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ABSTRACT
The residual structure has an important influence on the design of the neural
network model. The neural network model based on residual structure has excellent
performance in computer vision tasks. However, the performance of classical residual
networks is restricted by the size of receptive fields, channel information, spatial
information and other factors. In this article, a novel residual structure is proposed.We
modify the identitymapping and down-sampling block to get greater effective receptive
field, and its excellent performance in channel information fusion and spatial feature
extraction is verified by ablation studies. In order to further verify its feature extraction
capability, a non-deep convolutional neural network (CNN) was designed and tested
on Cifar10 and Cifar100 benchmark platforms using a naive training method. Our
network model achieves better performance than other mainstream networks under
the same training parameters, the accuracy we achieved is 3.08 percentage point higher
than ResNet50 and 1.38 percentage points higher than ResNeXt50. Compared with
SeResNet152, it is 0.29 percentage point higher in the case of 50 epochs less training.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning
Keywords Residual structure, Receptive field, Channel information fusion, Spatial feature

INTRODUCTION
In 2015, He et al. (2016b) from Microsoft Laboratory proposed a residual structure and
designed ResNet deep neural network model, which won the first prize in the ILSVRC2015
(Russakovsky et al., 2015) Challenge for classification task and target detection, and the
first prize in COCO (Hansen et al., 2021) target detection and image segmentation. The
residual structure has a profound influence on the design of deep neural network models.
Subsequently, many networks based on residual structure appeared, such as ResNetV2 (He
et al., 2016a), WResNet (Zagoruyko & Komodakis, 2016), DenseNet (Huang et al., 2017),
ResUnet++ (Jha et al., 2019), ConvNeXt (Liu et al., 2022). They have excellent performance
in various downstream tasks in the field of computer vision, (Ding et al., 2021; Jha et al.,
2019; Jiang et al., 2018; Wang et al., 2017; Zhu &Wu, 2021). Wightman, Touvron & Jégou
(2021) once again demonstrated the advantages of residual structure through a large
number of optimization experiments. The introduction of the Vision Transformer (VIT)
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(Dosovitskiy et al., 2021) soon replaced convolutional neural networks and became themost
advanced image classification model. Staged Transformers, such as Swin Transformer et
al. (Ding et al., 2022; Liu et al., 2021), reintroduced several priors of convolutional neural
networks, which allow Transformers to serve as a general-purpose backbone effectively
for CV tasks and demonstrate significant performance in a wide variety of visual tasks
(Cao et al., 2021; Chen et al., 2021; Valanarasu & Patel, 2022). Liu et al. (2022) redesigned
convolutional neural networks (CNNs) and tested the limits of what pure CNNs could
achieve, which outperforms Transformer in terms of accuracy and scalability, proving that
the performance of CNNs is still strong.

The feature extraction capability of CNNs is closely related to the size of convolutional
kernels and affects the size of the receptive field. Large convolutional kernels will obtain
larger receptive fields and be able to extract accurate high-level features (He et al., 2016a;He
et al., 2016b; Simonyan & Zisserman, 2015), while small convolutional kernels have greater
advantages in reducing network parameters and computational costs. The effectiveness of
large convolution kernels has been verified (Ding et al., 2022; Liu et al., 2022; Peng et al.,
2017; Simonyan & Zisserman, 2015) on some benchmark platforms, it is commonly believed
that the size of convolution kernels should maintain a certain adaptation relationship with
image size (Ding et al., 2021; Ding et al., 2022; Han et al., 2021; Liu et al., 2022). To obtain
greater receptive fields and improve the robustness of the network (Han et al., 2021),
the stack of three Conv3×3 is designed as a new base residual structure to replace the
combination of the stack of twoConv3×3 and the combination ofConv1×1 andConv3×3
in ResNet (He et al., 2016a; He et al., 2016b).

This article aims to verify the excellent performance of our new residual structures, our
contributions are mainly about three aspects.
1. we propose a base residual structure and series of variants based on the stack of

Conv3× 3 (Fig. 1), most of which put up an excellent performance in channel
information fusion and spatial feature extraction.

2. we replace the Conv1×1 to Conv3×3 of the identity mapping, and the performance
is significantly improved.

3. the performance of the non-deep CNNs based on our new residual structure is better
than that of many deep networks, which provides valuable ideas for future network
design.

METHODS
In this section, we first introduce the latest research results for the choice of convolution
kernel size. And then we discuss the issue of insufficient receptive field for the deep residual
network, to do this we put forward a novel Base residual block based on the stack of
Conv3×3. Finally we propose an improved method of the Base residual structure.

Kernel size
Neural network design needs to consider several key indicators of network depth, width,
parameters, and computation (Bau et al., 2020; Lorenz, 2021d; Xu, Duan & He, 2022).
Because the residual structure can solve the problems of network degradation well,
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Figure 1 Basic residual block.Using three Conv3×3 to replace two Conv3×3 in shallow residual net-
work and the combination of Conv1×1 and Conv3×3 in deep network, and changing Conv1×1 to
Conv3×3 of identity mapping.

Full-size DOI: 10.7717/peerjcs.1302/fig-1

increasing the network depth once became the main way to improve network performance
for the lack of enough computing power (Hu et al., 2020; Iandola et al., 2016; Tan, Pang
& Le, 2020; Wu et al., 2021). The design of the residual block is accomplished by skip
connection with the identity mapping function. In ResNetV2 (He et al., 2016a), the author
improved the residual structure and proved that the residual structure with the former
standardized method has better performance without improving the effective receptive
field. However, the application of the Transformer represented by the Vision Transformer
(VIT) (Dosovitskiy et al., 2021) in the CV field shakes the dominant position of CNNs
(Ding et al., 2021; Ding et al., 2022; Liu et al., 2021). Researchers begin to re-examine the
performance space of CNNs and carry out comparative studies focused on the effective
receptive field. Ding et al. (2021); Ding et al. (2022); Han et al. (2021); Liu et al. (2022)

Hu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1302 3/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1302/fig-1
http://dx.doi.org/10.7717/peerj-cs.1302


verified that using large convolutional kernels can significantly improve the performance
of fully convolutional networks and achieve a state-of-the-art.

But what is the optimal convolution kernel size? The backbone network of RepLKNet
is stacked with a large number of ConvK ×K which can get a great enough receptive field,
the max value of K as kernel size is 31 with corresponding to the image size of 1024×2048
(Ding et al., 2021). An interesting thing is that with the increasing size of the convolution
kernel, the performance is still increasing by 1 to 2 points on Cityscapes (Alexander, 2022),
ADE20K (Zhou et al., 2017) and other datasets while it’s no longer improved on ImageNet
(Deng et al., 2009). However, the image size of the ImageNet dataset is smaller than that
of Cityscapes and ADE20K. The Similar phenomenon also exists in ConvNeXts and other
full-convolutional neural networks with large convolutional kernels stacked (Zhou, Jin &
Zhang, 2014; Ding et al., 2021; Peng et al., 2017). When those networks based on the large
size of kernel work on datasets with small image size, they get worse performance (Ding
et al., 2022; Liu et al., 2022). All of those give us reasons to believe that the selection of the
convolution kernel size should keep match with the size of the image being processed in
the specific task. Obtaining the appropriate receptive field is the primary factor in selecting
the size of the convolutional kernel.

Residual structure
An introduction to the residual structure
The residual structure, also known as ResNet or residual network, is a neural network
architecture introduced in 2015 to solve the issue of vanishing gradients. When the
gradient signal is too small to be effectively propagated through the network during
backpropagation, certain stages particularly those at the beginning of the network may
become difficult to learn from (He et al., 2016a; He et al., 2016b). ResNets’ key innovation
is their ‘‘skip connections’’, which allow one or more stages in the network to be bypassed.
This enables the network to learn residualmappings that add or subtract input to the output
of a stage, rather than attempting to learn the entire mapping (He et al., 2016b). By using
these skip connections, ResNets can train much deeper networks with greater accuracy,
without being affected by vanishing gradients. ResNets have established state-of-the-art
performance in various computer vision tasks, including image classification, object
detection, and segmentation (Wightman, Touvron & Jégou, 2021).

Bottleneck and identity mapping
The residual structure is the fundamental module of ResNet. In the ResNet network,
the residual structure includes two parts: Bottleneck module and skip connection. The
Bottleneck extracts feature information F(x), and then adds it with skip connection x ,
and uses the activation function to nonlinearly activate x + F(x). It can also be said
that the identity mapping of feature information is achieved by using skip connections
(He et al., 2016a). ResNet completes the forward propagation of information by stacking
Bottleneck modules which consist of Conv1×1 and Conv3×3. Besides down-sampling,
identity mapping is also important, Han et al. (2021) demonstrated that increasing the
size of the convolution kernel without identity mapping resulted in a significant drop
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in the performance (about 15% on ImageNet) while the identity mapping is added, the
performance is improved.

Kernel size and receptive field
There are many Conv3×3 stacks in ResNet (He et al., 2016b); for example, ResNet-152
has 50 Conv3×3 stages, while not getting an effective enough receptive field, which is
because the residual block combined of Conv1×1 and Conv3×3 enables a down-sampling
to be added to the identity map and activated after only once feature extraction. We
believe that large convolution kernels can be replaced with several small convolution
kernels, for example, one kernel with 7×7 size can be replaced with three 3×3 with more
quickly inference speed, deeper network, and more advantages of nonlinear calculation
(Badrinarayanan, Kendall & Cipolla, 2017; Ding et al., 2021; Ding et al., 2019; Simonyan &
Zisserman, 2015).

Improvement method
We have identified several areas for improvement, and have implemented the following
measures to address them.

Increase the receptive field size
The effectiveness of the convolution kernel with the size of 7×7 has been verified (Han
et al., 2021; Liu et al., 2022), and the benefit of using a larger convolution kernel which
plays a higher performance of the CNN is reflected in the latest research results. For
example, the size of the convolution kernel is set to 31×31 (Ding et al., 2022). The residual
structure designed by us based on the stack of three Conv3×3 not only achieves the same
size of receptive field as Conv7×7, but also obtains a significant performance superior
to Conv7×7 in channel information fusion and feature extraction ability. To overcome
the defects of the traditional deep network based on a small convolutional kernel, we
redesigned a basic residual structure, using three Conv3×3 to replace the combination of
Conv1×1 and Conv3×3 in ResNet (He et al., 2016a;He et al., 2016b), beyond that we also
change the identity mapping Conv1×1 to Conv3×3 (Fig. 1).

Make the network lightweight
Since the effectiveness of depth-wise separable convolution (Chollet, 2017; Howardet al.,
2017; Sandler et al., 2018) has been fully demonstrated in RepLKNet (Han et al., 2021),
group convolution (Ioannou et al., 2017), asymmetric convolution (Ding et al., 2019) and
point-wise convolution (Howardet al., 2017; Sandler et al., 2018) are used to design a series
of variant structures excluding depth-wise separable convolution.

The channel is squeezed and expanded
The performance of a convolutional neural network is mainly reflected in the feature
extraction capability stage by stage (Chen et al., 2018; Huang et al., 2017; Krizhevsky,
Sutskever & Hinton, 2017; Russakovsky et al., 2015). For a feature input (B, C, H, W), it
is necessary to focus on the important features of the image, suppress unnecessary regional
responses, and strengthen the attention of channel information and spatial information
(Dong, Cordonnier & Loukas, 2021; Guo et al., 2022; Loshchilov & Hutter, 2019; Vaswani
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Figure 2 Basic network structure. The root block consists of just one Conv3×3, which converts to 64
channels; Layer1 converts the number of channels to 128 with optinal double down-sampling. Stage 2 to
Stage 4 completes the double expansion of the number of channels and performs double down-sampling;
the last block is classifier.

Full-size DOI: 10.7717/peerjcs.1302/fig-2

et al., 2017; Woo et al., 2018; Wu et al., 2021; Zagoruyko & Komodakis, 2017). To this end,
we design the basic structure of a non-deep network and add attention mechanism and
channel ES (expansion and squeeze) operation to the network structure (Hu et al., 2020).

Scale the depth and width of the network
In terms of network depth and width selection, the design of a neural network tends to
increase the depth to improve network performance while not significantly increasing
computing costs. With the improvement of computing power, it is necessary and feasible
to improve network width to a certain extent to keep the balance of compute cost and
performance (Lorenz, 2021c; Simonyan & Zisserman, 2015; Zagoruyko & Komodakis, 2016).

Structure design
To verify the performance of our novel residual block, a Base network is designed based
on the residual network, and a series of variant structures are designed combining group
convolution, channel information fusion, Channel Attention, and Spatial Attention
mechanism (Chen et al., 2020;Guo et al., 2022; Lin et al., 2022; Szegedy et al., 2017;Vaswani
et al., 2017;Woo et al., 2018).

Basic network structure
We follow the design idea of residual structure and construct a non-deep network with
large number of parameters with four stages. The excellent performance of the heavily
parameterized network model has been verified on the benchmark platform of ImageNet
(Deng et al., 2009) and other data sets, but few experimental results on the Cifar dataset. To
keep the suitability of size between the image of Cifar datasets and the convolution kernel,
we select the convolution kernel size as 3×3. Our basic network structure consists of a root
module, four stages, and a classifier. The function of the root module is only to change the
number of channels to 64 without double down-sampling; for the stages, each one consists
of several residual blocks to enlarge the original number of channels by a factor of 2, the
double down-sampling of the first stage is optional, and the next three stages’ is fixed; the
classifier module completes the output function (Fig. 2).
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Table 1 Basic network with five depth levels. The max depth of our shallow network is 28 and the min is
13, the value of FLOPs is calculated by (128,3,32,32) input size and 100 classes.

Level Blocks Convs Parameter (M) FLOPs(G)

Tiny_B [1,1,1,1] 12+1 108.03 2.52
Tiny_L [1,1,2,1] 15+1 114.40 2.90
Samll [1,1,3,1] 18+1 121.54 3.53
Deep_B [1,2,3,1] 21+1 123.23 4.54
Deep_L [2,2,3,2] 27+1 150.66 5.29

The width of each stage (including the root module) is the list of [64,128,256,512,1024].
The number of blocks, the parameters of the network, and the amount of calculation
are shown in Table 1. We estimate the number of parameters by Torchsummary and the
computation quantity of FLOPs by Thop. Since the root module includes one Conv3×3,
the number of convolution stages of each depth level is added by 1.

Due to our network’s parameters being heavy, as the number of convolutional stages
increases from 13 to 28, the FLOPs increase about twice, and that of parameters increases
by about 42M. We combined asymmetric convolution (Ding et al., 2019), point-wise
convolution, and group convolution (Chollet, 2017; Ding et al., 2019; Lorenz, 2021b; Wang
et al., 2017) to design a series of variant structures to make the network lightweight (Fig. 3).

Variant structure
A series of residual structure variants and network variants are designed from three
aspects, namely network lightweight, channel information fusion (Dumoulin & Visin,
2016; Howard & Ruder, 2018; Hu et al., 2020; Liu et al., 2022) and attention mechanism
(Zhou, Jin & Zhang, 2014; Guo et al., 2022; Jaderberg et al., 2015; Vaswani et al., 2017; Woo
et al., 2018). All variants are designed on the condition of keeping the receptive field few
changed. Six of them are residual structure variants (Fig. 3) and five are network variants.
The variants are those we add an attention mechanism, and squeeze-expansion module
between each stage of the basic network structure (Cao et al., 2022; Hu et al., 2020; Liu et
al., 2022) (Fig. 2).

Based on the Base residual block, we change Conv3× 3 of the identity mapping to
Conv1× 1 and named Variant1 (V1). Variant2 (V2) identity mapping is designed as
Conv1×1, and the second and third Conv3×3 in the residual block are replaced with the
combination of Conv1×1 and Conv3×3 (Group). Based on the Base residual block, V1
is modified to replace the third Conv3×3 with asymmetrical convolution (Conv1×3 and
Conv3×1) in the residual block named Variant3 (V3). Variant4 (V4) is modified based
on V1 and we use the combination of Conv3×3(Group) and Conv1×1 to replace the
third Conv3×3 in the residual block; like the ConvNeXt’s expansion module (Liu et al.,
2022), Variant5 (V5) based on Base network is designed as adding a 4X channel expansion
module between each stage. Conv1×1 is used for the identity mapping of Variant6 (V6)
and ES (expansion and squeeze) operations (Hu et al., 2020) are added in the residual
block, and the channel is enlarged to an intermediate value (mid = out + (out − in)/2)
by the first convolution operation, then the number of channels is reduced to OUT
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Figure 3 Variant of residual block. The combination of grouping convolution and point-wise convolu-
tion is used in V1, V2, V4 and V6 structures, and Conv3×3 in identity mapping is changed back to Conv1
×1 to reduce the number of parameters. Asymmetric convolution is used to reduce the number of param-
eters in V3 structure. In V6 and V7, expansion channel is used to improve network performance.

Full-size DOI: 10.7717/peerjcs.1302/fig-3

by the second convolution operation. we change the identity mapping Conv1× 1 to
Conv3×3 based on Variant6 named Variant7 (V7). Based on Basic network, we add a
Channel Attention mechanism between each stage named Variant8 (V8), and add CBAM
(ChannelAttention+SpatialAttention) (Woo et al., 2018) to Base network between each
stage named Variant9 (V9). Based on V1, we add a Channel Attention mechanism to it
between each stage named V10. Unlike V10, the Spatial Attention mechanism (Vaswani et
al., 2017;Woo et al., 2018) is added in Variant11 (V11).

Like the Base network, Each network variant is designed as five-level depth according to
the number of residual blocks in stages (Table 2).

EXPERIMENTS
This section covers three main aspects: (1) Experimental Setup, in which we introduce
the selected dataset, validate its suitability, and explain the experimental parameters
and their rationale. (2) Ablation Studies, where we design a series of experiments
based on the ‘Basic Model Structure’ and ‘Variant Structure’ discussed in the ‘Structure
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Table 2 Shows the number of parameters and FLOPs at the network’s level of Tiny_B and Deep_B of
the 10 network variants respectively, parameters are calculated in the same way as in Table 1 (Acc %).

Alias Variant Level Blocks Parameter
(MB)

FLOPs
(G)

Tiny_B [1,1,1,1] 86.78 2.52
V1 Skip_Conv1x1

Deep_B [1,2,3,1] 101.98 4.54
Tiny_B [1,1,1,1] 47.06 2.99

V2
Conv1x1_Conv3x3
(Group)_Conv1x1 Deep_B [1,2,3,1] 53.97 5.01

Tiny_B [1,1,1,1] 92.09 2.52
V3 Asymmetric

Deep_B [1,2,3,1] 105.60 4.54
Tiny_B [1,1,1,1] 46.39 2.52

V4 Conv3x3(Group)_Conv1x1
Deep_B [1,2,3,1] 57.79 4.54
Tiny_B [1,1,1,1] 150.65 6.93

V5 Layer_SE
Deep_B [1,2,3,1] 165.85 6.95
Tiny_B [1,1,1,1] 140.58 2.99

V6 Block_Expand
Deep_B [1,2,3,1] 155.78 5.01
Tiny_B [1,1,1,1] 161.83 2.99

V7
Block_Expand_
Skip_Conv3x3 Deep_B [1,2,3,1] 177.03 5.01

Tiny_B [1,1,1,1] 108.03 2.86
V8 Layer_ChannelAtten

Deep_B [1,2,3,1] 123.23 4.87
Tiny_B [1,1,1,1] 109.36 3.31

V9 Layer_CBAM
Deep_B [1,2,3,1] 124.98 5.83
Tiny_B [1,1,1,1] 140.58 3.33

V10 Expand_ChannelAtten
Deep_B [1,2,3,1] 155.78 5.34
Tiny_B [1,1,1,1] 140.58 3.02

V11 Expand_SpatialAtten
Deep_B [1,2,3,1] 155.78 5.04

Design’ section. We conduct experiments with various variant structures to demonstrate
our improvement process and verify the effectiveness of our proposed measures. (3)
Comparative Experiments, where we select several variants with different depths based on
the results of the ablation studies and compare them with other mainstream networks to
further validate the efficacy of our design method.

Settings of the experiments
Dataset selection
Our experiments aim to verify that the residual structure stacked by Conv 3×3 has an
excellent performance in channel information fusion and spatial feature extraction because
of getting suitable receptive fields, so we construct a series of residual structures and
network variants in turn, and that all of those put up an excellent performance on Cifar10
and Cifar100 datasets compared with the current mainstream lightweight network, deep
network, etc. The first reason for choosing the Cifar datasets is that each class of the Cifar100
dataset has 600 color images with a size of 32×32, among which 500 images are used as
training sets and 100 images as test sets. Compared with ImageNet, its data volume and
image size are much small. The second reason is that the relatively small picture size of Cifar
datasets is more suitable for us to fully demonstrate the effectiveness and superiority of
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our proposed method.. Therefore, we select the Cifar100 dataset as a benchmark platform
and it comprehensively reflects the performance differences between different networks
without any training skills and augmenting data.

Training methods
The main performance of the network model depends on the design of the structure, the
settings of training hyperparameters, and data augment skills (He et al., 2019; Hoffer et al.,
2019; Liu et al., 2022; Lorenz, 2021a; Zhang et al., 2018). To fairly compare the performance
of the model, we take into account two main factors: the task handled by the model and the
benchmark platform. The same experimental environment and hyperparameter settings
maybe not reflect the real differences in network model performance (Ding et al., 2021;
Ding et al., 2022; Strubell et al., 2017), and so far there are no unified standards andmethods
to measure the fairness of comparison of a networkmodel. To take the maximization of fair
comparison and highlight the performance variation among the network architectures, we
abandon any training skills across the experiment process, only use naive unified method
for model training without any optimizing to the setting of hyperparameters, except for
only one data augment method named RandomHorizontalFlip.

We conducted experiments on Python3.8.6, Pytorch1.8.2, and Cuda11.2 platforms,
and trained the model on 2 Nvidia 3090 GPUs employing data-parallel computing. The
benchmark test platform is Cifar10 and Cifar100 datasets with Epoch = 150, batchsize =
128, optimizer = SGD, momentum = 0.9, weight_decay = 5e−4, lr = 0.1, scheduler =
MultiStepLR, milestones = [60,100,130], gamma = 0.1.

Ablation study
According to the ‘Basic model structure’ and ‘Variant structure’ discussed in the Structure
design section, 11 variants of network structure are designed relative to the Base network
(Table 2), and six global random seeds are selected to test the stability of the Base network
structure. Except for testing the stability of the network, others’ random seeds are set to
1,234. According to the improved method we mentioned, the experiment includes the
following aspects.

Test for the stability of the Base network
We hope that the designedmultiple variant structures can performwell in a robust network
architecture, so we first test the robustness of the network architecture. Consistent with
the above experimental settings, six global random seeds are selected to pass the test on the
Cifar100 dataset (Table 3).

The above experimental results verify the robustness of our designed variant structure.

Boost the receptive field size
To demonstrate that the Base structure design can boost the receptive field size, variant
structures V1 and V2 are designed (Fig. 3), using Conv 1×1 in the identity map and
Bottleneck, respectively. The experiment results are shown in Table 4.

Compared with Base, the number of parameters in V1 is reduced by 21.25M, and the
accuracy is reduced by 1.41% on average. From the experimental comparison between
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Table 3 Results of stability tests (Acc %). An average accuracy of 78.49% is obtained by training 150
epochs with 6 different random seeds, with a fluctuation of 0.3%.

Seed 1234 1008 1324 2413 4213 3412
Max Accuracy 78.38 78.20 78.36 78.45 78.66 78.86
At Epoch 138 119 113 113 139 118

Table 4 Experimental results of group convolution, point-wise convolution and asymmetric convolu-
tion (Acc %).

Alias Tiny_B Tiny_L Samll Deep_B Deep_L

Base 78.38 78.88 78.52 79.03 79.03
V1 77.59 76.72 77.45 77.65 77.39
V2 75.85 76.81 77.75 77.96 77.32
V3
√

78.05 79.09↑ 79.41↑ 79.34↑ 79.28↑

V4
√

77.37 78.37 77.99 77.47 77.57

the variant structure V1 and the base structure, it can be concluded that modifying the
Conv1× 1 of the identity map in the residual structure to Conv3× 3 can significantly
improve the performance of the network.

Based onV1, we construct V2with the combination ofConv1×1 andConv3×3 (Group)
which improves the channel information fusion ability while reducing the receptive field of
the bottleneck in the redisual structure. Compared with the Base, V2’s accuracy is reduced
by 1.63% on average, and the performance is reduced by 0.22% on average. From the
experimental comparison between the variant structure V2 and the base structure, it can
also be concluded that increasing the receptive field size of the bottleneck in the residual
structure can significantly improve the performance of the network.

Make the network lightweight
Although replacing Conv11 in the residual structure with Conv33 proved to be effective,
the number of parameters of the network was high. Tomake the network more lightweight,
we designed variant structures V3 and V4 (Fig. 3). (1) We construct V3 by the combination
of Conv3×3 (Group) and asymmetric ( Conv1×3+Conv3×1) and verify the validity
of asymmetric convolution, as the average number of V3’s parameters is reduced about
17M, the average accuracy is improved by 0.3%, the max accuracy is improved by 0.89%.
(2) V4 is modified from V1, the number of parameters is reduced to 50% of the Base, and
the average accuracy decreases by 1.01% compared with it, but the average performance
of V3 increases by 0.4%, and max increase by 0.65% compared with V1, it proves that the
structure of V4 is effectiveness.

From the above analysis, it can be concluded that the performance of the identity
mapping with Conv3× 3 is far superior to that of Conv1× 1. It is effective to replace
the last Conv3× 3 with the combination of Conv3× 3 (Group) and asymmetric
(Conv1× 3+Conv3× 1), the combination of Conv3× 3 (Group) and Conv1× 1, we
can reduce the net’s parameter greatly, especially with the combination of the latter. By
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Table 5 Experiment results of feature fusion in channel (Acc %).

Alias Tiny_B Tiny_L Samll Deep_B Deep_L

Base 78.38 78.88 78.52 79.03 79.03
V1 77.59 76.72 77.45 77.65 77.39
V5 77.65 78.84 78.51 78.79 79.55↑

V6
√

78.60↑ 78.93 78.94↑ 79.63↑ 78.93
V7
√

79.16↑↑ 79.03 79.50↑↑ 79.29↑↓ 79.53↑↑

changing the identity mapping Conv1×1 structure into Conv3×3 in V4, we can improve
its performance highly, so the structure design of V3 and V4 is retained.

Enhance channel information fusion capability
In order to further improve the network performance, we make improvements in channel
information fusion and design variant structures V6 and V7. The experiment results in
this section are shown in Table 5. Referring to the practice of ConvNeXts (Liu et al., 2022),
four times ES (4X expansion and squeeze) module was added between stages of the V5
structure.With the increase of network depth, the performance of V5 is gradually improved
and surpassed at the fifth depth level (the accuracy was improved by 0.52% compared with
Base). We adopts ES (expansion and squeeze) method in residual block to expand channel
width (Hu et al., 2020; Liu et al., 2022; Zagoruyko & Komodakis, 2016) in the V6 structure.
Compared with V1, the performance of V6 is improved by 1.57% on average and 2.21%
on max, but the number of its parameters is increased by about 54M. Based on V6, the
Conv1×1 in identity mapping is changed to Conv3×3 named V7, which improved by
0.3% on average and 0.95% on max compared with V6, and 0.534% on average and 0.98%
on max compared with Base.

The above comparison results show that V5 has no advantages over V6 and V7 in a
non-deep network, V5’s preponderance perhaps needs to be verified in a deeper network.
And that we can know from Table 5 that replacing Conv1×1 with Conv3×3 in the identity
mapping can significantly improve network performance.

From the above analysis, it can be concluded that ES can improve the network
performance, so we keep the design scheme of variant structure V6 and V7.

Comparison with attention mechanism
In order to further verify the effectiveness of ES, some attention mechanisms are designed
into the network architecture and compared with ES. The experiment results in this section
are shown in Table 6. Spatial Attention and Channel Attention are added to the Base
network to observe the performance of the network. It is considered empirically that
adding an attention mechanism (Celebi, Kingravi & Vela, 2013; Guo et al., 2022; Vaswani
et al., 2017) module is effective. V8 and V9 based on the Base network are added Channel
Attention mechanism and CBAM(Woo et al., 2018) between stages respectively while it is
lower compared with the Base’s performance. Based on V6, the Channel Attention and the
Spatial Attention mechanism (Dong, Cordonnier & Loukas, 2021; Guo et al., 2022; Vaswani
et al., 2017; Wojna et al., 2017; Woo et al., 2018; Xie et al., 2017) are added to V10 and V11
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Table 6 Experimental results of Attentional Mechanism and ES (Expansion and Squeeze) modules
based on the Base and V6(Acc %).

Alias Tiny_B Tiny_L Samll Deep_B Deep_L

Base 78.38 78.88 78.52 79.03 79.03
V6 78.60 78.93 78.94 79.63 78.93
V8 75.85 76.81 77.75 78.87 78.73
V9 78.18 78.51 78.42 78.80 78.85
V10 77.82 78.10 78.17 78.44 –
V11 78.52↑↓ 79.28↑↓ 78.75↑↓ 79.32↑↓ 79.18↑↑

between the stages their own, respectively. V10 is lower compared with Base and V6, and
V11 Added Spatial Attention is slightly higher than Base’s performance but is also lower
than V6’s.

Through the experimental comparison, we can see that adding various attention
mechanisms and ES (expansion and squeeze) operations between stages can get no
improvement in the performance of the Base and V6 residual structure. So the conclusion
can be drawn that the residual structure based on the stack of three Conv3×3 is powerful
enough in channel fusion ability and spatial feature extraction ability (Dong, Cordonnier &
Loukas, 2021) at current depth.

Over all, we can draw some conclusions as follows. (1) The residual structure based
on the stack of Conv3×3 has excellent performance. (2) It does not need extra attention
mechanisms in channel information fusion and spatial feature extraction (Dong, Cordonnier
& Loukas, 2021), but ES is necessary. (3) We can lightweight the network and achieve
excellent performance without reducing the receptive field. (4) Replacing Conv1×1 to
Conv3×3in identity mapping results in performance improvements in multiple variants.
Therefore, we retain five residual structures, including Base, V3, V4, V6 and V7, to provide
a basis for optimizing networks with higher performance.

Comparative experiments
In order to show the performance of our designed module, we selected our Base, V3,
V4, V6, V7 and Vgg19bn, ResNet18 ResNet50, ResNeXt50, GoogLeNet, MobileNetv2,
SeResNet50, ShuffleNetv2, et al. to make a full comparison with the experimental results
under the same and different hyperparameter setting and training method. It is verified
that the residual structures based on the stack of multiple Conv3× 3 put up excellent
performance (Fang et al., 2020; Xie et al., 2017; Zhu &Wu, 2021). The intuitive results of
the residual block on Cifar datasets we designed in contrast to other network can be seen
in Fig. 4.

Under the same training hyperparameter condition, on the Cifar10 dataset, the
performance of our simple non-deep network is comprehensively superior to Vgg19BN,
ResNet18, ResNet50, ResNeXt50, GoogLeNet, MobileNetv2, SeResNet50, ShuffleNetv2-
et al.. The lightweight models V3 and V4 achieve similar accuracy to ResNet18V2, but
V3_Tiny-B andV3_Deep_B onCifar100 dataset are 0.74% and 2.04%higher thanResNet18
respectively (Table 7).
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Figure 4 The performance of the shallow networks based on the residual block we designed contrast
to the mainstream network.Without any training skills, under the same experimental conditions and
with the same parameter settings, the performance of the shallow network we designed exceeds that of the
mainstream network (see Table 7).

Full-size DOI: 10.7717/peerjcs.1302/fig-4

Comparing the results of 150 epoch-trained experiments on the Cifar100 dataset,
V6_Deep_B exceeds ResNet50 by a maximum of 3.08%, ResNeXt50 by a maximum of
1.38%, and SeResNet152 by a maximum of 0.29%. This is achieved without massively
increasing the network depth, and the network structure can be further optimized to
improve the performance.

Through the above analysis, we find that the network architecture based on the improved
residual structure is competitive with the mainstream network architecture.

CONCLUSIONS AND FUTURE WORK
We believe that obtaining the appropriate receptive field is the primary factor in selecting
the size of the convolutional kernel. Our work mainly includes the following aspects. (1)
A base residual structure and series of variants based on the stack of Conv 3×3 were
proposed. (2) The method of replacing the Conv 1×1 with Conv 3×3 of the identity
mapping can improve the performanceof residual structure. (3) The performance of the
non-deep CNN based on our new residual structure is better than that of many deep
networks, which provides valuable ideas for future network design. It was verified by
experiments that the residual structure stacked by Conv 3×3 has an excellent performance
in channel information fusion and spatial feature extraction because of getting suitable
receptive fields, so we constructed a series of residual structures and network variants in
turn, and that all of those put up an excellent performance on the Cifar10 and Cifar100
datasets compared with the current mainstream lightweight network, deep network, etc.

To keep the suitability of size between the receptive field and image size in the designing
of a network, we stacked three Conv3×3 to construct a base residual structure that can
enhance the receptive field while maintaining strong channel information fusion capability.
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Table 7 Comparison of results on the benchmark platform (Acc %). The initial lr = 0.1, scheduler =
MultiStepLR, gamma=0.1, batchsize = 128, weight_decay = 5e−4,momuentu= 0.9. All parameter counts
are calculated with [28,3,32,32] input data size.

Model Convolutions Parameter
(MB)

Cifar10
150 epoch

Cifar100

150 epoch 200 epoch

Vgg19BN 19 150.02 93.03 70.23 72.23
ResNet18(V1,V2) 18 42.80 94.86(V2) 77.31(V2) 75.61(V1)
ResNet50 50 90.43 94.39 76.55 77.39
ResNeXt50 50 56.41 94.66 78.25 77.77
ResNet152 152 147.33 – – 77.69
GoogLeNet 22 24.42 94.54 76.95 78.03
MobileNetv2 88 9.04 91.58 70.55 68.08
SeResNet50 50 100.18 94.31 75.91 77.93
SeResNet152 152 248.13 – – 79.34
ShuffleNetv2 – 5.19 92.10 72.30 69.51
Base_Tiny_B (ours) 13 108.03 95.25↑ 78.38↑ 78.63↑

Base_Deep_B (ours) 22 123.23 – 79.03↑ 79.26↑

V3_Tiny-B (ours) 20 92.09 94.96↑ 78.05↑ 78.67↑

V3_Deep_B (ours) 35 105.60 – 79.34↑↑ 79.76↑

V4_Tiny_B (ours) 17 46.39 94.79↑ 77.37 78.24
V4_Tiny_L (ours) 21 51.42 – 78.37↑

V6_Tiny_B (ours) 13 140.58 95.16↑ 78.60↑ –
V6_Deep_B (ours) 22 155.78 – 79.63↑↑ –
V7_Tiny_B (ours) 13 161.83 95.23↑ 79.16↑ –
V7_Small (ours) 19 175.34 – 79.50↑↑ –

We will further study the adaptive relationship between the receptive field size and the
image size to find a method to automatically adjust the convolution kernel size.
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