial
networks. A generative adversarial network (GAN) is a neural network that contains
two networks: (i) generator network and (ii) discriminator network (Yi, Walia & Babyn,
2019). Both networks work simultaneously, the generator generates fake images while the
discriminator discriminates between real and fake photos. GAN techniques were used
to enlarge the medical images’ datasets, e.g., augmenting brain tumor images. Moreover,
GAN was used to automate the image segmentation process (Wu et al., 2021) and augment
brain tumor images (Ge et al., 2020). However, most of the efforts focused on generating
magnetic resonance images (MRIs) identifying tumors. Thus, to the best of the authors’
knowledge, limited studies discussed the effect of augmenting healthy brain MRIs on brain
tumor classification performance.

The lack of studies discussing the class imbalance issue that occurs in classifying brain
MRIs motivated the authors to use augmentation techniques to solve the imbalance issue.
This study aims to augment healthy brainMRIs usingGAN-based augmentation techniques
to solve the imbalanced classification problem in brain tumors that happen due to the lack
of healthy brain images. The imbalanced classification problem appears when the used
dataset contains an imbalanced number of data in each class, e.g., 60% of the data are class
A while the remaining 40% are class B data. In this case, the model trains on class A data
more than other classes, which results in a model bias toward the majority class (class A
in our example). Thus, most of the data might be incorrectly classified as class A data.
Therefore, the study’s contributions are:

• Augment ‘‘no tumor’’ brain MRIs in Sartaj et al. (2019) using two different GANs
(i) multi-input augmentation technique (deep convolutional GAN (DCGAN)) and
(ii) single-input augmentation technique (single GAN (SinGAN)) to avoid imbalance
classification.
• Study the effect of applying GAN-based techniques to generate healthy brain MRIs.
• Classify different versions of brain MRI datasets using the VGG16 classifier (Simonyan
& Zisserman, 2015).

The rest of the paper is structured as follows; Section 2 discusses the GAN-based related
work on brain tumor MRIs. Section 3 describes the followed methodology. Section 4
presents the experiments’ and results’ details. Section 5 discusses the outcomes and Section
6 concludes the study.

RELATED WORK
Various classification models have been developed to classify brain MRIs to detect if
the MR scan represents a tumor or not. Those classification methods recorded reasonable
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performancewith some classification issues related to the limited data available. Thus, image
augmentation was proposed to solve such issues. Image augmentation can be performed
using the classic or the intelligent approaches (Gab Allah, Sarhan & Elshennawy, 2021).
The classic image augmentation techniques increase the dataset by using the existing data
to generate new data using basic manipulations, such as geometric transformation (Shorten
& Khoshgoftaar, 2019), whereas the intelligent image augmentation techniques, such as
GAN-based methods, enlarge the dataset by generating new data that differ from the
existing data.

According to brain tumor GAN-based studies, the usage of GANs is divided into two
main applications: (i) image augmentation and (ii) image segmentation. However, this
section will focus on the image augmentation techniques used to enlarge brain tumorMRIs
to solve the class imbalance issue.

Several studies used GAN-based models to generate new medical images (Qin et al.,
2020; Chi et al., 2018). Brain tumor images are one of the medical images used in several
image augmentation studies. For instance, Ge et al. (2020) implemented a pairwise GAN
model on brain MRIs. Moreover, they classified the glioma subtype using a slice-level and
then used a majority voting to identify the diagnostic on the patient level. Another GAN
method was proposed in Kim, Kim & Park (2021) that used a normal brain image and an
image of a simplified tumor mask in a circle shape. The generator converted the circles
into different tumor masks and then painted them on the authentic normal brain images
generating an image similar to the real images.

Additionally, Sandhiya et al. (2021) used DCGAN to generate three kinds of malignant
tumors: meningioma, glioma, and pituitary to enhance the classification process. In
contrast, Biswas et al. (2021) augmented tumor images using Wasserstein GANs (WGANs)
to improve the segmentation of the image. Moreover, Han et al. (2020) proposed a multi-
stage progressive growth GAN (PGGA) to generate new images combined with a traditional
data augmentation technique such as geometric transformations. The integration in Han
et al. (2020) enhanced the classification performance compared with images generated
using PGGAN only. Similarly, PGGANs were used in Han et al. (2019), where the authors
used two-step GAN-based data augmentation. In the first step, PGGANs generated
high-resolution images. In contrast, the second step applied noise-to-image and image-to-
image GANs to enhance the data augmentation effect with the GAN techniques. Table 1
summarizes the brain tumor augmentation-based studies.

Even though the deep learning-based emerging image augmentation techniques reported
good performance, researchers still tend to apply classic image augmentation methods to
increase their training set (Cirillo, Abramian & Eklund, 2021;Ghassemi, Shoeibi & Rouhani,
2020). Moreover, major studies focused on glioma tumors regarding the availability of
glioma-based BraTS datasets (Wu et al., 2021; Chen et al., 2019; Li, Chen & Shi, 2021; Alex
et al., 2017; Cirillo, Abramian & Eklund, 2021; Nema et al., 2020).

According to the reviewed studies, the generated GAN-based images were used only
in the training set to train the model. Moreover, it is worth noting that the synthetic
GAN-based images improved the performance of the brain tumor classification in some
cases (Ge et al., 2020; Biswas et al., 2021). On the other hand, the classic augmentation
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Table 1 Brain tumor augmentation related studies.

Ref Year GAN type Dataset Number of
images

Partitioned
dataset

Classification Experiments Results

Ge et al. (2020) 2020 pairwise GANs 3D brain images
from TCGA-GBM
and TCGA-LGG
(Glioma Types)

-Original
Dataset= 1002
-Augmented
Dataset= 1782

Training= 86%
Validation= 7%
Testing= 7%

multi-stream 2D
CNN, feature-level
fusion

Original
+ GAN-based DA

Accuracy= 88.82%
Sensitivity= 81.81%
Specificity= 92.17%

Kim, Kim & Park (2021) 2021 Three G and one D
approach

BraTS 2018 Original Dataset=
12540

Training= 12500 U-NET -Original
-Traditional DA
-GAN-based DA

GAN-based DA: FID= 1.16
Dice= 59%
Sensitivity= 54%
Precision= 70%

Sandhiya et al. (2021) 2021 DCGAN 4 Labels: -Glioma
-Meningioma -
Pituitary -No tumors

-Original
Dataset= 1000
-Augmented
Dataset= 2920

Training= 80%
Validation= 13%
Testing= 7%

Faster R-CNN Original
+ GAN-based DA

Accuracy= 89.8%
F1-score= 0.89

Biswas et al. (2021) 2021 WGAN BRATS 2013 – – Random Forest Original
+ GAN-based DA

DSC= 94% JSC= 89%

Han et al. (2020) 2020 PGGAN +Wasser-
stein loss

BraTS 2016 Original Dataset=
12979

Training= 69%
Validation= 11%
Testing= 20%

ResNet-50 -Original dataset
-Traditional DA
-GAN-based DA
-Traditional DA
+ GAN-based DA

200k traditional DA+200k
PGGAN-based DA:
Accuracy= 91.08%
Specificity= 97.6%

Han et al. (2019) 2019 PGGANs + MUNIT
or SimGAN

BraTS 2016 -Original
Dataset= 8,429
-Augmented
Dataset= 200k,
400k

Training= 70%
Validation= 11%
Testing= 19%

ResNet-50 -Original dataset
-Traditional DA
- GAN-based DA
-Traditional DA
+ GAN-based DA

-(+) 200k traditional DA
& 200k MUNIT-refined DA:
Accuracy= 96.7
Sensitivity= 95.45
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techniques improved the classification accuracy when combined with the GAN-based fake
images in some studies (Han et al., 2020; Han et al., 2019). Thus, these results encouraged
the authors to generate synthetic GANs-based and geometric argumentation-based images
in the training part to solve the imbalance problem in the brain tumor MRI dataset and
enhance the classification performance.

MATERIALS AND METHODS
This effort is dedicated to study the effect of brain MRIs augmentation on the classification
performance using GAN-based augmentation techniques, i.e., DCGAN and SinGAN.
DCGAN has been used in augmenting brain MRIs and proved its effectiveness (Sandhiya
et al., 2021). However, DCGAN generates images from a set of input images. Thus, the
authors were encouraged to study the effect of using the single-input augmentation
technique (SinGAN) and multi-input augmentation technique (DCGAN) on brain MRIs.
Moreover, this work explores the effect of traditional augmentation techniques. Specifically,
the rotation method was selected since it does not perform any changes in the internal
details of the image. Therefore, the following subsections discuss the methodology phases’
details as illustrated in Fig. 1.

Dataset
The authors used the brain MRIs dataset in Sartaj et al. (2019). The dataset contains MR
images of three types of brain tumors (glioma, meningioma, and pituitary) and normal
brain (no tumor) as well. The dataset consists of 3264 RGB JPG images. Table 2 presents the
dataset contents. Based on Table 2, the dataset suffers from two issues, (i) class imbalance
and (ii) random splitting ratios. The number of ‘‘no tumor’’ images is relatively small
compared with the tumor ones, which is 500, 937, 901, and 926 images of no tumor,
meningioma, pituitary, and glioma tumors, respectively. Thus, this difference causes
imbalance classification issues where the classifier might bias toward tumors’ scans. As a
solution, the no tumor images can be augmented using GAN techniques. Moreover, the
train-test splitting ratio of the ‘‘Pituitary Tumor’’ images is unfair compared with the rest.
Therefore, the dataset needs to be re-split with appropriate ratios.

Image augmentation
Regarding the small number of ‘‘no tumor’’ images, two GAN-based augmentation
techniques have been applied on the ‘‘no tumor’’ images to increase them. DCGAN and
SingleGANwere used. Additionally, the geometric-based traditional augmentationmethod
has been experimented with using the rotationmethod with 90 and 270 degrees. DCGAN is
a deep convolutional GAN architecture that replaces the pooling layers in the original GAN
with strided convolutions in the discriminator and fractional-strided convolutions in the
generator (Radford, Metz & Chintala, 2016). DCGAN uses batch normalization and does
not include fully connected hidden layers. Figure 2 illustrates the DCGAN architecture and
specifies the activation functions used in the generator and discriminator.

In contrast, SinGAN is an unconditional GAN model that learns from a single image
(Shaham, Dekel & Michaeli, 2019). Therefore, SinGAN successfully generates several fake
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Figure 1 The followedmethodology of augmenting and classifying brain tumorMRIs is described
here. The used dataset consisted of four classes, three tumor types, and healthy MRIs. After splitting the
dataset into training, validation, and testing sets, the no tumor images in the training set were augmented
using GAN-based augmentation techniques and added to the training set. Then, a VGG16 classifier was
trained and evaluated. (Brain images source: Sartaj et al., 2019).

Full-size DOI: 10.7717/peerjcs.1318/fig-1

Table 2 BrainMRIs dataset contents.

Image label Training
set size

Testing
set size

Total

Meningioma Tumor 822 (88%) 115 (12%) 937 (28%)
Pituitary Tumor 827 (92%) 74 (8%) 901 (28%)
Glioma Tumor 826 (89%) 100 (11%) 926 (28%)
No Tumor 395 (79%) 105 (21%) 500 (15%)
Total 2870 (88%) 394 (12%) 3264 (100%)

Notes.
The bold text indicates the random splitting ratios and imbalance issues.

images by capturing the patches of internal distribution in the real image. Specifically,
SinGAN consists of a pyramid of fully convolutional GANs, and each of them learns the
patch of internal distribution of the real image in different scales. Furthermore, SinGAN
uses a 3*3 kernel size, and it generates images with a size equal to the input image size.
Thus, this structure enables SinGAN to generate diverse fake images that maintain the
main structure of the real image. Figure 3 presents the SinGAN architecture at scale 0.

The main difference between DCGAN and SinGAN is in the input size. DCGAN accepts
multiple input images to produce a set of fake images. While SinGAN accepts a single input
image to produce a set of fake images (see Fig. 4).
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Figure 2 DCGAN architecture. The model comprises five transposed convolution layers in the genera-
tor and five convolution layers in the discriminator. Each layer in the generator used Rectified Linear Unit
(ReLu) as an activation method except the last layer, which used a hyperbolic tangent (Tanh) function.
While in the discriminator, Leaky ReLu is used as an activation method in all hidden layers and sigmoid in
the last layer.

Full-size DOI: 10.7717/peerjcs.1318/fig-2

Figure 3 SinGAN architecture. The model comprises five convolution layers in both the generator and
discriminator. Moreover, each layer used Leaky ReLu as an activation method except the last layer in the
generator, which used a Tanh function.

Full-size DOI: 10.7717/peerjcs.1318/fig-3

Image classification
As mentioned before, the brain tumor MRI dataset contains four classes: (i) glioma
tumor, (ii) meningioma tumor, (iii) pituitary tumor, and (iv) no tumor. Therefore, the
pre-trained VGG16 classifier was used to classify brain tumor MRIs. VGG16 is a deep
convolutional neural network (CNN) architecture designed to win the ImageNet challenge
in 2014 (Simonyan & Zisserman, 2015). VGG16 increases the depth of the CNN using 3*3
convolution filters and 16 deep layers. Additionally, VGG16 has been trained on large
datasets, i.e., millions of images; thus, it learned many features. Figure 5 presents the
architecture of VGG16.

Evaluation
The authors conducted a review of evaluation criteria used in previous studies to determine
the evaluation criteria for this study. Table 3 shows that the confusion matrix values were
mostly used besides F1-score, Frechet Inception Distance (FID), Dice Similarity Coefficient
(DSC), and Jaccard Similarity Coefficient (JSC). FID measure was used in this study to
measure the quality of the GAN-based generated images. FID calculates the similarity
score between two sets of images, the GAN-based generated images and the original
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Figure 4 The input size difference between DCGAN and SinGAN. (Brain images source: Sartaj et al.,
2019).

Full-size DOI: 10.7717/peerjcs.1318/fig-4

Figure 5 VGG16 architecture.VGG16 consists of 13 convolutional layers with ReLU activation function,
three fully connected layers, and five pooling layers. (Brain image source: Sartaj et al., 2019).

Full-size DOI: 10.7717/peerjcs.1318/fig-5

images (Heusel et al., 2017). A lower FID score indicates better image quality and low noise.
Moreover, in terms of evaluating the classification performance, this study followed the
previous studies’ approach by using several measures extracted from the confusion matrix.
In particular, (i) accuracy, (ii) sensitivity (recall), and (iii) precision were selected as the
main evaluation criteria in this study.

To calculate each measure, several values are used as explained in Ting (2017), which
are illustrated as follows:

True Positive (TP): the image is a tumor, and the classifier is classified correctly.
False Positive (FP): the image is no tumor, and the classifier is classified incorrectly.
True Negative (TN): the image is no tumor, and the classifier is classified correctly.
False Negative (FN): the image is a tumor, and the classifier is classified incorrectly.
Thus, accuracy, sensitivity (recall), and precision are introduced as follows, respectively:
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Table 3 Evaluation criteria of classification performance in augmentation-related studies.

Ref Accuracy Sensitivity Specificity Precision F1-Score FID DSC JSC

Elazab et al. (2020) X X X – – – – -
Thabtah et al. (2020) – X – X – X X -
Yi, Walia & Babyn (2019) X – – – X – – -
Sartaj et al. (2019) – – – – – – X X

Qin et al. (2020) X X X – – – – -
Chi et al. (2018) X X X – – – – -
Ours X X – X – – – -

Accuracy =
TP+TN

TP+FP+TN +FN

Sensitivity =
TP

TP+FN

Precision=
TP

TP+FP
.

EXPERIMENTS AND RESULTS
This section discusses the results of the augmentation and classification steps.

Image augmentation
After conducting many augmentation experiments and fine-tuning the parameters to get
reasonable results, Table 4 illustrates the parameters used to augment ‘‘no tumor’’ brain
images. Notably, these experiments aim to get the best result for each technique separately,
not to standardize the parameters, which explains the difference between the techniques’
parameter values (number of epochs and learning rates) illustrated in Table 4. Regarding
augmenting with DCGAN, ‘‘no tumor’’ images were resized to 64 and normalized. Images
were normalized to be in the range of −1 to 1 using 0.5 mean and 0.5 standard deviation.
After many experiments using 128 and 64 batch sizes, the authors noticed that the DCGAN
performance improved when the batch size decreased, i.e., 64. Tables 5 and 6 illustrate the
generator and discriminator models in both DCGAN and SinGAN models.

Moreover, the ‘‘no tumor’’ dataset contains images from different angles, e.g., the side
of the head or top. Therefore, the DCGAN performance differed when it was trained with
(i) all the images, (ii) images taken from the side, and (iii) images taken from the top
angle (see Table 7). The performance of the DCGAN generator and discriminator was
enhanced when the images were unified, i.e., side-only images and top-only images. On the
other hand, SinGAN generates a fake image at different scales related to how the generated
image is realistic. Usually, the scales range from 0–3, where 0 will generate a completely
different image from the original one. In contrast, other scales will generate a new image
with minor changes from the original image. Any scale number above three will generate a
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Table 4 Augmentation parameters.

Augmentation
technique

Epochs Learning
rate

Batch
size

Generated
image size

Noise
size

Loss
function

Optimizer

DCGAN 6000 0.0002 64 64 100 Binary cross
entropy

Adam

SinGAN 7000 0.0005 – same size of the
input image

– Wasserstein GAN-
gradient penalty

Adam

new image almost identical to the original one. Figure 6 shows the difference between the
generated images at each scale. As it appears, the images at scales 1, 2, and 3 are similar.
Moreover, these images are similar to the real image, unlike the zero-scale image, which
has noticeable changes. All the training images generated in this study were at a scale of 1 to
avoid generating completely different or identical images to the original ones. Furthermore,
Fig. 7 compares the fake ‘‘no tumor’’ images generated by DCGAN and SinGAN with the
real images. Additionally, the FID score was reported in Table 8 to measure the similarities
between the ‘‘no tumor’’ DCGAN and SinGAN generated images compared to the original
‘‘no tumor’’ images. A lower FID score determines the high similarity between the original
and generated images. Therefore, from Fig. 7 and Table 8, it is noticeable that SinGAN
images were more similar to the real ‘‘no tumor’’ images.

Image classification
After augmentation, a VGG16 classifier was used (see model details in Table 9 and classifier
parameters in Table 10). Besides, five versions of the dataset were used for classifications,
(i) original dataset without augmentation, (ii) dataset with DCGAN augmented images,
(iii) dataset with SinGAN augmented images, (iv) dataset with both DCGAN and SinGAN
augmented images, and (v) dataset with geometric-based traditional augmentation. All
five datasets have been equally split to 70% for training, 10% for validation, and 20%
for testing. Note that 79 images from the original dataset in Table 2 were discarded to
ensure the balance between the four classes, i.e., each class had a total of 900 images and
the total ‘‘no tumor’’ images before augmentation was 485 images. Table 11 describes
the classification performance for each dataset. Interestingly, the original dataset without
augmentation recorded the highest accuracy and largest loss. However, the dataset with
SinGAN augmentation recorded the lowest loss. Moreover, Fig. 8 presents the training and
validation loss for classifying each dataset. The augmentation techniques reduced the gap
between the training and validation loss. Figure 9 shows the confusion matrices for each
dataset and indicates the model’s bias towards the ‘‘meningioma tumor’’ class in all dataset
versions, whereas the datasets that included SinGAN images reduced the classifier’s bias.

DISCUSSION
Regarding the results, brain tumor classification is not an easy task due to the similarities of
brain tumor MRIs. The original brain MRIs dataset consists of imbalance classes, i.e., small
amounts of ‘‘no tumor’’ images compared with tumor images. Thus, the classifier recorded
the highest testing loss after being trained with the original dataset (see Table 7). However,
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Table 5 DCGAN generator and discriminator networks details.

Generator

Layer (type) Output shape Param #

ConvTranspose2d-1 [None, 512, 67, 67] 819,200
BatchNorm2d-2 [None, 512, 67, 67] 1,024
ReLU-3 [None, 512, 67, 67] 0
ConvTranspose2d-4 [None, 256, 134, 134] 2,097,152
BatchNorm2d-5 [None, 256, 134, 134] 512
ReLU-6 [None, 256, 134, 134] 0
ConvTranspose2d-7 [None, 128, 268, 268] 524,288
BatchNorm2d-8 [None, 128, 268, 268] 256
ReLU-9 [None, 128, 268, 268] 0
ConvTranspose2d-10 [None, 64, 536, 536] 131,072
BatchNorm2d-11 [None, 64, 536, 536] 128
ReLU-12 [None, 64, 536, 536] 0
ConvTranspose2d-13 [None, 3, 1072, 1072] 3,072
Tanh-14 [None, 3, 1072, 1072] 0

Total params: 3,576,704
Trainable params: 3,576,704
Non-trainable params: 0

Discriminator
Conv2d-1 [None, 64, 32, 32] 3,072
LeakyReLU-2 [None, 64, 32, 32] 0
Conv2d-3 [None, 128, 16, 16] 131,072
BatchNorm2d-4 [None, 128, 16, 16] 256
LeakyReLU-5 [None, 128, 16, 16] 0
Conv2d-6 [None, 256, 8, 8] 524,288
BatchNorm2d-7 [None, 256, 8, 8] 512
LeakyReLU-8 [None, 256, 8, 8] 0
Conv2d-9 [None, 512, 4, 4] 2,097,152
BatchNorm2d-10 [None, 512, 4, 4] 1,024
LeakyReLU-11 [None, 512, 4, 4] 0
Conv2d-12 [None, 1, 1, 1] 8,192
Sigmoid-13 [None, 1, 1, 1] 0

Total params: 2,765,568
Trainable params: 2,765,568
Non-trainable params: 0

even though the authors implemented different augmentation techniques to solve the
imbalance classification issue, the classification accuracy decreased in the augmented
image dataset. The nature of brain MR images having precise details that differentiate
between healthy and abnormal brain scans may have affected the generator’s performance.
Thus, the generator generated images that negatively affected the classification model
performance.
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Table 6 SinGAN generator networks details at scale 0.

Generator

Layer (type) Output shape Param #

Conv2d-1 [None, 32, 98, 98 ] 896
BatchNorm2d-2 [None, 32, 98, 98 ] 64
LeakyReLU-3 [None, 32, 98, 98 ] 0
Conv2d-4 [None, 32, 98, 98 ] 896
BatchNorm2d-5 [None, 32, 98, 98 ] 64
LeakyReLU-6 [None, 32, 98, 98 ] 0
Conv2d-7 [None, 32, 98, 98 ] 896
BatchNorm2d-8 [None, 32, 98, 98 ] 64
LeakyReLU-9 [None, 32, 98, 98 ] 0
Conv2d-10 [None, 32, 98, 98 ] 896
BatchNorm2d-11 [None, 32, 98, 98 ] 64
LeakyReLU-12 [None, 32, 98, 98 ] 0
Conv2d-13 [None, 32, 98, 98 ] 896
Tanh-14 [None, 3, 98, 98 ] 0

Total params: 4736
Discriminator

Conv2d-1 [None, 32, 98, 98] 896
BatchNorm2d-2 [None, 32, 98, 98] 64
LeakyReLU-3 [None, 32, 98, 98] 0
Conv2d-4 [None, 32, 98, 98 ] 896
BatchNorm2d-5 [None, 32, 98, 98] 64
LeakyReLU-6 [None, 32, 98, 98 ] 0
Conv2d-7 [None, 32, 98, 98 ] 896
BatchNorm2d-8 [None, 32, 98, 98 ] 64
LeakyReLU-9 [None, 32, 98, 98 ] 0
Conv2d-10 [None, 32, 98, 98] 896
BatchNorm2d-11 [None, 32, 98, 98 ] 64
LeakyReLU-12 [None, 32, 98, 98 ] 0
Conv2d-13 [None, 1, 1, 1] 896

Total params: 4736

The geometric-based rotation technique, DCGAN, and SinGAN were used to augment
‘‘no tumor’’ images. Geometric augmentation techniques do not affect the inner parts of
the brain image. However, augmenting brain MRIs with GAN-based techniques is critical;
augmentation may affect the main brain conditions that indicate abnormal cases. DCGAN
was trained with multiple images to produce fake ‘‘no tumor’’ MRIs. However, DCGAN
performance was poor in terms of training duration and the generated images’ quality with
high FID score (see Table 8). In addition, the SinGANmodel trains on a single image, thus
the augmented images look so real, i.e., lower FID score compared to DCGAN.

Moreover, the classifier was biased towards the ‘‘meningioma tumor’’ class in all datasets
(see Fig. 9). This bias may be due to the similarities between brain tumor images. On the
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Table 7 DCGAN generator and discriminator performance trained in 6000 epochs. (Brain images source: Sartaj et al., 2019).

Type of images All no tumorMRIs No tumorMRIs taken
from the side

No tumorMRIs taken from
the top side only

Size 395 91 251
Generator and discriminator loss

Sample of generated images

Figure 6 SinGAN generated images at different scales. (Brain images source: Sartaj et al., 2019).
Full-size DOI: 10.7717/peerjcs.1318/fig-6

Figure 7 Real ‘‘no tumor’’ images compared with DCGAN, SinGAN, and geometric-based generated
images. (Brain images source: Sartaj et al., 2019).

Full-size DOI: 10.7717/peerjcs.1318/fig-7

other hand, using SinGAN generated images reduced the classifier’s bias (see Figs. 9C and
9D). Additionally, the augmented dataset with SinGAN images reported the lowest loss
compared with other augmented datasets (see Table 7).

According to the results, the geometric-based and SinGAN augmentation techniques
are suitable to generate brain MRIs. However, these augmentation techniques need
some improvements before adopting them. For instance, using different geometric-based
augmentation techniques along with rotation, applying segmentation techniques with
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Table 8 DCGAN and SinGAN FID scores.

Augmentation technique Comparison case FID score

DCGAN ‘‘no tumor’’ generated images vs. original ‘‘no tumor’’
images

2.475

SinGAN ‘‘no tumor’’ generated images vs. original ‘‘no tumor’’
images

1.292

augmentation, fine-tuning the parameters, and optimizing the models. Moreover, due to
the fine details that distinguish healthy from abnormal brain MRIs, GAN-based models
and the classification performance were negatively affected. Therefore, brain MRIs require
strong augmentation techniques that learn fine brain details.

CONCLUSION
This effort aims to solve the imbalance issue in brain tumors dataset classes by enlarging
the size of the class with small amounts of images. In this study, the selected dataset had a
small ‘‘no tumor’’ class size, which needs to be increased. Thus, several experiments were
conducted to generate the ‘‘no tumor’’ synthetic images using GAN-based and traditional-
based augmentation techniques, i.e.,DCGAN, SinGAN, and rotation. However, the original
dataset without any augmentation outperforms the other experiments in terms of accuracy,
i.e., 73%, while it obtained the highest loss. The highest loss explains the imbalance issue
in the original dataset. Moreover, the traditional-based augmentation dataset achieved the
second-best accuracy by 71%. Regarding the GAN-based images, SinGAN achieved the
best accuracy by 68% and the lowest loss by 0.8525. However, the results illustrate that
the healthy and abnormal brain MRIs are similar to each other (above 0.6 structural-based
similarity scores). Moreover, the GAN-based models’ lack of attention to the fine details
that distinguish healthy from abnormal brain MRIs. Thus, the nature of brain images
causes a negative effect on classification performance. Consequently, the accuracy obtained
in all the experiments needs to be improved, and the dataset size can be increased by
augmenting all the dataset’s classes.

The authors plan to improve the generated fake images using different methods in future
work, such as combining the data augmentation technique with reinforcement learning.
Also, the authors will investigate different geometric-based augmentation techniques, such
as flipping, zooming in and out, and other GAN types. Additionally, the classification and
augmentation parameters can be changed to obtain optimal performance. The authors
highly encourage interested researchers to explore the augmentation effect of sensitive
medical images and enhance the available techniques accordingly.
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Table 9 VGG16model details.

Layer (type) Output shape Param #

Conv2d-1 [None, 64, 150, 150] 1,792
ReLU-2 [None, 64, 150, 150] 0
Conv2d-3 [None, 64, 150, 150] 36,928
ReLU-4 [None, 64, 150, 150] 0
MaxPool2d-5 [None, 64, 75, 75] 0
Conv2d-6 [None, 128, 75, 75] 73,856
ReLU-7 [None, 128, 75, 75] 0
Conv2d-8 [None, 128, 75, 75] 147,584
ReLU-9 [None, 128, 75, 75] 0
MaxPool2d-10 [None, 128, 37, 37] 0
Conv2d-11 [None, 256, 37, 37] 295,168
ReLU-12 [None, 256, 37, 37] 0
Conv2d-13 [None, 256, 37, 37] 590,080
ReLU-14 [None, 256, 37, 37] 0
Conv2d-15 [None, 256, 37, 37] 590,080
ReLU-16 [None, 256, 37, 37] 0
MaxPool2d-17 [None, 256, 18, 18] 0
Conv2d-18 [None, 512, 18, 18] 1,180,160
ReLU-19 [None, 512, 18, 18] 0
Conv2d-20 [None, 512, 18, 18] 2,359,808
ReLU-21 [None, 512, 18, 18] 0
Conv2d-22 [None, 512, 18, 18] 2,359,808
ReLU-23 [None, 512, 18, 18] 0
MaxPool2d-24 [None, 512, 9, 9] 0
Conv2d-25 [None, 512, 9, 9] 1,180,160
ReLU-26 [None, 512, 9, 9] 0
Conv2d-27 [None, 512, 9, 9] 2,359,808
ReLU-28 [None, 512, 9, 9] 0
Conv2d-29 [None, 512, 9, 9] 2,359,808
ReLU-30 [None, 512, 9, 9] 0
MaxPool2d-31 [None, 512, 4, 4] 0
AdaptiveAvgPool2d-32 [None, 512, 7, 7] 0
Linear-33 [None, 4096] 102,764,544
ReLU-34 [None, 4096] 0
Dropout-35 [None, 4096] 0
Linear-36 [None, 4096] 16,781,312
ReLU-37 [None, 4096] 0
Dropout-38 [None, 4096] 0
Linear-39 [None, 4] 16,388

Total params: 134,276,932
Trainable params: 119,562,244
Non-trainable params: 14,714,688
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Table 10 VGG16 classifier parameters.

Epochs Learning rate Batch size Loss function Optimizer

20 0.0001 128 Cross Entropy Adam

Table 11 VGG16 classification performance.

Dataset Number of images Accuracy Loss Sensitivity Precision

Train Validate Test Total

Original without augmentation 2105 360 720 3185 73% 1.28 73.19% 79.37%
Dataset with DCGAN images 2520 (Synthetic= 415) 360 720 3600 64% 1.03 64.86% 70.96%
Dataset with SinGAN images 2520 (Synthetic= 415) 360 720 3600 68% 0.85 68.19% 69.98%
Dataset with DCGAN
and SinGAN images

2520 (Synthetic= 415) 360 720 3600 65% 0.89 65.83% 68.15%

Dataset with geometric-based
augmentation (rotation)

2520 (Synthetic= 415) 360 720 3600 71% 0.94 71.10% 74.08%

Notes.
*The bold text indicates the best results.

Figure 8 Training and validation loss for each dataset. (A) The overfitting problem in the classifier per-
formance with the original imbalanced dataset. (B, C, D) The training and validation loss after augment-
ing the dataset using GAN-based techniques. (E) The loss reported with the geometric-based augmented
dataset. The gap between training and validation loss was reduced with the augmented datasets.

Full-size DOI: 10.7717/peerjcs.1318/fig-8
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Figure 9 The confusionmatrix for each dataset is presented here. Classifier bias towards the menin-
gioma tumor type are shown in A-C. However, confusion matrices in (C) and (D) show a reduction in
such bias after updating the dataset with SinGAN augmented images.

Full-size DOI: 10.7717/peerjcs.1318/fig-9
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