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ABSTRACT
With the massive use of social media today, mixing between languages in social media
text is prevalent. In linguistics, the phenomenon of mixing languages is known as code-
mixing. The prevalence of code-mixing exposes various concerns and challenges in
natural language processing (NLP), including language identification (LID) tasks. This
study presents a word-level language identification model for code-mixed Indonesian,
Javanese, and English tweets. First, we introduce a code-mixed corpus for Indonesian-
Javanese-English language identification (IJELID). To ensure reliable dataset annota-
tion, we provide full details of the data collection and annotation standards construction
procedures. Some challenges encountered during corpus creation are also discussed in
this paper. Then, we investigate several strategies for developing code-mixed language
identification models, such as fine-tuning BERT, BLSTM-based, and CRF. Our results
show that fine-tuned IndoBERTweet models can identify languages better than the
other techniques. This is the result of BERT’s ability to understand each word’s context
from the given text sequence. Finally, we show that sub-word language representation
in BERT models can provide a reliable model for identifying languages in code-mixed
texts.

Subjects Computational Linguistics, Data Mining and Machine Learning,
Natural Language and Speech, Network Science and Online Social Networks, Text Mining
Keywords Code-mixing, Language identification, Indonesian, Javanese, English, Twitter, BERT

INTRODUCTION
Today, mixing languages is prevalent in daily communication, especially in informal
situations, such as texting posts on social media. In linguistics, combining two or more
languages within an utterance of speech or text is called code-mixing (Hoffmann, 2014;
Ritchie & Bhatia, 2012). Mixing languages is particularly common in regions where people
are natively multilingual.

Indonesia is one of the world’s most multilingual countries, with over 700 local spoken
languages (Aji et al., 2022). More than 198 million and 84 million people speak Indonesian
and Javanese, respectively (Eberhard, Simons & Fennig, 2021). Hence, mixing Indonesian
and Javanese in an utterance is common in Indonesia, especially among the Javanese people.
Besides, exposure to English from social media and school makes Indonesians mix their
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languages with English (Rizal & Stymne, 2020). As a result, mixing Indonesian, Javanese,
and English in daily conversation becomes the most prevalent language combination in
Indonesian societyt (Yulianti et al., 2021).

The following is an example of a code-mixed sentence containing Indonesian, Javanese,
and English words:

‘‘Aku udah coba ngedownload tapi error, tulung aku diewangi downloadke panduane!’’
(English: I have tried to download but error, please help me download the guideline!).
The sentence contains the following language compositions: Indonesian (aku, udah,

coba, tapi), mix Indonesian-English (ngedownload), English (error), Javanese (tulung, aku,
diewangi), mix Javanese-English (downloadke), and mix Indonesian-Javanese (panduane).
In the above sentence, the mixing of languages occurs not only within the sentence
but also within the word. For example, the word ‘ngedownload’ consists of ‘nge-‘
(informal Indonesian prefix) and ‘download’ (English). The word ‘downloadke’ consists of
‘download’ (English) and ‘-ke’ (Javanese suffix). The word ‘panduane’ consists of ‘panduan’
(Indonesian) and ‘-e’ (Javanese suffix).

To analyze code-mixed text, a language identification (LID) task is often used as part
of the pre-processing step (Hidayatullah et al., 2022). LID is critical for some subsequent
natural language processing tasks in code-mixed documents (Gundapu & Mamidi, 2018).
Applying LID in the code-mixed text has become a foundationwork of variousNLP systems,
including sentiment analysis (Ansari & Govilkar, 2018; Mahata, Das & Bandyopadhyay,
2021), translation (Barik, Mahendra & Adriani, 2019; Mahata et al., 2019), and emotion
classification (Yulianti et al., 2021). The absence of LID in pre-processing tasks can affect
those NLP systems. For example, if the language is not accurately identified, a code-mixed
sentence will produce an inaccurate translation. In another case, an offensive content
identification system may produce incorrect results if the words in a sentence are not
correctly identified (Singh, Sen & Kumaraguru, 2018).

However, most existing NLP systems are designed to process a single language at once
(Sabty et al., 2021). The number of NLP systems that can process multiple languages per
sentential unit is restricted (Nguyen et al., 2021). The traditional language identification
systems fail to detect languages correctly from mixed language texts (Kalita & Saharia,
2018). Processing multiple languages within a sentence requires additional processing tasks
compared to monolingual texts due to various language combinations such as sentence,
clause, word, and sub-word levels (Mave, Maharjan & Solorio, 2018). Detecting language
from code-mixed text using a traditional approach like dictionary lookup is no longer
applicable. The dictionary approach produces poor results due to spelling inconsistencies
and the loss of word context (Ansari & Govilkar, 2018).

On the other hand, the availability of annotated code-mixed data, including Indonesian
and Javanese data, remains limited. Even though Indonesian and Javanese have many
speakers, only a few studies have addressed the code-mixing phenomenon in the Indonesian
language (Adilazuarda et al., 2022; Winata et al., 2022). In comparison to the languages
spoken in Europe, the existence of Indonesian and Javanese languages in NLP research is
relatively understudied (Aji et al., 2022).

Considering the problems above, this study makes the following contributions:
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1. Wedevelop an annotated code-mixed corpus for Indonesian-Javanese-English language
identification (IJELID) from Twitter data.

2. To build the language identification model, we apply a fine-tuning strategy based on
pre-trained Bidirectional Encoder Representations from Transformers (BERT) models
introduced by Devlin et al. (2019). BERT has shown outstanding performance when
fine-tuned for any downstream NLP tasks (Ulčar & Robnik-Šikonja, 2020). We also
seek to use several strategies using CRF and BLSTM-based models.

RELATED WORK
Code-mixed data availability for language identification
In this study, we collect some papers focused on conducting language identification for
code-mixed text. As a result, we found 17 related studies published between 2016 and
2022. During that period year, we identify 14 code-mixed datasets such as Manipuri-
English (Lamabam & Chakma, 2016), Konkani-English (Phadte & Wagh, 2017), Telugu-
English (Gundapu & Mamidi, 2018), Bengali-English (Jamatia, Das & Gambäck, 2018;
Mandal & Singh, 2018), Hindi-English (Ansari et al., 2021; Jamatia, Das & Gambäck, 2018;
Mandal & Singh, 2018; Shekhar, Sharma & Beg, 2020), Bengali-Hindi-English (Jamatia,
Das & Gambäck, 2018), Turkish-English (Yirmibeşoğlu & Eryiğit, 2018), Indonesian-
English (Barik, Mahendra & Adriani, 2019; Yulianti et al., 2021), Sinhala-English (Smith &
Thayasivam, 2019), Arabic-English (Sabty et al., 2021), English-Assamese-Hindi-Bengali
(Sarma, Singh & Goswami, 2022), Telugu-English (Kusampudi, Chaluvadi & Mamidi,
2021), Malayalam-English (Thara & Poornachandran, 2021), and Kannada-English
(Shashirekha et al., 2022; Tonja et al., 2022).

From those 14 datasets, five studies utilized Indonesian-related code-mixed datasets.
Barik, Mahendra & Adriani (2019) introduced code-mixed Indonesian-English data from
Twitter for the text normalization task. Yulianti et al. (2021) used the dataset created by
Barik, Mahendra & Adriani (2019) to see the impact of code-mixed normalization on the
emotion classification task. In Yulianti et al. (2021), they introduced new feature sets to
improve the performance of the language identification task. Suciati & Budi (2019) created
a review dataset containing mixed Indonesian-English. They gathered the review data
from a culinary website for an aspect-based opinion mining task. Arianto & Budi (2020)
also developed a code-mixed Indonesian-English dataset for aspect-based sentiment
analysis. The dataset was collected from Google Maps reviews. Tho et al. (2021) proposed
a code-mixed Indonesian-Javanese corpus using the Twitter dataset for sentiment analysis.

Among the five previous studies, two papers (Barik, Mahendra & Adriani, 2019; Yulianti
et al., 2021) applied language identification in their research. The remaining studies
focused on opinion mining and sentiment analysis. All five studies above provided
bilingual code-mixed languages, namely Indonesian-English and Indonesian-Javanese.
There have been no studies focusing on trilingual code-mixed language data, particularly
code-mixed Indonesian-Javanese-English. The existing studies do not concentrate on the
language identification task. Instead, they aimed to solve problems in sentiment analysis,
emotion classification, and translation. Since no dataset is available for code-mixed
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Indonesian-Javanese-English, it is necessary to develop a dataset for such mixed languages.
The availability of a code-mixed Indonesian-Javanese-English dataset can help improve
NLP research for related Indonesian languages.

Language identification for code-mixed text
Many studies have developed language identification models for code-mixed text using
various techniques. CRF has been utilized in many research due to its simplicity and
impressive performance in building a code-mixed language identification model (Gundapu
& Mamidi, 2018). Lamabam & Chakma (2016) applied a trigram-based model using J48
and CRF for code-mixed English-Manipuri data. Their experiments revealed that the
CRF with the first three and last three-character features gave the best result with an F1
score of 90%. Phadte & Wagh (2017) applied support vector machine (SVM), random
forest, and CRF to build a word-level language identification system code-mixed Konkani-
English text. In their study, CRF outperformed the other methods with an accuracy of 97%.
Gundapu & Mamidi (2018)worked on English-Telugu code-mixed data by comparing four
algorithms, naïve Bayes, random forest, hidden Markov model, and CRF. CRF achieved
the best performance with an F1 score of 91% and an accuracy of 91.28%. Yirmibeşoğlu
& Eryiğit (2018) presented a word-level language identification system for code-mixed
Turkish-English using CRF and n-gram character level as a feature. The CRF could give
a promising performance with an F1 score macro of 94.5%. Smith & Thayasivam (2019)
built language identification models for code-mixed Sinhala-English. In their study, CRF
outperformed SVM, LSTM, KNN, and random forest, with an overall F1 score of 94%. A
study by Barik, Mahendra & Adriani (2019) conducted language identification using mixed
Indonesian-English data from Twitter using CRF and obtained an F1 score of 89.58%.
Yulianti et al. (2021) used the same dataset as Barik, Mahendra & Adriani (2019) to develop
a language identification system. They applied various techniques, such as CRF, CRF++,
CNN, CNN+CRF, and RNN. The results showed that CRF++ performed the best, with an
F1 score of 93.98%.

Mandal & Singh (2018) proposed a multichannel neural network-based method for
code-mixed Bengali-English and Hindi-English. The multichannel module combines
convolutional neural network (CNN) and long-short term memory (LSTM). In addition,
they added a bidirectional-LSTM-CRF module to capture the context of the input text.
Jamatia, Das & Gambäck (2019) presented a Hindi-Bengali-English code-mixed language
identification using LSTM and BLSTM. Based on their experiments, the BLSTM performed
better than the LSTM, with an F1 score of 87.07%. Shekhar, Sharma & Beg (2020) built
a code-mixed language identification model for Hindi-English using Bidirectional LSTM
(BLSTM). Their study revealed that BLSTM achieved an F1 score of 93.97%.

Sabty et al. (2021) utilized a character BLSTM and segmental recurrent neural network
(SegRNN) for the Arabic-English text language identification system. The SegRNN
achieved the best results in their experiments with an F1 score of 94.84%. Sarma, Singh
& Goswami (2022) studied a word-level language identification system for Assamese,
Bengali, Hindi, and English code-mixed data utilizing CNN and BLSTM with pre-trained
word embeddings. Their experiments indicated that the CNN performed better than the
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BLSTM, with an F1 score of 90.79%. Kusampudi, Chaluvadi & Mamidi (2021) created a
code-mixed Telugu-English corpus. They conducted word-level language identification
using BLSTM-CRF with an accuracy of 99.32%.

Thara & Poornachandran (2021) developed a large-scale Malayalam-English dataset for
code-mixed language identification using BERT-based models, such as XLM-RoBERTa,
ELECTRA, CamemBERT, and DistilBERT. Compared to the other BERT models,
ELECTRA obtained the highest F1 score of 99.33% and an accuracy of 99.41%. Ansari et al.
(2021) leveraged BERT base and RoBERTa models for code-mixed Hindi-English language
identification. Their experiments showed that pre-training and fine-tuning using code-
mixed Hindi-English-Urdu text yielded an F1-score of 84%, higher than the pre-trained
monolingual models. Shashirekha et al. (2022) developed a code-mixed Kannada-English
dataset called CoLI-Kenglish. In their study, three different approaches were applied, such
as machine learning-based (CoLI-vectors and CoLI-ngram), deep learning-based (CoLI-
BiLSTM), and transfer learning-based (CoLI-BiLSTM). CoLI-ngrams using morphological
features outperformed all other models with an average macro F1-score of 64%. Tonja
et al. (2022) combined LSTM and BERT for code-mixed Kannada-English language
identification. Their proposed model gained a weighted F1 score of 84% and a macro F1
score of 61%.

To summarize, NLP researchers have applied various techniques for code-mixed
language identification tasks. CRF has shown a satisfying performance among traditional
machine learning techniques. LSTM-based architectures have demonstrated promising
results in several studies. The emergence of the transformer (Vaswani et al., 2017) has
improved NLP research. Furthermore, transformer-based methods, such as BERT and its
variants, have become a breakthrough and state-of-the-art in solving NLP problems (Wolf
et al., 2020). BERT-based models have shown remarkable performance in the code-mixed
language identification task and outperformed traditional neural network techniques, such
as RNN and CNN (Thara & Poornachandran, 2021).

CORPUS CREATION
Data collection and pre-processing
We collect 15K tweets in several batches fromDecember 2021 to July 2022. In this work, we
list some code-mixed Indonesian, Javanese, and English keywords to obtain the tweets to
ensure that the retrieved tweets are code-mixed. In the pre-processing tasks, we first filter
the tweets by removing duplicates. Subsequently, we replace user mentions, URLs, and
hashtags with @user, httpurl, and #hashtag. Finally, we convert all words into lowercase. In
our dataset, we notice some tweets containing languages other than Indonesian, Javanese,
and English, such as Malay, Sundanese, Arabic, and Korean. The occurrence of Malay
and Sundanese in the retrieved tweets is reasonable since both languages have similarities
to Indonesian and Javanese. In addition, Arabic and Korean scripts exist in our dataset
because people sometimes add both scripts to their tweets. In this case, we keep those
languages in our dataset.
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Annotation guidelines
To develop the dataset, we employ two annotators who understand Indonesian, Javanese,
and English. We cover standard and non-standard language labeling forms in the
annotation process. Since we work on social media text, the characteristics of the data
are different from the standard text. The texts consist of many informal forms, such as
slang words, non-standard spellings, mixed letters with numbers, abbreviated words, and
lengthening words. Hence, this study proposes an annotation guideline to cope with those
informal texts. The following is an annotation guideline to produce a standard annotation
result:
1. This study introduces seven labels to annotate tokens from the dataset, namely: ID

(Indonesian), JV (Javanese), EN (English), MIX_ID_EN (mixed Indonesian-English),
MIX_ID_JV (mixed Indonesian-Javanese), MIX_JV_EN (mixed Javanese-English),
and OTH (Other).

2. The ID label is used to annotate Indonesian words, including both standard and
non-standard forms of Indonesian words.

3. The EN label is used to annotate English words, including both standard and non-
standard forms of English words.

4. The JV label is used to annotate Javanese words, including both standard and non-
standard Javanese words.

5. TheMIX_ID_EN label is used to annotate words containingmixed Indonesian-English.
For example:

• diprint (printed)→ di- (Indonesian prefix) + print (English).
• filenya (the file) → file (English) + -nya (Indonesian suffix).

6. TheMIX_ID_JV label is used to annotatewords containingmixed Indonesian-Javanese.
For instance:

• bajune (the clothes) → baju (Indonesian) + ne (Javanese suffix).
• penjuale (the seller) → penjual (Indonesian) + e (Javanese suffix).

7. The MIX_JV_EN label is used to annotate words containing mixed Javanese-English.
For example:

• endinge (the ending) → ending (English) + -e (Javanese suffix).
• ngemailke (send email)→ ng- (Javanese prefix) + email (English) + -ke (Javanese
prefix).

8. The OTH (Other) label is used to annotate the following:

• symbols, punctuations, and number,
• unknown words, words other than Indonesian, Javanese, and English,
• Twitter entities: username or mention,
• URL, emoji, emoticons, date, time, and currency,
• laugh expressions (haha, xixixi, wkwkwk) and sad expressions (huhuhu, hiks).
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9. If a word (w) exists in more than one language, it will be annotated as a particular
language (ID, JV, or EN), depending on the context.

• If w is preceded and followed by Javanese words, w is annotated as JV.
• If w is preceded and followed by Indonesian words, w is annotated as ID.
• If w is preceded and followed by English words, w is annotated as EN.

10. Foreign or borrowed words that exist in all languages are identified depending on the
context of tweets or sentences.

11. A named entity followed by a possessive pronoun from a particular language can be
labeled as ID or JV, depending on the context.

• Macbookku (My Macbook) →Macbook (named entity) + -ku (Indonesian or
Javanese suffix).
• Macbooknya (The Macbook) →Macbook (named entity) + -nya (Indonesian suffix).

Corpus creation challenges
This sub-section highlights some challenges encountered during the data creation process.
Annotating language in Twitter data is not as simple as in formal text data due to the
non-standard language forms. In this study, we define the non-standard language forms
by categorizing into the following: mixed letters and numbers, slang, abbreviated words
and acronyms, expressive lengthening, and English words written in Indonesian spelling
style (Hidayatullah, 2015). Table 1 presents examples of non-standard form words in
Indonesian, Javanese, and English.

Another challenge in the annotation stage is determining words recognized in more
than one language. For instance,
(1) Guys, pertandingan final nanti malam jam berapa? Thanks

English: Guys, what time is the final match tonight? Thanks
(2) Finally, Liverpool menang di babak quarter final UCL.

English: Finally, Liverpool won in the UCL quarter-finals.
From the two examples above, the word ‘final’ exists in Indonesian and English

languages. Therefore, we must look at the surrounding words and the sentence’s whole
context to determine the language label for the word ‘final’. In the first example, the word
‘final’ is labeled as ID because the previous and the following words are Indonesian. In
the second example, the word ‘final’ is labeled as EN because the term ‘quarter final’ is an
English phrase.

Moreover, identifying intra-word code-mixing is also challenging due to the prefixes or
suffixes that exist in the two languages. For example, the word ‘disave’ (saved) consists of
‘di-‘ (a prefix) followed by the English word ‘save’. Another example is ‘smartphoneku’ (my
smartphone), which contains ‘smartphone’ and the suffix ‘-ku’. The prefix ‘di-‘ in the word
‘disave’ and the suffix ‘-ku’ in ‘smartphoneku’ exist in Indonesian and Javanese. Therefore,
the word ‘disave’ and ‘smartphoneku’ can be annotated as MIX_ID_EN or MIX_JV_EN,
depending on the context of the sentence. To determine the correct label, the annotators
should consider the previous words, the following words, and the whole words of the
sentence.
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Table 1 Examples of the non-standard form words in Twitter data.

No Type Language

Indonesian Javanese English

1 Mixed letters and numbers •‘se7’ stands for ‘setuju’ (to
agree)

• ‘siji2’ stands for ‘siji-siji’
(one by one)

•‘b4’ (before)

•‘anak2’ stands for ‘anak-
anak’ (kids)

•‘ni8t’ (night)

2 Slangs •‘santuy’ stands for ‘santai’
(relaxed)

•‘ngunu’ stands for ‘ngono’
(like that)

•‘epic’ (awesome)

•‘nobar’ stands for ‘nonton
bareng’ (watch together)

•‘bonek’ stands for ‘bondo
nekat’ (reckless)

•‘noob’ (newbie)

•‘menfess’ (mention confess)
•‘crashy’ (crazy and trashy)

3 Abbreviated words or
acronym

•‘dgn’ stands for ‘dengan’
(with)

•‘kbh’ stands for ‘kabeh’ (all) •‘idk’ (I don’t know)

•‘slkh’ stands for ‘sekolah’
(school)

•‘mtrnwn’ stands for ‘matur
nuwun’ (thank you)

•‘dm’ (direct message)

•‘SD’ stands for ‘sekolah
dasar’ (elementary school)

•‘lur’ stands for ‘sedulur’
(brother or sister)

•‘omg’ (oh my god)

•‘thx’ (thanks)
•‘ur’ (your)

4 Expressive lengthening • ‘senaaang’ stands for
‘senang’ (happy)

• ‘kaaabeeeh’ stands for
‘kabeh’ (all)

• ‘gooooood’ (good)

5 English words written in
Indonesian spelling style

– – •‘n’ (and)

•‘plis’ (please)
•‘wiken’ (weekend)
•donlod (download)
•‘gud’ (good)
•‘selow’ (slow)

Inter-annotator agreement
This study uses Cohen’s kappa (Cohen, 1960) to quantify the agreement between two
annotators. The following is the equation for calculating Cohen’s kappa (K ):

K =
Pr (a)−Pr(e)
1−Pr(e)

. (1)

Pr(a) is the frequency with which two annotators assigned the same label. Pr(a) is
obtained by calculating all agreed labels divided by the total data. Pr(e) is the probability
of agreement when the annotators see the observed data randomly. The Pr(e) is calculated
by summing the probability when both annotators randomly select the first label and the
probability when both annotators select the second label. Cohen’s kappa value (K ) spans
from 1 to −1, indicating that annotators select different labels for each sample. A value of
0 indicates that the annotators agreed precisely as frequently as they would if they were
both guessing randomly. Therefore, the closer the K value to 1, the better the dataset.
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Code-mixing index
After getting the distribution of each label from the dataset, we measure the complexity of
code-mixing in the text using the code-mixing index (CMI) (Gambäck & Das, 2014). The
CMI value is calculated using the following formula:

CMI =

100×
[
1−

max(wi:i=1,2,...,n)
n−u

]
, n> u

0, n= u.
(2)

In Eq. (2), wi is the number of words of the language i, max(wi) represents the number
of words of the prominent language, n is the total number of tokens, and u represents the
number of language independent tokens (such as named entities, abbreviations, mentions,
and hashtags). For monolingual utterances, the CMI score equals to 0 (zero), since the
max(wi)= n−u. A low CMI score implies monolingualism in the text, whereas a high
CMI score indicates code-mixing.

LANGUAGE IDENTIFICATION MODEL
Conditional random fields (CRF)
CRF is a discriminative model for sequential data labelling based on a conditional
distribution approach (Lafferty, McCallum & Pereira, 2001). CRF employs contextual
information from previous labels, thus increasing the amount of information for the
model to generate an accurate label prediction. Let X be an input sentence containing
sequence of words (x1,x2,x3,...,xn) and Y = (y1,y2,y3,...,yn) is the label prediction of
such words. The CRF represents the likelihood of predicting the output Y given the input
X as a conditional distribution p(y|x). The calculation of a linear-chain CRF is shown by
Eq. (3) (Sutton & McCallum, 2012):

p
(
y|x
)
=

1
Z (x)

T∏
t=1

exp

{ K∑
k=1

λk fk(yt ,yt−1,xt )

}
. (3)

In Eq. (3), Z (x) is a normalization factor function obtained using the following formula:

Z (x)=
∑
y

T∏
t=1

exp

{ K∑
k=1

λk fk(yt ,yt−1,xt )

}
. (4)

In Eqs. (3) and (4), λ= {λk} be a parameter vector weight estimated from the training
set, and F =

{
fk(yt ,yt−1,xt )

} K
k= 1be a set of feature functions. T is the number of time step

indexed by t .K is the number of features and k indexes the feature function fk and weight
λk .

BLSTM-based architecture
Input representation for BLSTM-based architecture
1. Word-level representation

Word-level representation is a real-valued vector representing a word to capture
the semantic relationship between words. Using word embedding, words with a closer
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Figure 1 Word-level representation.
Full-size DOI: 10.7717/peerjcs.1312/fig-1

meaning will have a similar vector representation. The embedding layer carries out the
transformation from words to their corresponding vector representations. The embedding
layer receives sentences in the form of a sequence of tokens. Each token is then transformed
into a word vector with a fixed size bymapping the index of such a token. Figure 1 illustrates
the word-level representation model.

2. Character-level representation
Character-level representation aims to capture morphological features of the words by

processing the character that composes words (Mave, Maharjan & Solorio, 2018). Using
character-level representation can help alleviate the out-of-vocabulary (OOV) problems
in the text data (Joshi & Joshi, 2020). The results of character representation are used to
augment the word vector representation before being processed through the classification
layer.

This study employs CNN and LSTM to train the character-level representation. In
character-based CNN representation, a word is decomposed into a sequence of characters.
The character inputs are passed into the character embedding layer. The embedding
layer outputs are transmitted to the convolutional layer, which produces local features
by applying a convolutional filter across a sliding n-character window. Subsequently, the
max-pooling layer takes the maximum value over each dimension to represent a particular
word. As for the character LSTM representation, we put a single LSTM layer on top of the
embedding layer. The embedding outputs pass the character embedding vector via forward
and backward LSTMs and combine each output to generate the encoding of the associated
word. The character CNN and character LSTM representations are illustrated in Fig. 2.

Bidirectional long short-term memory (BLSTM)
BLSTM is an enhancement of LSTM networks that tries to increase model performance
on sequence classification tasks (Hidayatullah, Cahyaningtyas & Pamungkas, 2020). By
incorporating two distinct hidden layers, bidirectional LSTM (BLSTM) networks can
access both preceding and subsequent contexts. These networks can efficiently capture
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Figure 2 (A) Character CNN representation. (B) Character LSTM representation. These illustrations
are adapted from Reimers & Gurevych (2017).

Full-size DOI: 10.7717/peerjcs.1312/fig-2

long-distance relations in the sequence in both directions (Mave, Maharjan & Solorio,
2018). We initialize the embedding layer and feed the output sequence to the spatial
dropout layer with a dropout. Subsequently, we add a single BLSTM layer and a recurrent
sigmoid activation. BLSTM applies two LSTM networks by incorporating forward and
backward hidden layers to capture previous and subsequent contexts (Liu & Guo, 2019).
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Lastly, a dense layer with a Softmax activation function is added to predict the final word
label.

BLSTM-CRF
BLSTM-CRF is a combination of deep learning and traditional machine learning
approaches. The combination between BLSTM and CRF has been proven to produce
good results in sequence tagging tasks (Poostchi, Borzeshi & Piccardi, 2018). A CRF layer
can be added to the top layer of the BLSTM architecture to predict the label of the entire
phrase at the same time (Lafferty, McCallum & Pereira, 2001). In the sequence labeling
task, it is critical to consider the association between neighboring labels. BLSTM, on the
other hand, does not generalize the connection between output labels (Wintaka, Bijaksana
& Asror, 2019). That is due to the probability distribution of BLSTM being independent.
The combination of BLSTM and CRF may efficiently exploit past and future input features
through an LSTM layer and sentence-level tag information through a CRF layer (Huang,
Xu & Yu, 2015). In this BLSTM-CRF architecture, we stack the following layers: input,
embedding, SpatialDropout1D, BLSTM, dense, and CRF.

BLSTM + character LSTM
In this architecture, we replicate the previous model proposed by Samih et al. (2016). This
model receives two different inputs: word and character. Following that, the embedding
layer processes the word and character inputs. A single LSTM layer is used to generate
the character-level representations. These vector representations of characters are then
concatenated with vector representations of words. The concatenated vector results then
pass through SpatialDropout1D and a BLSTM layer with 100 hidden units. Finally, a dense
layer is added to the BLSTM to predict the tag results.

BLSTM + character CNN
Similar to the BLSTM + character LSTM method, the input layer of this BLSTM +
character CNN used word and character embeddings. In this architecture, the character-
level representations are trained using CNN (Zhang, Zhao & LeCun, 2015). The character
representations are obtained by passing the character input to a dropout layer followed
by a Conv1D (kernel_size: 2, activation: ReLu) and a MaxPooling1D layer. The outputs
are then flattened and fed into a dropout layer. A SpatialDropout1D layer receives the
concatenated vectors between word and character representations. BLSTM proceeds with
the output from the SpatialDropout1D and passes the results to the final dense layer to get
the tag prediction.

BERT-based architecture
BERT input representation
BERT has a particular set of rules for representing the input text, namely sub-word
representation. Sub-word representation is an alternative solution between word and
character-based representations. BERT uses the WordPiece tokenization algorithm to
create the sub-word representation (Wu et al., 2016). WordPiece starts by establishing an
initial vocabulary composed of elementary units and then increases this vocabulary to the
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Figure 3 BERT input representation.
Full-size DOI: 10.7717/peerjcs.1312/fig-3

desired size. The vocabulary begins with characters from a single language. Then the most
common character combinations in the vocabulary are added iteratively. WordPiece learns
merged rules for the character pairs and finds the pair that maximizes the likelihood of the
training data. Equation (5) is the formula to calculate the score for each pair:

Score=
frequency of pair

(frequency of first unit× frequency of second unit)
. (5)

The score is calculated by dividing the frequency of the pair by the product of the
frequencies of each of its components. The algorithm works by prioritizing the merging of
pairs when each part occurs less frequently in the vocabulary. For example, the pair ‘read’
and ‘##ing’ will not be merged even though the token ‘reading’ frequently appears in the
vocabulary. This is because the pair ‘read’ and ‘##ing’ will probably frequently occur in
many other words. A pair between ‘re’ and ‘##ad’ will likely be merged since ‘re’ and ‘##ad’
appear less frequently individually. Therefore, the token ‘read’ is not split, while the token
‘reading’ is separated into ‘read’ and ‘ing’. This teaches the idea that the token ‘reading’ is
derived from ‘read’ with slightly different meanings but the same origin.

As illustrated in Fig. 3, BERT input representation consists of three embeddings: token
embeddings, segment embeddings, and position embeddings. In the token embeddings,
two special tokens are added to each sentence. At the beginning of each sentence, a
[CLS] token is added. Another special token is a [SEP] token which is located at the
end of each sentence. The [SEP] token is added to separate between sentences. It is used
as a learned segment embedding denoting a token as part of segment A or B. Segment
embeddings are sentence numbers encoded in a vector. The model identifies whether a
specific token belongs to sentence A or B in the segment embeddings. Position embeddings
provide information regarding the word order in the input sequence. Finally, the BERT
representation is obtained by summing those three embeddings.

BERT
Bidirectional encoder representations from transformers (BERT) is a language
representation model built using the transformer-based technique developed by Google
(Devlin et al., 2019). BERT is a transformer encoder stack capable of simultaneously reading
a whole sequence of inputs. The BERT architecture is a deep bidirectional model, meaning
that BERT takes information from both the left and right sides of the token’s context during

Hidayatullah et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1312 13/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1312/fig-3
http://dx.doi.org/10.7717/peerj-cs.1312


Figure 4 Pre-training and fine-tuning BERT.
Full-size DOI: 10.7717/peerjcs.1312/fig-4

the training task. BERT employs a self-multi-headed transformer-based attention model
pre-trained on a large multilingual corpus (Dowlagar & Mamidi, 2022). BERT pre-trains
the raw text data in a self-supervised way, which means there is no human annotation to
generate inputs and labels from those texts.

BERT is pre-trained with two objectives, masked language modeling (MLM) and next
sentence prediction (NSP). MLM randomly masks 15% of the words in the input text,
then runs the whole masked sentence through the model to predict the masked words.
For the NSP task, the model concatenates two masked sentences during pre-training and
occasionally matches sentences adjacent to each other in the original text. The model then
predicts whether the two sentences follow each other.

Fine-tuning BERT
As illustrated in Fig. 4, fine-tuning is done by leveraging a pre-trained model and then
training it on a particular dataset suited to a specific task. The BERT model is first set with
the pre-trained weight parameters. Next, all parameters are fine-tuned using annotated
data from the downstream tasks. Ultimately, the fine-tuned weights are then used for the
prediction task.

In this study, the fine-tuning tasks are performed by leveraging two existing pre-trained
BERT models, namely multilingual BERT (mBERT) (https://huggingface.co/bert-base-
multilingual-cased) and IndoBERTweet (https://huggingface.co/indolem/indobertweet-
base-uncased). The first pre-trained model is created based on the multilingual BERT.
Multilingual BERT is a masked language modeling (MLM) objective-trainedmodel (Devlin
et al., 2019). It is trained with a large Wikipedia corpus on top of 104 languages, including
English, Indonesian, and Javanese. Another pre-trained model used to build the language
identification model is IndoBERTweet. IndoBERTweet is a pre-trained domain-specific
model using a large set of Indonesian Twitter data (Koto, Lau & Baldwin, 2021).

The illustration of fine-tuning BERT for the language identification task can be seen in
Fig. 5. The [CLS] symbol and [SEP] are added at the beginning and the end of a single text
sequence. Each token of the sequence and the contextual representation of each token are
denoted by E and R, respectively. Following that, the BERT representation of each token
is fed into dense layers. In the dense layers, the dense layer parameters are shared to get the
label of each token.
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Figure 5 Fine-tuning BERT for code-mixed language identification.
Full-size DOI: 10.7717/peerjcs.1312/fig-5

Experimental setup
We conduct the experiments by splitting our dataset into training (6,170 tweets), validation
(1,543 tweets), and testing (3,306 tweets). The training is performed using an 80 cores
CPU, 250GB of RAM, and 4 GPUs (NVIDIA Tesla V100 SXM2). Before training, we apply
hyperparameter tuning to get the optimal hyperparameters for each technique to maximize
model performance.

For CRF training, the L-BFGS algorithm is utilized for gradient descent optimization and
gettingmodel parameters.We apply randomized search usingRandomizedSearchCV (https:
//scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.
html) to find the best parameter values for L1 (Lasso) and L2 (Ridge) regularization
coefficients in the CRF algorithm. The hyperparameter search is done by applying 5-fold
cross-validation. In addition, we set the number of parameter settings to 20.

In the BLSTM-based experiments, we use a grid search algorithm for hyperparameter
tuning. First, we set several values to find the best values for learning rate, batch size,
dropout, and the number of LSTM units. The best learning rate and dropout value for
all models are 0.01 and 0.5, respectively. The batch size and LSTM units for BLSTM and
BLSTM + character CNN architectures are 32 and 64, respectively. As for BLSTM-CRF
and BLSTM + character LSTM, the batch size and LSTM units are 64 and 32, respectively.
Then, the BLSTM-based models are trained using the Adam optimizer over 20 epochs.
Table 2 provides the best hyperparameter values for each BLSTM-based model.

We also employ a grid search algorithm for fine-tuning BERT models. The
hyperparameter search is conducted by setting categorical values for learning rate, per
device training batch size, and per device evaluation batch size. The learning rate is set to
1e−4, 3e−4, 2e−5, 3e−5, and 5e−5. For the per-device train and evaluation batch size,
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Table 2 Best hyperparameter values for each BLSTM-based model.

Model Learning rate Batch size Dropout LSTM units

BLSTM 0.01 32 0.5 64
BLSTM-CRF 0.01 64 0.5 32
BLSTM+ character LSTM 0.01 64 0.5 32
BLSTM+ character CNN 0.01 32 0.5 64

Table 3 Best hyperparameter values for each BERT-based model.

Model Learning
rate

Per device
train batch
size

Per device
evaluation batch
size

mBERT 3e−05 64 32
IndoBERTweet 2e−05 32 8

Table 4 Dataset information.

Number of tweets 11019
Number of tokens 273323
Number of unique tokens 44809
Average token length 4.63 characters
Average sentence length 24.8 tokens

we select the categorical values of 8, 16, 32, 64, and 128. Subsequently, the hyperparameter
search is run by applying such defined values over four epochs and ten trials. The best
hyperparameter values for each BERT-based model are presented in Table 3. Finally, we
use the best hyperparameters with the Adam optimizer and five epochs for fine-tuning
BERT training.

RESULTS AND DISCUSSION
Data annotation result
As described in Table 4, the dataset of this study consists of 11,019 tweets. We tokenize
each tweet and annotate each token with the corresponding language label. As a result, our
dataset comprises 273,323 tokens, 44,809 unique tokens, a tweet-length average of 24.8
tokens, and a token length average of 4.63 characters per token.

The Indonesian language dominates our dataset with 144,934 tokens (53%). The number
of OTH (Other) is 62,254 tokens (22.8%), followed by Javanese and English with 29,835
tokens (10.9%) and 28,058 (10.3%), respectively. For the intra-word code-mixing data,
Indonesian-English has the highest frequency among the intra-word code-mixing labels
with 5,625 tokens (2.1%). In contrast, the number of intra-word code-mixing labels for
Indonesian-Javanese and Javanese-English are 1,557 (0.6%) and 1,060 (0.4%), respectively.
Table 5 shows the dataset statistics used in our study.

We evaluate the annotation results by measuring inter-annotator agreement based
on the annotation results using Cohen’s kappa. The agreement between the annotators
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Table 5 Dataset statistics.

Label Number of
tokens

Percentage

Indonesian (ID) 144,934 53%
Javanese (JV) 29,835 10.9%
English (EN) 28,058 10.3%
Mixed Indonesian-English (MIX_ID_EN) 5,625 2.1%
Mixed Indonesian-Javanese (MIX_ID_JV) 1,557 0.6%
Mixed Javanese-English (MIX_JV_EN) 1,060 0.4%
Other (OTH) 62,254 22.8%
Total 273,323 100%

Table 6 Precision, recall, and F1 score results on the test set for each model.

Model Precision Recall F1 score

Macro Weighted Macro Weighted Macro Weighted

CRF 94.39 95.71 91.60 95.71 92.94 95.69
BLSTM 93.81 93.78 88.73 93.68 91.06 93.66
BLSTM-CRF 92.35 92.87 87.94 92.65 89.91 92.67
BLSTM+ character LSTM 91.78 94.26 90.31 94.23 91 94.2
BLSTM+ character CNN 93.51 93.69 89.04 93.67 91.11 93.66
mBERT 93.09 94.87 92.85 94.85 92.96 94.85
IndoBERTweet 93.21 95.64 93.86 95.63 93.53 95.63

attains a value of 0.9964. This result represents an almost perfect agreement between two
annotators. As for the CMI, we gain a score of 38.05. It means that 38.05% of the overall
non-neutral language tokens in the dataset are code-mixed.

Language identification results
In this sub-section, we provide the code-mixed language identification results from our
experiments. Table 6 presents the macro and weighted score results for precision, recall,
and F1 for each model on the test set. In addition, Table 7 illustrates the comparison of the
average F1 scores by category for the proposed models.

We infer that the CRF model performs well in determining languages from code-mixed
texts. The CRF model achieves macro and weighted F1 scores of 92.94% and 95.69%,
respectively. Also, the CRF shows good performance in identifying individual languages
for non-intra-word code-mixing. Compared to the CRF model, there is no significant
improvement in the BLSTM-based architectures. Furthermore, adding a CRF layer on
top of BLSTM cannot improve the F1 score. However, combining word and character
CNN embedding can slightly enhance the macro F1 score. Among the BLSTM-based
architectures, the BLSTM and BLSTM + character CNN models indicate comparable
results with macro F1 scores of 91.06% and 91.11%, respectively. In addition, both models
achieve the same value for weighted F1 of 93.66%.
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Table 7 Category-wise comparison of F1 scores for each model.

Label CRF BLSTM BLSTM-CRF BLSTM+

character
LSTM

BLSTM+

character
CNN

mBERT IndoBERTweet

EN 94.17 90.38 85.84 92.07 90.18 92.39 93.60
ID 97.11 95.45 95.05 95.94 95.58 96.50 97.06
JV 92.89 90.14 88.07 89.73 89.9 90.89 92.26
MIX_ID_EN 93.66 92 91.92 91.33 92.21 94.86 95.55
MIX_ID_JV 86.74 86.13 85.82 82.95 85.68 89.11 87.60
MIX_JV_EN 91.19 90.37 90.14 91.25 91.38 92.87 92.94
OTH 94.84 92.94 92.52 93.76 92.85 94.12 95.71

Our experiments with the fine-tuned BERT models indicate better results than
the BLSTM-based models. The results provided by the fine-tuning BERT models
demonstrate competitive performance compared to the other techniques. The fine-tuning
IndoBERTweet model achieves the highest macro F1 score of 93.53% among the other
models. This score is higher by 0.57% than the fine-tuning using mBERT, which gains a
92.96% F1 score. Further, the fine-tuning of BERTmodels proves an excellent achievement
in identifying intra-word code-mixing.

Error prediction analysis
This sub-section discusses the error prediction analysis generated by the models. We
randomly pick a sample from the test set to be analyzed as follows:

Tweet : malah gua yg diblock, barusan bgt tb2 profilenya gabisa dibuka wkwkwk
English: instead, I was blocked, just now suddenly the profile can’t be opened lol
From the example above, the token ‘profilenya’ is mixed Indonesian-English

(MIX_ID_EN). It consists of ‘profile’ (English) and the Indonesian suffix ‘-nya’. Among
all models, the fine-tuned IndoBERTweet model can correctly identify such a token as
mixed Indonesian-English. However, the remaining models identify it as an Indonesian
word. This misclassification happens due to the spelling similarity between Indonesian and
English. The term ‘profile’ is written as ‘profil’ in Indonesian, while in English, it is written
as ‘profile’.

In addition, our models sometimes get confused when identifying between mixed
Indonesian-English or Javanese-English. This confusion occurs since Indonesian and
Javanese share similar morphemes. For example, the prefix ‘di-‘ in the following tokens,
such as ‘didownload’ (downloaded), ‘dicancel’ (cancelled), ‘diclick’ (clicked), and ‘diprint’
(printed) can be identified as mixed Indonesian-English or mixed Javanese-English,
depending on the sentence’s context.

Based on our investigation, the fine-tuning BERT and BLSTM-based models can
generate more accurate language identification than the CRF. Both fine-tuning BERT and
BLSTM-based models can grasp the meaning of each word depending on the context.
Also, we do not need to define the features manually for fine-tuning and BLSTM-based
models. However, the fine-tuning BERT models can produce better identification than the
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BLSTM-basedmodels. Unlike directionalmodels, which read a text from either left-to-right
or right-to-left, the BERT models can read a text or a sequence of words simultaneously in
any direction. Hence, the BERT model can understand the meaning of the given sequence
based on the context to its right and left.

On the contrary, relying on CRF’s handcrafted features is unreliable, especially in
determining intra-word code-mixing. For example, the CRF model fails to identify words
that have suffix similaritywith Javanese, such as ’-re’, ’-ke’, and ’-ne’. As a result, somewords
like ’atmosphere’, ’Singapore’, ’alike’, and ’airplane’ are identified as mixed Indonesian-
Javanese (MIX_ID_JV) by the CRF model. This is due to the fact that such words were not
encountered during the CRF training.

Furthermore, we observe that tokens with JV labels are incorrectly detected as ID
occasionally. This misclassification happens because of the shared vocabularies between
Indonesian (ID) and Javanese (JV), such as ‘aku’ (I), ‘bareng’ (together), ‘kuat’ (strong),
and ‘buku’ (book). Our models sometimes incorrectly predict the English (EN) tokens
as Indonesian (ID). Misclassification from EN to ID mainly occurs when Indonesian
words surround an English word. Words recognized in Indonesian and English sometimes
confuse the model to predict the correct label, for instance, ‘internet’, ‘admin’, ‘hotel’, and
‘got’. Apart from that, some English words that are written in Indonesian or abbreviated
styles also make our model confused to predict the correct label, like ‘kambek’ (come back),
‘mensen’ (mention), ‘gaes’ (guys), ‘fllw’ (follow), and ‘pls’ (please). The actual label for
such words is English, but those words are predicted as Indonesian.

CONCLUSION AND FUTURE WORK
In this article, we developed a code-mixed Indonesian-Javanese-English corpus for language
identification (IJELID) using Twitter data. To standardize the annotation results, we
created an annotation guideline for annotators. Also, we discussed some challenges
encountered during corpus creation. To build the code-mixed language identification
models, we explored various techniques, such as fine-tuning BERT, BLSTM-based, and
CRF. Our experiments indicate that the fine-tuned IndoBERTweet models can effectively
identify languages from the code-mixed tweets. Furthermore, using sub-word language
representation in BERT models can produce a reliable model to identify languages for
code-mixed texts. In addition, the BERT models can infer the context of each word from
the given sequence better than the other techniques.

Even though the results of this research using BERT have demonstrated excellent
performance, some spaces can still be improved from our study. In this study, we performed
fine-tuning on pre-trained multilingual and monolingual models. Therefore, we intend
to build a pre-trained model from code-mixed texts. We aim to investigate the impact of
utilizing a pre-trained code-mixed model compared to the pre-trained monolingual and
multilingual models.
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