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ABSTRACT
Acquiring reliable knowledge amidst uncertainty is a topical issue of modern science.
Interval mathematics has proved to be of central importance in coping with uncertainty
and imprecision. Algorithmic differentiation, being superior to both numeric and
symbolic differentiation, is nowadays one of the most celebrated techniques in the
field of computational mathematics. In this connexion, laying out a concrete theory
of interval differentiation arithmetic, combining subtlety of ordinary algorithmic
differentiation with power and reliability of interval mathematics, can extend real
differentiation arithmetic so markedly both in method and objective, and can so
far surpass it in power as well as applicability. This article is intended to lay out a
systematic theory of dyadic interval differentiation numbers that wholly addresses first
and higher order automatic derivatives under uncertainty. We begin by axiomatizing
a differential interval algebra and then we present the notion of an interval extension
of a family of real functions, together with some analytic notions of interval functions.
Next, we put forward an axiomatic theory of interval differentiation arithmetic, as
a two-sorted extension of the theory of a differential interval algebra, and provide
the proofs for its categoricity and consistency. Thereupon, we investigate the ensuing
structure and show that it constitutes a multiplicatively non-associative S-semiring
in which multiplication is subalternative and flexible. Finally, we show how to
computationally realize interval automatic differentiation. Many examples are given,
illustrating automatic differentiation of interval functions and families of real functions.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation,
Scientific Computing and Simulation, Theory and Formal Methods
Keywords Interval analysis, Interval computations, Interval-valued functions, Interval automatic
differentiation, Interval differentiability, Categorical differentiation arithmetic, Subdistributive
semiring, Guaranteed interval enclosures, Quantifiable uncertainties, Verified computations

Dedication. In memory of Ramon Edgar Moore (1929–2015), the man who intervalized
uncertainty.

INTRODUCTION
Uncertainty arises in all fields of modern science. It is a state of limited knowledge where
‘‘To know’’ means ‘‘To be uncertain of’’. Acquiring reliable knowledge amidst uncertainty
is the raison d’être of the present work. Motivated by an ever-increasing indeterminacy
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and complexity in physics and engineering and fueled by developments in computational
and uncertainty mathematics, this work puts forward a categorical system of interval
differentiation arithmetic that wholly addresses the computation of first and higher order
automatic derivatives under uncertainty. Although scientists are fond of determinism,
contemporary physical sciences have shown clearly that complete certainty is not reachable.
The description of processes and states of physical systems discloses increasingly growing
manipulations of uncertain quantifiable properties. Many features of the object world
are rendered as numerical values that can either be measured or estimated by experts.
Due to imperfection of our measuring methods, finiteness of our computations and
lack of information, measured or estimated quantities can only be represented by finite
approximations and thus are merely imprecise abstractions of reality (Dawood & Dawood,
2019a; Dawood & Dawood, 2020, and Dawood & Dawood, 2022).

In the effort to deal with the challenge of uncertainty, the subject of uncertainty
mathematics has been developed in an extensive manner and many theoretical approaches
have been introduced including fuzzy, probabilistic, and interval methods. A hot
and fundamental topic of research that shades of into all approaches of uncertainty
mathematics is interval analysis (see, e.g., Dawood, 2014; Dawood & Dawood, 2019a, and
Dawood & Dawood, 2020). The key advantage of the interval methods is that they provide
‘‘guaranteed interval enclosures’’ of the exact values of quantifiable uncertainties. In
practice, when modelling physical systems, we have two distinct approaches: getting
guaranteed bounds of an uncertain quantity and computing a numerical approximation
thereof. The two approaches are not equivalent: the former includes the latter, but the
latter does not imply the former. For example, to guarantee stability under uncertainty
in control systems and robotics, it is crucial to compute guaranteed enclosures of the
quantifiable features of the system under consideration (Dawood, 2014 and Dawood &
Dawood, 2020). Interval arithmetic brings forth a reliable way to cope with such problems.
An interval number (a closed and bounded interval of real numbers) is a guaranteed
enclosure of an imprecisely measured real-valued quantity, and an interval-valued function
is consequently a guaranteed enclosure of a real-valued function under imprecision or
uncertainty (or more generally, as we will see in this article, a reliable enclosure of the
image of a family of real-valued functions). Historically speaking, the terms ‘‘interval
arithmetic’’, ‘‘interval analysis’’, and ‘‘interval computations’’ are reasonably recent: they
date from the fifties of the twentieth century. But the idea has been known since the
third century BC, when Archimedes (287–212 BC) used lower and upper error bounds
in the course of his computation of the constant π (Heath, 2009). In the dawning of the
twentieth century, the first rigorous developments of the theory of intervals appeared in
the works of Norbert Wiener, John Charles Burkill, Rosalind Cecily Young, and Mihailo
Petrovic (see Wiener, 1921, Burkill, 1924; Young, 1931; Petrovic, 1932, and Petkovic, 2020).
Later, several distinguished developments of interval arithmetic appeared in the works
of Paul S. Dwyer, Mieczyslaw Jan Warmus, Teruo Sunaga, and others (see, e.g., Dwyer,
1951; Warmus, 1956, and Sunaga, 1958). However, it was not until 1959 that ‘‘interval
analysis’’ in its modern sense was presented by the American mathematician and computer
scientist, Ramon Edgar Moore (1929–2015), who was the first to recognize the power
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of interval arithmetic as a viable computational apparatus for coping with uncertainty
and imprecision (Moore, 1959). Nowadays, interval mathematics is a bold enterprise
that comprises many different kinds of problem and has many fruitful applications in
diverse areas of science and engineering (see, e.g., Allahviranloo, Pedrycz & Esfandiari, 2022;
Beutner, Ong & Zaiser, 2022, Dawood, 2019; Dawood & Dawood, 2020; Dawood & Dawood,
2022, IEEE 1788 Committee, 2018; Jiang, Han & Xie, 2021; Kearfott, 2021, Mahato, Rout &
Chakraverty, 2020; Matanga, Sun & Wang, 2022, Shary & Moradi, 2021, and Zheng et al.,
2020).

Two strands of research have led to the birth of the present work. The first strand
starts from research in interval mathematics. The other strand stems from ordinary (real)
automatic differentiation. Derivatives play an indispensable role in scientific computing.
The expressions ‘automatic differentiation’, ‘auto-differentiation’, ‘computational
differentiation’, ‘algorithmic differentiation’, and ‘differentiation arithmetic’ are in the just
acceptation synonyms. They refer to a subtle and central tool to automatize the simultaneous
computation of the numerical values of arbitrarily complex functions and their derivatives
with no need for the symbolic representation of the derivative, only the function rule
or an algorithm thereof is required (Dawood & Megahed, 2019). Auto-differentiation is
thus neither numeric nor symbolic, nor is it a combination of both. It is also preferable to
ordinary numerical methods: In contrast to the more traditional numerical methods based
on finite differences, auto-differentiation is ‘in theory’ exact, and in comparison to symbolic
algorithms, it is computationally inexpensive (Dawood & Megahed, 2019). The literature
on algorithmic differentiation is immense and very diversified. For further reading, (see,
e.g., Corliss & Rall, 1996; Dawood, 2014, Dawood & Megahed, 2019; Griewank & Walther,
2008; Moore, 1979, Neidinger, 2010, and Mitchell, 1991). Currently, for its efficiency and
accuracy in computing first and higher order derivatives, auto-differentiation is a celebrated
technique with diverse applications in scientific computing and mathematics. It should
therefore come as no surprise that there are numerous computational implementations
of auto-differentiation. Among these, we mention, without pretension to be complete,
INTLAB, Sollya, and InCLosure (see, e.g., Rump, 1999, Chevillard, Joldes & Lauter, 2010,
and Dawood, 2020). In practice, there are two types (modes) of algorithmic differentiation:
a forward-type and a reversed-type (Dawood & Megahed, 2019). Presently, the two types
are highly correlated and complementary and both have a wide variety of applications in,
e.g., non-linear optimization, sensitivity analysis, robotics, machine learning, computer
graphics, and computer vision (see, e.g., Abdelhafez, Schuster & Koch, 2019; Dawood, 2014,
Dawood & Megahed, 2019; Fries, 2019, Sommer, Pradalier & Furgale, 2016, and Tingelstad
& Egeland, 2017).

The use of ordinary auto-differentiation in the description and modeling of real world
physical systems faces the problem of uncertainty. With the aid of interval mathematics,
auto-differentiation can be intervalized to handle uncertainty in quantifiable properties
of real world physical systems and accordingly provide the computational methods that
suffice to deal with the important problem of ‘‘getting guaranteed bounds’’. Interval
differentiation arithmetic combines subtlety of ordinary algorithmic differentiation
with power and reliability of interval mathematics. By integrating the complementary
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perspectives of both fields, interval differentiation arithmetic extends real differentiation
arithmetic so markedly both in method and objective, and so far surpasses it in power
and applicability. Real differentiation arithmetic, on the one hand, is concerned with
the simultaneous calculation of the values of real functions and their derivatives with no
requirement of the symbolic representation of the derivative. On the other hand, the subject
matter of interval differentiation arithmetic is ‘‘interval functions’’ and its objective is the
concurrent computation of guaranteed enclosures of images of real functions and their
derivatives. This integration of interval and differentiation arithmetic is readily applicable
to modelling and predicting the behaviour of real-world systems under uncertainty. Also,
it has proved accuracy and efficiency in many scientific computations. As examples, we
can mention enclosures of Taylor’s coefficients, gradients, integrals, bounding boxes in ray
tracing, and solutions of ordinary differential equations.

Three main problems have motivated the research conducted in this article. In the first
place, despite its major importance in both basic research and practical applications, to
the best of our knowledge, the algebraic aspects of interval differentiation arithmetic are
not in-depth investigated. In the second place, almost no attempt has been made so far
to explicitly axiomatize the theory of interval differentiation arithmetic in terms of clear
and distinct elementary logical notions. In the third place, although an interval function
is naturally an extension of a family of real functions, to the best of our knowledge, in all
interval literature, the notion of a family of functions is not considered, and an interval
function is assumed to extend a single real function. This presumption introduces an
unnecessary restriction to the semantic of an interval function in the general sense. Families
of functions arise naturally in many real-life and physical applications. In economics, the
Cobb–Douglas family of production functions is an example; in physics, electron models,
dynamical systems, quantummodels, Camassa–Holm andNovikov wave-breakingmodels,
andmany other physical phenomena are described by families of functions (see, e.g.,Cobb &
Douglas, 1928; Silberberg & Suen, 2001, Anco, da Silva & Freire, 2015, and Engesser, Gabbay
& Lehmann, 2011). Providing the mathematical tools to get guaranteed enclosures of the
images of families of real functions and their derivatives would provide an efficient way
of predicting and controlling such physical systems and, thus, could have a substantial
impact not only on theoretical research but also on many areas of applications. By the
pursuit of this, formalizing the notion of a family of functions within the context of interval
mathematics and interval differentiation arithmetic is one of the main motivations of this
research.

Throughout the present text, we will understand by ‘‘interval differentiation arithmetic’’
(‘‘interval differentiation algebra’’, ‘‘1J -algebra’’, or ‘‘1J -arithmetic’’) the fundamental
algebraic structure underlying interval auto-differentiation as it is currently practised
and implemented. It is our object, in this article, to present a consistent and categorical
formalization of a theory of dyadic interval differentiation numbers (1J -numbers) that
fully addresses first and higher order auto-derivatives of families of real functions. The
fundamental significance of categoricity is that if an axiomatization of 1J -numbers
is categorical, then it correctly accounts, up to isomorphism, for every structure of
1J -arithmetic. The notion of categoricity is a bedrock of contemporary mathematics.
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1InCLosure(Interval enCLosure) is an
environment and a language for reliable
scientific computing. Latest version
of the software package InCLosure is
freely accessible from CERN’s archive via
https://doi.org/10.5281/zenodo.2702404.

This is clearly described by John Corcoran in Corcoran (1980) and best reiterated in
the words of Stewart Shapiro, ‘‘a categorical axiomatization is the best one can do’’
(Shapiro, 1985). In accordance with this categorical sense, the present article attempts to
provide this ‘‘best’’ characterization. For this goal to be accomplished, we need to take
a closer look at and formalize several fundamental analytic and algebraic concepts in
the language of the theory to be axiomatized, so that one can establish the metatheoretic
assertions of consistency and categoricity. This reformalization is mainly done in ‘On
theories and structures: some metatheoretical fundamentals’ and ‘A differential interval
algebra’. In ‘On theories and structures: some metatheoretical fundamentals’, we set the
stage by establishing the mathematical terminology, notions, and definitions that will
be used throughout the rest of this article. ‘Real differentiation arithmetic’ is devoted to
describing briefly the basic elements of the theory T1R of real differentiation arithmetic
(1R-arithmetic). In ‘A differential interval algebra’, we lay out an axiom system for
the theory TδJ of a differential interval algebra and then we present the notion of an
interval extension of a family of real functions, together with some analytic notions of
interval functions. In ‘A categorical axiomatization of interval differentiation arithmetic’,
we axiomatize a theory T1J of interval differentiation numbers (1J -numbers) as a
two-sorted extension of the theory TδJ of a differential interval algebra, and then we
prove its consistency and categoricity. In order for the theory T1J to fully address and
compute higher order and partial auto-derivatives using only dyadic 1J -numbers, in
‘Differentiation extension of interval functions and higher-order auto-differentiability’,
we introduce the notion of a differentiation extension of interval functions, characterize
differentiability for 1J -numbers, and establish their differentiability conditions. In ‘The
algebraic structure of interval differentiation arithmetic’, we investigate the algebraic
structure of 1J -arithmetic, establish its fundamental algebraic properties, and show
that it forms a multiplicatively non-associative S-semiring in which multiplication is
subalternative and flexible. Then, in ‘Monotonicity and isomorphism theorems for
interval differentiation numbers’, we establish some monotonicity and isomorphism
theorems for 1J -numbers and prove a result concerning the structure of 1R-numbers.
Finally, in ‘Machine implementation of interval auto-differentiation’, we demonstrate the
computational implementation of interval auto-differentiation and illustrate, by many
numerical examples, how to concurrently compute guaranteed enclosures of images of
both families of real functions and their first and higher order derivatives. The algorithms
discussed in ‘Machine implementation of interval auto-differentiation’ are coded into
reliable Common Lisp as a part of the software package, InCLosure1 (Dawood, 2020).
The InCLosure commands to calculate the results of the numerical examples are described
and InCLosure input and output files are accessible as a supplementary material to the
article (see Dawood, 2020 and Dawood, 2023).

The attempted contribution of this article is therefore both a ‘‘logico-algebraic
formalization’’ and an ‘‘extension’’ of interval differentiation arithmetic. The article
gives an axiomatization of a comprehensive algebraic theory of interval differentiation
arithmetic. Being based on clear and distinct elementary ideas of real and interval algebras,
this formalized theory places the diverse approaches of interval auto-differentiation on

Dawood and Megahed (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1301 5/44

https://doi.org/10.5281/zenodo.2702404
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1301


2Grassmann algebras (or exterior algebras)
were introduced by Hermann Grassmann
in Grassmann (1844). Clifford’s algebras,
introduced in Clifford (1873) by William
Clifford, are Grassmann algebras in
one dimension. Exterior algebras have
nowadays many applications (see,
e.g., Colombaro, Font-Segura & Martinez,
2020; Dawood & Megahed, 2019, and
Trindade, Pinto & Floquet, 2019).

a firm and unified mathematical basis. We extend this theory in two directions. On
the one hand, to the best of our knowledge, in almost all computational differentiation
literature, researchers tend to ‘borrow’ or ‘reinvent’ Clifford’s and Grassmann algebras2 as
proposed algebraic characterizations respectively for first and higher-order algorithmic
differentiation. Without resorting to defining any sort of Grassmann structures, our
axiomatization of dyadic interval differentiation numbers extends to fully address interval
auto-derivatives of first and higher order. On the other hand, from the very beginning, our
axiomatic system includes the notion of an interval extension of a family of real functions
and the differentiability criteria thereof. By virtue of introducing this notion, the theory
is extended to provide the mathematical tools to get guaranteed enclosures of the images
of families of real functions and their derivatives. Also noteworthy here is that with a few
basic modifications, the categorical system T1J axiomatized in this text can be extended
analogously to compute fuzzy auto-derivatives.

ON THEORIES AND STRUCTURES: SOME
METATHEORETICAL FUNDAMENTALS
To achieve a rigorous formalization of the mathematical theory of this work, a specific
formalized language and a particular logical apparatus are therefore required to attain all
the results from obvious and distinct elementarymathematical concepts. So before we begin
our axiomatization of interval auto-differentiation, we need to take a closer look at and
formalize several preliminary mathematical concepts. To this aim, this section establishes
the mathematical terminology, notions, and definitions that will be used throughout the
rest of this article.

To make this article self-contained, we start by rehearsing some set-theoretical
definitions. Let A be a set and let An be its n-th Cartesian power. A set < is an n-
ary (finitary) relation on A iff <⊆An and < is a binary relation from An−1 to A.
Thus, for s= (s1,...,sn−1) ∈An−1 and t ∈A, an n-ary relation < is characterized
to be < ⊆ An

= {(s,t )|s ∈ An−1
∧ t ∈ A}. Accordingly, a finitary relation < is a

binary relation whose domain, range, field, and converse are characterized to be,
respectively dom(<)= {s ∈An−1

|(∃t ∈A)(s<t )}, ran(<)= {t ∈A|
(
∃s∈An−1)(s<t )},

fld(<)= dom(<)∪ ran(<), and <̂ = {(t ,s)∈An
|s<t }. Obviously t <̂s⇔ s<t and ̂̂<=<

(Dawood & Dawood, 2019a and Dawood & Dawood, 2020).
Two indispensable definitions are those of images and preimages of finitary relations

(see Dawood & Dawood, 2019a and Dawood & Dawood, 2020).

Definition 2.1 (Images of Finitary RelationsDawood & Dawood, 2020): For 1≤ k ≤
n−1, let < be an n-ary relation on A, and for (s,t )∈<, let s= (s1,...,sn−1), with each
sk is restricted to vary on Sk ⊂A, that is, s is restricted to vary on S⊂An−1. Then, the image
of S (or the image of the sets Sk) with respect to <, in symbols I<, is characterized to be

T = I<(S)= I<(S1,...,Sn−1)

={t ∈A|(∃s∈ S)(s<t )}
= {t ∈A|

(
∃
n−1
k=1sk ∈ Sk

)
((s1,...,sn−1)<t )}.
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3Metamathematics (‘‘epitheory’’, or
‘‘metatheory’’) is the study of formalized
mathematical theories and languages,
and the interpretations thereof. A
metatheoretical investigation produces
metatheorems about the object theory
under consideration (see, e.g., Curry, 1977;
Hunter, 1971, and Kleene, 1952).

The preimage S of T is characterized to be the image of T with respect to the converse <̂ of
<. In other words

S= I<̂(T )={s∈An−1
|(∃t ∈T )

(
t <̂s

)
}.

In consequence of the equivalence t <̂s⇔ s<t , apparently T = I<(S)⇔ S= I<̂(T ).
In this sense, a general characterization of an n-ary (finitary) function can be intro-

duced (Dawood & Dawood, 2019a). A set q is an n-ary function (a function of n variables) on
a setA iff q is an (n+1)-ary relation onA, and (∀s∈An)(∀t ,w ∈A)

(
sqt ∧sqw⇒ t =w

)
.

That is, an n-ary (finitary) function is an (n+1)-ary relation. Restricting ourselves to the
particular case of functions, we can pass up the set-theoretical notation sqt in favor of the
common notation t = q(s). In accord with this formulation, the preceding definitions of
domain, range, field, and converse also apply to finitary functions. We say that a function
q is invertible or has an inverse q−1 iff the converse relation q̂ is also a function, in which
case q−1= q̂ (Dawood & Dawood, 2020). Hereon, functions will be denoted by the letters
q, u, and v . With a few exceptions, from now onwards, we will usually consider only unary
functions.

In order to achieve the overarching objective of this work, it is necessary first to take a
closer look at several metamathematical3 concepts. A metalinguistic characterization of a
formalized theory (an axiomatic theory) can be given. An axiomatic theoryT is characterized
by an object formal languageL and a finite set of axioms3T (seeDawood & Dawood, 2020).
Given an object formal languageL and a finite set3T of axioms (L-sentences), let ϕ denote
anL-sentence and let�L denote the semantic consequence relation. The axiomaticL-theory
T of the set 3T is the closure of 3T under �L, that is T= {ϕ ∈L|3T�Lϕ} (Dawood &
Dawood, 2020). Next, the metatheoretical notions of a model, categoricity, and consistency
of an axiomatic L-theory are characterized (see Dawood & Megahed, 2019).
Definition 2.2 (Model of a Theory): Let A be a mathematical structure (interpretation).
A is said to be a model of an axiomatic L-theory T, in symbols A |H T, iff every formula
ϕ of T is satisfied by A. That is

A |HT⇔ (∀ϕ ∈T)(A |Hϕ).

Definition 2.3 (Categoricity of a Theory): Let A and B be any two models of an
axiomatic L-theory T.T is said to be categorical, in symbols Cat(T), iff A and B are
isomorphic. That is

Cat(T)⇔ (∀A)(∀B)(A |HT∧B |HT⇒A'B).

Definition 2.4 (Consistency of a Theory): An axiomatic L-theory T is said to be
consistent, in symbols Con(T), iff there is a model A that satisfies the sentences of T. That
is, Con(T)⇔ (∃A)(A |HT).
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Amodel of an axiomatic L-theory T is a mathematical structureA=
〈
A,σA

〉
that makes

the L-sentences of T true. Particular mathematical structures are indispensable for the
objective of this work. These are defined next (Dawood & Dawood, 2019a and Dawood &
Dawood, 2020).
Definition 2.5 (RingoidDawood & Dawood, 2019a): A ring-like structure (or a ringoid)
is an algebraic structure A= 〈A;+A,×A〉 with +A and ×A are total binary operations
on the universe set A. The operations +A and ×A are called respectively the addition and
multiplication operations of the ringoid A.

Definition 2.6 (S-RingoidDawood & Dawood, 2020): A subdistributive ringoid (or
an S-ringoid) is a ringoid A = 〈A;+A,×A〉 that satisfies at least one of the following
subdistributive properties.
(i) (∀s,t ,w ∈A)(s×A(t+Aw)⊆ s×At+As×Aw),
(ii) (∀s,t ,w ∈A)((t+Aw)×As⊆ t×As+Aw×As).
Properties (i) and (ii) in the previous definition are called respectively left and right
S-distributivity (or subdistributivity) (Dawood & Dawood, 2020).

Definition 2.7 (SemiringDawood & Dawood, 2019a): A ringoid A= 〈A;+A,×A〉 is a
semiring iff A satisfies the following properties.
(i) A with +A forms a commutative monoid with 0A is an identity for +A,
(ii) A with ×A forms a monoid with 1A is an identity for ×A,
(iii) ×A is both left and right distributive over +A,
(iv) 0A is an annihilating element for ×A.
If ×A is commutative, then A is said to be a commutative semiring.

Definition 2.8 (S-SemiringDawood & Dawood, 2020): A subdistributive semiring (or
an S-semiring) is an S-ringoid A= 〈A;+A,×A〉 that satisfies criteria (i), (ii), and (iv) in
definition 2.7. A commutative S-semiring is one whose multiplication is commutative.

It is important here to point out that an S-semiring generalizes the notion of a near-
semiring; a near-semiring is a structure satisfying the axioms of a semiring except that it is
either left or right distributive (For further details on near-semirings and related concepts,
the reader can refer to Clay, 1992; Pilz, 1983, and van Hoorn & van Rootselaar, 1967).

Lastly, we define two new algebraic structures.
Definition 2.9 (NA Semiring): A ringoid A= 〈A;+A,×A〉 is said to be an additively
non-associative semiring (in short, +-NA semiring) iff A satisfies (ii), (iii), and (iv) in
definition 2.7, and 〈A;+A〉 is a non-associative commutative monoid with identity element
0A. Similarly, A is said to be a multiplicatively non-associative semiring (in short, ×-NA
semiring) iff A satisfies (i), (iii), and (iv) in definition 2.7, and 〈A;×A〉 is a non-associative
monoid with identity element 1A.

Definition 2.10 (NA S-Semiring): An S-ringoid A = 〈A;+A,×A〉 is said to be an
additively non-associative S-semiring (in short, +-NA S-semiring) iff A satisfies (ii) and
(iv) in definition 2.7, and 〈A;+A〉 is a non-associative commutative monoid with identity
element 0A. Similarly, A is said to be a multiplicatively non-associative S-semiring (in
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short, ×-NA S-semiring) iff A satisfies (i) and (iv) in definition 2.7, and 〈A;×A〉 is a
non-associative monoid with identity element 1A.

It is clear that if multiplication is commutative in a NA S-semiring, then it is both left
and right subdistributive.

REAL DIFFERENTIATION ARITHMETIC
Before setting forth the assertions of an axiomatic theory of interval differentiation
arithmetic in the succeeding sections, we need to describe briefly the basic elements of
the theory T1R of real differentiation arithmetic (henceforth 1R-arithmetic). For further
details and other constructions of 1R-arithmetic, the reader may consult, e.g., Dawood,
2014; Dawood & Megahed, 2019, Beda et al., 1959; Wengert, 1964; Moore, 1979, Rall, 1981,
and Corliss & Rall, 1996.

We hereon use the letters q, u, and v as function symbols, and the letters s, t , and w as
real variable symbols. Given a class σ = {+,×;−,−1;0,1,≤} of descriptive (non-logical)
signs, let R=

〈
R;σR〉 be the field of real numbers, R〈1〉 be the set of unary real functions,

and δ be the differential operator for elements of R〈1〉. For a q in R〈1〉, we use the predicate
diff

(
q,s0

)
to mean that q is differentiable at some s0 ∈R. We understand by a differential

real field a structure Rδ =
〈
R;σR

;δ
〉
constructed by equipping R with the operator δ and

its basic axioms. It is natural to begin with the definition of a real differentiation number
(1R-number).
Definition 3.1 (Real Differentiation Numbers): The set of all real differentiation numbers
(1R-numbers, or 1R-pairs), with respect to a constant s0 ∈R, is defined to be

UR=
{
q∈R2

|
(
∃q∈R〈1〉

)(
q =

(
q(s0),δ1q(s0)

)
∧ s0 ∈ dom

(
q
)
∧diff

(
q,s0

))}
.

That is, a 1R-number is an ordered pair of real numbers. Let the letters q, u, and v,
or equivalently the pairs

(
q,δq

)
s0
, (u,δu)s0 , and (v,δv)s0 , be variable symbols ranging over

the elements of UR. Also, let a, b, and c, or equivalently (a,0R)s0 , (b,0R)s0 , and (c,0R)s0 ,
designate constants of UR. In particular, we use 1UR to denote the 1R-number (1R,0R)s0
and 0UR to denote the 1R-number (0R,0R)s0 .

The theoryT1R of a real differentiation algebra (or a1R-algebra) can then be axiomatized
as follows (Dawood & Megahed, 2019).
Definition 3.2 (Theory of Real Differentiation Algebra): Let

(
q,δq

)
s0
and (u,δu)s0 be in

UR. A differentiation algebra over a differential real field Rδ =
〈
R;σR

;δ
〉
, or a 1R-algebra,

is a two-sorted structure UR=
〈
UR;R;σUR〉. The theory T1R of UR is the deductive closure

of the axioms of Rδ together with the following sentences.
(DA1) 1R-equality.

(
q,δq

)
s0
=UR(u,δu)s0⇔ q(s0)=Ru(s0)∧δq(s0)=Rδu(s0),

(DA2) 1R-addition.
(
q,δq

)
s0
+UR(u,δu)s0 =

(
q+Ru,δq+Rδu

)
s0
,

(DA3) 1R-multiplication.
(
q,δq

)
s0
×UR(u,δu)s0 =

(
q×Ru,δq×Ru+Rq×Rδu

)
s0
,

(DA4) 1R-negation. −UR

(
q,δq

)
s0
=
(
−Rq,−R

(
δq
))

s0
,

(DA5) 1R-reciprocal.
(
q,δq

)−1UR
s0
=
(
q−1R,−Rq−2×Rδq

)
s0
.
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Subtraction and division are defined as usual in terms of the four basic 1R-operations.
For an economic exposition, we assert statements (DA2)–(DA5) as axioms but it should be
mentioned that they are derivable from simpler statements. Hereafter, where no confusion
is likely, the subscripts ‘‘ U’’, ‘‘ R’’, and ‘‘ s0’’ will be omitted. Also, we will usually write the
structure UR as

〈
UR;+UR,×UR;0UR,1UR

〉
, omitting the universe set R.

Differentiable real functions can be extended to 1R-numbers via an extension
principle (Dawood & Megahed, 2019). Let u be a real function differentiable at s0 ∈R, that
is there is u = (u,δu)s0 ∈UR, and let Q be a function rule. If QR(u) is differentiable at s0,
then the differentiation extension ofQR is defined to beQUR (u)= (QR(u),δQR(u))s0 . For
example, replacing Q by the ‘‘ sine’’ function, one obtains the trigonometric 1R-function
sin(u,δu)s0 = (sin(u),δsin(u))s0 .

We will not discuss the algebraic properties of 1R-numbers further in the present
section, for these will be considered later in ‘Monotonicity and isomorphism theorems for
interval differentiation numbers’, in the general framework of the theory T1J of interval
differentiation arithmetic.

A DIFFERENTIAL INTERVAL ALGEBRA
In order to axiomatize a categorical system of interval differentiation arithmetic (1J -
arithmetic) in the next sections, we need to lay out an axiom system for the theory TδJ of
a differential interval algebra. The intended model of the axiomatic system TδJ is the
differential S-semiring 〈JR,R;+J ,×J ;δ〉, where JR is the set of real closed intervals
(interval numbers, or J -numbers) and δ is the differential operator for unary interval
functions (J -functions).

To be able to prove categoricity and consistency of1J -arithmetic, the first step towards
axiomatizing the theory TδJ necessitates dealing first with the notion of differentiability
in a continuously ordered field in a purely syntactic way (leaving out any references to
mathematical analysis or possible interpretations). For further details on the syntactic
approaches to these notions, see, e.g., Dawood, 2012; Dawood & Dawood, 2020, Montague,
Kalish & Mar, 1980; Robinson, 1951, and Tarski, 1983. The theory TF of continuously
ordered fields (cofields) is characterized in the following definition Dawood & Megahed,
2019.
Definition 4.1 (Theory of a Cofield): Let F= 〈F;+F ,×F ;0F ,1F ;≤F 〉 be a totally
ordered field. The theory TF of a cofield (or a continuously ordered field) is the theory of
F together with the following axiom of continuity

(ACO) (∀A⊆F)(∀B⊆F)

(
(∀s∈A)(∀t ∈B)(s<Kt )⇒

(∃w ∈F)(∀s∈A)(∀t ∈B)(s 6=w∧ t 6=w⇒ s<Kw∧w<Kt )

)
.

We designate by ≥F the converse of the non-strict total order ≤F , and by ‘‘ −F ’’ and
‘‘ −1F ’’ the unary F-operations of negation and reciprocal, respectively. Subtraction and
division are defined as customary. From now onwards, when the context is clear, we may
drop the subscript ‘‘ F ’’.
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4Many mathematicians use the term
‘‘complete ordered field’’ as a synonymous
substitute for ‘‘continuously ordered
field’’. Following Alfred Tarski (see,
e.g., Tarski, 1994), we pass up the
adjective ‘complete’ in favor of the word
‘continuously’. We reserve the word
‘complete’ for different logical uses.

For n≥ 1, let K〈n〉 designate the class of all n-ary F-functions. Hereon, the letters q, u,
and v are used as variable symbols ranging over the elements of K〈1〉 (unary F-functions).
The intended interpretation (model) of the theory TF corresponds the structure F to
the continuously4 (complete) ordered field 〈R;+R,×R;0R,1R;≤R〉 of real numbers and
F〈1〉 is interpreted by the set R〈1〉 of unary R-functions.

Toward formalizing a differential interval algebra, we first need to extend the theory
TF of a cofield by axiomatizing some analytic concepts. Let q∈F〈1〉, and let s and l be,
respectively, an F-variable symbol and an F-constant symbol. The ‘limit’ operator of the
function q(s) with respect tom, denoted lims→mq(s), is defined thus (Dawood & Megahed,
2019):

lim
s→m

q(s)=M⇔ (∀ε > 0)(∃α > 0)
(
∀s∈ dom

(
q
))(

0< |s−m|<α⇒
∣∣q(s)−M ∣∣<ε),

where the one-place operation symbol |·|, called an F-absolute value (or F-modulus), is
defined by

(∀t ∈F)(∃w ∈F)(|t | =w⇔ (0≤ t ∧w = t )∨(¬0≤ t ∧w =−t )).

If there is no such M ∈F , then the limit of q at m is said to be nonexistent in F . For an
F-constant symbol s0 ∈ dom

(
q
)
, the ‘continuity’ predicate is a binary predicate, cont

(
q,s0

)
,

defined by

cont
(
q,s0

)
⇔ q(s0)∈F ∧ lim

s→s0
q(s)= q(s0).

If cont
(
q,s0

)
is true, then q is said to be continuous at s0. We also say that q is continuous

on S0⊆F iff it is continuous at all s0 ∈ S0, that is

cont
(
q,S0

)
⇔ (∀s0 ∈ S0)

(
cont

(
q,s0

))
.

Definition 4.2 (n-Differential F -OperatorDawood &Megahed, 2019): Let n≥ 0, and
let s and β be F-variable symbols. The n-differential F-operator of a function q(s)∈F〈1〉,
denoted δnq(s), is characterized recursively by the following equations.
(i) δ0q(s)= q(s),
(ii) δ1q(s)= limβ→0F

q(s+β)−q(s)
β

= δ1δ0q(s),
(iii) n≥ 1⇒ δnq(s)= δ1δn−1q(s).

Evidently if the limit in definition 4.2 exists, then the n-differential δnq(s) of q is
consequently a unary F-function. Henceforth, we will usually write δnq and δq for
δnq(s) and δ1q(s), respectively.

Closely related to the differential operator is the n-differentiability predicate, which is
characterized as follows.
Definition 4.3 (n-Differentiability F -PredicateDawood &Megahed, 2019): Let
n≥ 0, let q(s) ∈ F〈1〉, and let s0 ∈ dom

(
q
)
be an F-constant symbol. The ternary n-

differentiability F-predicate for the function q, denoted diffn
(
q,s0

)
, is defined by

diffn
(
q,s0

)
⇔ δnq(s0)∈F .

If diffn
(
q,s0

)
is true, then q is said to be n-differentiable at s0.
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5There are so many systems of interval
algebras (see, e.g., Hansen, 1975, Kulisch,
2013; Gardenyes, Mielgo & Trepat, 1985;
Markov, 1995, Kaucher, 1980; Shary, 2002;
Piegat & Dobryakova, 2020, Dawood, 2011;
Dawood, 2012; Dawood & Dawood, 2019b,
and Dawood & Dawood, 2020). Here
we axiomatize classical (naive) interval
algebra as introduced in, e.g., Alefeld &
Mayer, 2000;Moore, 1979, Dawood, 2014,
and Dawood, 2019. An axiom system
for an interval differentiation algebra
over a different theory of intervals will
be fundamentally the same as the axiom
system presented in this text, but it might
differ in the resulting algebraic structure.

6For two setsA and B,A = B⇔
(∀w)(w ∈A⇔w ∈B).

Since for s0 ∈ dom
(
q
)
, δ0q(s0)= q(s0)∈F , the predicate diff0

(
q,s0

)
is always true and

accordingly every q ∈F〈1〉 is 0-differentiable at s0 ∈ dom
(
q
)
. Apparently, if diffn

(
q,s0

)
is true, then for 0≤m< n, δmq(s0)∈F .
Definition 4.4 (Continuous DifferentiabilityF-Predicate ): Let n≥ 0, let q(s)∈F〈1〉,
and let s0 ∈ dom

(
q
)
be an F-constant symbol. The continuous n-differentiability F-

predicate for the function q, denoted cdiffn
(
q,s0

)
, is characterized recursively by the

following statements.
(i) cdiff0

(
q,s0

)
⇔ cont

(
q,s0

)
,

(ii) cdiff1
(
q,s0

)
⇔ cdiff0

(
q,s0

)
∧cont

(
δ1q,s0

)
,

(iii) n≥ 1⇒ cdiffn
(
q,s0

)
⇔ cdiffn−1

(
q,s0

)
∧cont

(
δnq,s0

)
.

If cdiffn
(
q,s0

)
is true, then q is said to be continuously n-differentiable at s0.

In a manner analogous to the differential operator, if cdiffn
(
q,s0

)
is true, then for

0≤m< n, cdiffm
(
q,s0

)
is true as well.

A theoryTJ of an interval algebra or a classical5 interval algebra (henceforth aJ -algebra)
over a cofield can then be characterized as follows (Dawood & Dawood, 2020 and Dawood
& Dawood, 2022).
Definition 4.5 (Theory of Interval Algebra): Let σ = {+,×;−,−1;0,1} be a class
of descriptive (non-logical) signs, and let F=

〈
F;σF

〉
be a cofield. The theory TJ of an

interval algebra (a J -algebra) over F is the theory of a many-sorted algebraic structure
JF =

〈
JF ;F;σ JF

〉
axiomatized by the following sentences.

(I1) (∀S∈JF )
(
S={s∈F |

(
∃s∈F

)
(∃s∈F)

(
s≤F s≤F s

)
}
)
,

(I2) (∀S,T ∈JF )(◦∈ {+,×}⇒ S◦J T ={w ∈F |(∃s∈ S)(∃t ∈T )(w = s◦F t )}),
(I3) (∀S∈JF )(�∈ {−}∨(�∈ {−1}∧0J 6⊆ S))⇒�J S={w ∈F |(∃s∈ S)(w =�F s)}.

Axiom (I1) of the above definition characterizes what a J -number (an interval number,
or an F-interval) is. Axioms (I2) and (I3) prescribe, respectively the binary operations
of J -addition (‘‘ +J ’’) and J -multiplication (‘‘ ×J ’’), and the unary operations of J -
negation (‘‘ −J ’’) and J -reciprocal (‘‘ −1J ’’). The intended model of TJ corresponds the
sets ‘‘F ’’ and ‘‘ JF ’’ to the sets ‘‘ R’’ and ‘‘ JR’’ (of real numbers and real closed intervals),
respectively, and the symbols ‘‘ ◦F ’’, and ‘‘ �F ’’ to the binary and unary R-operations.

In the sequel, the upper-case letters S, T , andW , or equivalently
[
s,s
]
,
[
t ,t
]
, and

[
w,w

]
,

will be used as variable symbols ranging over the domain JF of J -numbers. A point
(singleton, or degenerate) J -numbers {s} will be denoted by [s]. Also, the letters A, B, and
C , or equivalently

[
a,a
]
,
[
b,b
]
, and

[
c,c
]
, will be used to designate constants of JF . In

particular, we will use 1J and 0J to designate, respectively, the singleton J -numbers
{1F } and {0F }. It is convenient here to single out the set J[s] of point J -numbers. This is
defined thus:

J[s]={S∈JF |(∃s∈F)(S= [s,s])}.

Equality of J -numbers is an immediate consequence of the axiom of extensionality6 of
set theory plus the fact that a J -number is a totally ≤-ordered subset of F . Precisely,[
s,s
]
=I
[
t ,t
]
⇔ s=F t ∧ s=F t .
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The categoricity of the theory TJ of J -algebra is established by the following theorem.
Theorem 4.1 (Categoricity of the Interval Theory): The theory TJ of J -algebra is
categorical. That is, Cat

(
TJ
)
.

Proof Let σ = {+,×;−,−1;0,1} be a class of descriptive (non-logical) signs of L,
and let J1 =

〈
J1;F1;σ

J1
〉
and J2 =

〈
J2;F2;σ

J2
〉
be two structures such that J1 |H

TJ ∧ J2 |H TJ . Accordingly,
〈
F1;σ

F1〉 and 〈F2;σ
F2〉 are two cofields. A theory of

cofields is categorical, that is, there is one and up to isomorphism only one cofield.
The structure

〈
R;σR〉 is characterized, up to isomorphism, as the only cofield.

Let i :F1 ↪→F2 be the isomorphism from F1 onto F2. We can then define I :J1 ↪→J2

by

I (S)= I
([
s,s
])
=
[
i
(
s
)
,i(s)

]
,

for all S=
[
s,s
]
inJ1 where s,s∈F1. By definition 4.5, It is straightforward to show that I is

an isomorphism from J1 onto J2. This proves that TJ is categorical. �

That is, the theory TJ uniquely characterizes the algebra of J -numbers, and the
structure 〈JR;R;+J ,×J ;0J ,1J 〉 is, up to isomorphism, the only possible model of
TJ . Accordingly, in establishing our assertions about J -numbers, the properties of real
numbers are assumed in advance.

By means of definition 4.5 and from the fact that J -numbers are ordered sets of R, the
following theorem is derivable (Dawood, 2012 and Dawood & Dawood, 2020).
Theorem 4.2 (Interval Operations): Let

[
s,s
]
and

[
t ,t
]
be two J -numbers. The binary

and unary J -operations (interval operations) are formulated thus:
(i) J -addition.

[
s,s
]
+J

[
t ,t
]
=
[
s+Rt ,s+Rt

]
,

(ii) J -multiplication.
[
s,s
]
×J

[
t ,t
]
= [minP,maxP],

(iii) J -negation. −J
[
s,s
]
=
[
−Rs,−Rs

]
,

(iv) J -reciprocal. 0J 6⊆
[
s,s
]
⇒
[
s,s
]−1J
=

[
s
−1R
,s
−1R
]
,

where P ={s×Rt ,s×Rt ,s×Rt ,s×Rt }, and min and max are respectively the ≤R-minimal
and ≤R-maximal.

If no confusion is likely, we will often omit the subscriptsJ andR. It is clear that interval
addition, multiplication, and negation are total J -operations, while interval reciprocal
is a partial J -operation. As customary, interval subtraction and division are defined
respectively as S−T = S+(−T ) and S÷T = S×

(
T
−1
)
.

The set-theoretic characterization of interval arithmetic brings to the fore a peculiar
feature that seems strange at first. Definition 4.5 entails that a J -operation considers all
occurrences of variables as independent (Dawood & Dawood, 2020). Let two J -variables
S and T be assigned the same J -constant [−1,0]. Evidently, S×J S= S×J T = [−1,1]
which is equal to the image, Iind, of the multivariate R-function qind(s,t )= s×Rt , with
s,t ∈ [−1,0]. Now consider a unaryR-function qdep(s)= s×Rs, with s∈ [−1,0]. The image
Idep of qdep is [0,1]. Provided that images of R-functions are inclusion monotonic (see,
e.g., Dawood, 2012 and Dawood & Dawood, 2019b), we have the nice enclosure Idep⊆ Iind,
and therefore the result of a J -operation S×J T is a guaranteed interval enclosure of the
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image of the corresponding R-function. Although this is typically appraised as one of the
strengths of interval analysis, in many practical situations, interval enclosures might be
too wide to be beneficial. The name of this crucial phenomenon is the interval dependency
problem, a concept that we make precise in the next theorem (see Dawood & Dawood,
2019a and Dawood & Dawood, 2020).

Theorem 4.3 (Dependency Problem): Let Si be J -numbers, for 1 ≤ i ≤ n. Let
qR(s1,...,sn) be a continuous R-function with si ∈ Si, and let qJ (S1,...,Sn) be a J -
function defined by the same rule as qR. The result of computing the image of the intervals
Si under qR, denoted Iq(S1,...,Sn), using classical J -operations (definition 4.2), cannot
be generally exact if some si are functionally dependent. That is,
(i)

(
∃q
)(
Iq(S1,...,Sn) 6= qJ (S1,...,Sn)

)
.

In general,
(ii)

(
∀q
)(
Iq(S1,...,Sn)⊆ qJ (S1,...,Sn)

)
.

What this theorem shows is that the result obtained by the J -function qJ is usually
overestimated due to the presence of functional dependence. Interval dependency is a
‘deep-rooted’ problem, dating back to the early works on interval arithmetic. A recent
investigation of the logical underpinnings and some ways out of the problem can be found
in Dawood & Dawood (2019a) and Dawood & Dawood (2020). A plausible definition and
a graphical representation (dependency diagrams) of the dependence of interval variables
were also proposed in Shary & Moradi (2021). Plenty of effort has been made to administer
feasible remedies. With convenient refined techniques, the interval enclosure qJ can be
made arbitrarily close to the image Iq. By noting regions of monotonicity, one technique
is defining the elementary interval functions as the exact images of their corresponding real
counterparts. Let n be a nonnegative integer and S=

[
s,s
]
be a J -number. We can define

as instances

eS=
[
es,es

]
, ln(S)=

[
ln
(
s
)
,ln(s)

]
if s> 0;

√
S=

[
√
s,
√
s
]
if s≥ 0, sin(S)=

[
min
s∈S
(sin(s)),max

s∈S
(sin(s))

]
;

Sn=


[
sn,sn

]
iff s> 0 or n is odd,[

sn,sn
]

iff s< 0 and n is even,[
0,|S|n

]
iff 0∈ S and n is even;

where |S| =max{
∣∣s∣∣,|s|} is the J -absolute value(or J -modulus) of S.

Performing naive J -arithmetic (theorem 4.2) on these exact images we can get sharper
enclosures of their algebraic combinations. Moreover, a diversity of interval methods has
been devised to compute narrower interval enclosures. Without pretension to be complete,
we can mention the subdivision method, centered forms, circular complex centered forms,
generalized centered forms,Hansen’s method, remainder forms (see, e.g., Dawood & Dawood,
2019a;Moore, 1979, Rokne & Ratschek, 1984, Kulisch, 2013 and Alefeld & Mayer, 2000). For
instance, the subdivision method presented by Moore in Moore, 1966 and Moore, 1979 is
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a celebrated method that can be described as follows. Let S=
[
s,s
]
be a J -number. First,

subdivision of S into n subintervals Si is applied such that

Si=
[
s+ (i−1)`(S)/n,s+ (i)`(S)/n

]
,

where `(S)= s− s and `(Si)= `(S)/n are respectively the widths (lengths) of S and Si.
Consequently S=∪ni=1Si. Then, evaluating a J -function qJ for each subinterval Si yields
the enclosure (Dawood, 2014)

Iq(S)⊆∪ni=1qJ (Si)⊆ qJ (S).

As the number n of subintervals gets larger, ∪ni=1qJ (Si) gets arbitrarily close to the exact
image Iq(S). The subdivisionmethod thus gives sharper enclosures than the naive evaluation
qJ (S). In ‘Machine implementation of interval auto-differentiation’, we will deploy the
subdivision method in order to compute reliable and realistic enclosures of families of real
functions and their derivatives.

The characterization of the interval algebraic operations implies a number of familiar
algebraic properties. However, being a particular kind of set arithmetic, interval arithmetic
(J -arithmetic) has certain peculiar properties involving set inclusion. The singleton
intervals 0J and 1J are identities for J -addition and J -multiplication, respectively;
J -addition and J -multiplication are both associative and commutative; J -addition is
cancellative; J -multiplication is cancellative only for all S 6⊇ 0J ; a J -number is invertible
for J -addition (respectively, J -multiplication) if and only if it is a singleton J -number
(respectively, a nonzero singleton J -number); and J -multiplication left and right S-
distributes over J -addition (see definition 2.6 of ‘On theories and structures: some
metatheoretical fundamentals’). In other words, in accordance with definition 2.8, the
structure 〈JR;+J ,×J ;0J ,1J 〉 of classical J -numbers can be shown to be a commutative
S-semiring (Dawood & Dawood, 2019a and Dawood & Dawood, 2020).

Throughout this text we will make use of the following theorems (see Dawood, 2014 and
Dawood & Dawood, 2020).
Theorem 4.4 (InclusionMonotonicity forJ -Numbers): Let S1, S2, T1, and T2 be
J -numbers such that S1⊆T1 and S2⊆T2. Let ◦J ∈ {+,×} be a binary J -operation and
�J ∈ {−,

−1
} be a definable unary J -operation. Then

(i) S1◦J S2⊆T1◦J T2,
(ii) �J S1⊆�J T1.

From inclusion monotonicity, plus the fact that s∈ S⇔ [s,s]⊆ S, if s∈ S and t ∈T , then
for ◦J ∈ {+,×} and �J ∈ {−,−1}, we obviously have s◦Rt ∈ S◦J T and �Rs∈�J S.

At this point, let us introduce an abbreviation that we will make use of. Let
s = (s1,...,si,...,sn) be an ordered real n-tuple, and let S = (S1,...,Si,...,Sn) and
T = (T1,...,Ti,...,Tn) be two ordered n-tuples of J -numbers, then

S⊆T⇔ (∀i)(Si⊆Ti),

s∈ S⇔ (∀i)(si ∈ Si).
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In the following theorem, let [s]≤J[s] [t ]⇔ s≤Rt .
Theorem 4.5 (Isomorphism Theorem forJ -Numbers ): The structure 〈J[s];+J ,×J ;≤I[s]〉

of point J -numbers is isomorphic to the ordered field 〈R;+R,×R;≤R〉 of real numbers.

Two further results we will need are stated below (Dawood, 2012).
Theorem 4.5 (Algebraic Operations for PointJ -Numbers): Let S and T be two J -
numbers. Then:
(i) The sum S+T is a point J -number iff each of S and T is a point J -number, that is

(∀S,T ∈J )
(
S+T ∈J[s]⇔ S∈J[s]∧T ∈J[s]

)
.

(ii) The product S×T is a point J -number iff each of S and T is a point J -number, or
at least one of S and T is 0J , that is
(∀S,T ∈J )

(
S×T ∈J[s]⇔

(
S∈J[s]∧T ∈J[s]

)
∨(S= 0J ∨T = 0J )

)
.

Theorem 4.7 (Zero Divisors inJ -Numbers): Nonzero zero divisors do not exist in J -
arithmetic, that is

(∀S,T ∈J )(S×T = 0J ⇒ S= 0J ∨T = 0J ).

Before turning to the axioms of the theory TδJ of a differential J -algebra, it is necessary
for our purpose to formalize some analytic concepts within the framework of the theory
TJ of J -numbers.

Before proceeding any further, let us agree on some basic notation. By an n-ary real
function (in short, R-function) we will always mean a function qR :DR ⊆Rn

7→R, and
by an n-ary interval function (in short, J -function) we will always mean a function
qJ :DJ ⊆J n

7→J . The R-subscripted symbols qR,uR,vR will designate R-functions,
while the J -subscripted symbols qJ ,uJ ,vJ will designate J -functions. For simplicity of
notation, if the function type is apparent from the type of its variables(arguments), the
subscripts ‘‘ R’’ and ‘‘ J ’’ will usually be dropped. For instance, whenever unambiguous,
we use the notations q(s1,...,sn) and q(S1,...,Sn) for, respectively, an R-function and a
J -function, which are both defined by the same rule. For 1≤ i≤ n and 1≤ j ≤ k , let
Si and Aj be respectively J -variable symbols and J -constant symbols. We denote by
qJ
(
Si:n;Aj:k

)
an n-ary (or multivariate) J -function in the interval variables Si and the

interval constants Aj . Similarly, we understand by qR
(
si:n;aj:k

)
an n-ary R-function in the

real variables si and the real constants aj . For instance,

qJ
(
Si:2;Aj:2

)
= qJ (S1,S2;A1,A2)=A1S21+A2S2,

is a binary J -function whose variable arguments are S1 and S2, and whose constants are
A1 and A2.

With a few exceptions, without loss of generality, the present discussion will be confined
to unary functions only. For brevity, therefore, we will often adopt the standard notations
q(s) and q(S) respectively for the unary functions q

(
s;aj:k

)
and q

(
S;Aj:k

)
. The sets of unary

real and interval functions will be denoted by R〈1〉 and J〈1〉 respectively.
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7From the fact that the converse relation
q̂ is always definable, the preimage of a
function q is always definable, regardless of
the definability of the inverse function q−1.

Next, we define the interval enclosure of a bounded set of real numbers.
Definition 4.6 (Interval Enclosure of a Bounded Set): Let A be a bounded subset of R.
The interval enclosure of A, denoted EJ , is defined to be

EJ (A)=
[
inf(A),sup(A)

]
.

Clearly, A⊆ EJ (A). For instance EJ ({3,4,2})= [2,4] and EJ ([1,3[)= [1,3].
An important notion we will need is that of the image set of bounded subsets ofR, under

an n-ary real-valued function. This notion is a special case of that of the corresponding
(n+1)-ary relation on R. More precisely, we have the following definition.
Definition 4.7 (Image of Bounded Real Sets): Let q be an n-ary function on R, and for
(s,t )∈ q, let s= (s1,...,sn), with each si is restricted to vary on a bounded set Si⊂R, that
is, s is restricted to vary on a set S⊂Rn. Then, the image of S (or the image of the sets Sk)
with respect to q, in symbols Iq, is characterized to be

T = Iq(S)= Iq(S1,...,Sn)

={t ∈R|(∃s∈ S)
(
sqt
)
}

= {t ∈R|
(
∃
n
i=1si ∈ Si

)(
t = q(s1,...,sn)

)
}⊆R.

The preimage7 S of T is characterized to be the image of T with respect to the converse q̂
of q. In other words

S= Îq(T )={s∈Rn
|(∃t ∈ T )

(
t q̂s
)
}.

Two notions essential for the investigation conducted in this article are those of a family
of real functions and its image.
Definition 4.8 (Real Family): For 1≤ i≤ n and 1≤ j ≤ k , an n-ary real family (a family
of n-ary real functions, or in short, an R-family), denoted QR

(
si:n;aj:k

)
, is a set of real

functions qR
(
si:n;aj:k

)
subject to the following conditions

(i) q is a function rule,
(ii) si are variable symbols varying on bounded subsets Si of R,
(iii) aj are constant symbols (coefficients) from bounded subsets Aj of R, and
(iv) for each aj ∈ Aj , qR

(
si:n;aj:k

)
is continuous on the sets Si. We understand by the

converse of QR, denoted Q̂R, the set of the converse relations q̂.

Note that a real family is generated by one function rule, that is, the functions qR
(
si:n;aj:k

)
inQR all have the same rule q but different constant arguments. If the setsAj are singletons,
then the family QR reduces to exactly one n-ary real function. To clarify the matters, we
give some examples.
Example 4.1 (Real Families): The following are instances of real families.
(i) Let QR be the family generated by the function rule qR(si:2;a)= s21+ as2, with the

variables s1 and s2 vary respectively on the bounded sets [2,4[ and [5,6] and the
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constant a is from the bounded set {3,7}. The family QR has exactly the two binary
functions
qR(si:2;3)= s21+3s2 and qR(si:2;7)= s21+7s2.

(ii) Let UR be the family generated by the function rule uR(s;a)= as4, with the variable
s varies on the bounded set [2,4[ and the constant a is from the bounded set [1,2]. The
family UR has an infinite number of unary functions. Among these are, for example

uR(s;1)= s4,uR

(
s;
3
2

)
=

3s4

2
,...,etc .

We characterize the image of a real family as follows.
Definition 4.9 (Image of a Real Family): Let QR be a real family generated by a function
rule t = q

(
si:n;aj:k

)
, with si ∈ Si and aj ∈Aj . Then, the image of the family QR (or

the image of the sets Si with respect to QR), denoted IQ, is the union of the images of
S= (S1,...,Sn)⊂Rn with respect to each q in QR for all aj ∈Aj . That is

T = IQ(S)= IQ(S1,...,Sn)

={t ∈R|
(
∃
n
i=1si ∈Si

)(
∃
k
j=1aj ∈Aj

)(
t = q

(
si:n;aj:k

))
}⊆R.

Obviously, for each q in QR, Iq⊆ IQ. An immediate consequence of definition 4.9 and
the well-known extreme value theorem (see Dawood, 2012) is the following important
property.
Theorem 4.8 (Main Theorem of Image Evaluation): Let QR be a real family generated by
a function rule q

(
si:n;aj:k

)
, with si ∈Si and aj ∈Aj . If Si and Aj are real closed intervals,

then the image IQ(S1,...,Sn) of Si, with respect to the family QR, is in turn a real closed
interval such that

IQ(S1,...,Sn)=

min
si∈Si
aj∈Aj

q
(
si:n;aj:k

)
,max
si∈Si
aj∈Aj

q
(
si:n;aj:k

).

If the sets Aj of coefficients are singletons, then the family is in turn a singleton and the
image of IQ reduces to the usual image Iq of a real function q over real closed intervals

Iq(S1,...,Sn)=

[
min
si∈Si

q(s1,...,sn),max
si∈Si

q(s1,...,sn)
]
.

By referring to definition 4.6, we can characterize the important notion of the interval
extension of a real family.
Definition 4.10 (Interval Extension of a Real Family): Let QR be an n-ary real family
generated by a function rule qR

(
si:n;aj:k

)
, with si ∈ Si and aj ∈Aj . We understand by an

interval extension of QR an n-ary interval function qJ
(
Si:n;Aj:k

)
of the same rule as qR,

and whose arguments are Si= EJ (Si) and Aj = EJ
(
Aj
)
.
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Clearly, if Si and Aj are real closed intervals, then Si = Si and Aj =Aj . We will
henceforth deploy the predicate Ext

(
qJ ,QR

)
to mean that an interval function qJ is the

interval extension of the real family QR, or equivalently, the family QR is the real intension
of the interval function qJ . If Aj are singletons, then the family QR is a singleton and we
call qJ a simple extension of QR. If Si and Aj are singletons, then we call the point-valued
interval function qJ a point extension of QR.

The following example will illustrate this point.
Example 4.2 (Interval Extensions of Real Families): Recall the real families QR and
UR of example 4.1. The interval extensions of QR and UR are given respectively by
(i) qJ (Si:2;A)= S21+AS2, with S1 = EJ ([2,4[)= [2,4], S2 = EJ ([5,6])= [5,6], and

A= EJ ({3,7})= [3,7].
(ii) uJ (S;A)=AS4, with S= EJ ([2,4[)= [2,4], and A= EJ ([1,2])= [1,2].

The previous discussion faces uswith the reasonable question: does every interval function
have a real intension? In order to answer this, we next define what a proper interval function
is.
Definition 4.11 (Proper Interval Function): We say that an interval function qJ :DJ ⊆

J n
7→J is proper, in symbols Prop

(
qJ
)
, iff it is set-theoretically definable in terms of a real

function of the same rule. That is

Prop
(
qJ
)
⇔
(
∃qR

)(
qJ (S1,...,Sn)={w ∈R|

(
∃
n
i=1si ∈ Si

)(
w = qR(s1,...,sn)

)
}
)
.

By definitions 4.11 and 4.5, the following result is derivable.
Theorem 4.9 (Criteria for Proper Interval Functions): Let ◦ ∈ {+,×} be a binary J -
operation and �∈ {−,−1} be a definable unary J -operation. Then, the following statements
are true.
(i)

(
∀qJ ,uJ

)(
Prop

(
qJ
)
∧Prop(uJ )⇒Prop

(
qJ ◦uJ

))
,

(ii)
(
∀qJ

)(
Prop

(
qJ
)
⇒Prop

(
�qJ

))
,

(iii)
(
∀qJ ,uJ

)(
Prop

(
qJ
)
∧Prop(uJ )⇒Prop

(
qJ (uJ )

))
.

In accordance with definition 4.11 and its previous consequence, we have then the
following important result.
Theorem 4.10 (Intensionality of an Interval Function): An interval function is
intensionable iff it is proper. In other words

Prop
(
qJ
)
⇔ (∃QR)

(
Ext

(
qJ ,QR

))
.

For example all elementary interval functions are intensionable. On the contrary,
degenerate functions such as the midpoint or radius of an interval are not proper and
accordingly not intensionable. Definition 4.11 and the deductions from it can be easily
generalized to proper J m-valued functions, in which case their intensions will be families
of Rm-valued functions.

Toward axiomatizing a theory of a differential interval algebra, it remains to formalize the
notions of differentiability of a real family and of an interval function. Henceforth, we will
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consider only families of unary real functions and their interval extensions. Accordingly,
when there is no potential for ambiguity, we will write Q(s), or simply Q, for the unary
real family Q

(
s;aj:k

)
.

Next, we extend the differential operator to families of unary real functions.
Definition 4.12 (Differential Operator for a Real Family): Let QR

(
s;aj:k

)
be a unary

real family in the real variable s and the real constants aj . For a nonnegative integer n, the
n-differential operator of QR

(
s;aj:k

)
, denoted δnQR

(
s;aj:k

)
, is defined to be the set of all

real functions δnq
(
s;aj:k

)
for every q∈QR and every constant aj .

We have yet nothing to tell us if a real family is differentiable. The following two
definitions introduce, respectively, the notions of differentiability and continuous
differentiability of a unary real family Q

(
s;aj:k

)
.

Definition 4.13 (Differentiability of a Real Family): A unary real family QR
(
s;aj:k

)
is n-differentiable at a real constant s0, in symbols diffn(Q,s0), iff for every q in QR,
s0 ∈ dom

(
q
)
, and q is n-differentiable at s0. That is

diffn(Q,s0)⇔
(
∀q∈Q

)(
s0 ∈ dom

(
q
)
∧diffn

(
q,s0

))
.

Definition 4.14 (Continuous Differentiability of a Real Family): A unary real family
QR
(
s;aj:k

)
is continuously n-differentiable at a real constant s0, in symbols cdiffn(Q,s0), iff

for every q in QR, s0 ∈ dom
(
q
)
, and q is continuously n-differentiable at s0. That is

cdiffn(Q,s0)⇔
(
∀q∈Q

)(
s0 ∈ dom

(
q
)
∧cdiffn

(
q,s0

))
.

In accordance with the above concepts, the differential operator for interval functions
is then definable.
Definition 4.15 (Interval Differential Operator): Let n≥ 0, and let q(S) be a unary
interval function that has a real intension the family Q(s). The n-differential J -operator of
q(S), denoted δnq(S), is characterized to be the interval extension of δnQ(s). In other words,
let δnQ(s)=U(s), then δnq(S)= u(S).

In a manner analogous to differentiability in R, the interval differentiability predicate is
definable as follows.
Definition 4.16 (Interval Differentiability Predicate): Let n≥ 0, let q ∈J〈1〉, and let
S0 ∈ dom

(
q
)
be a J -constant symbol. The ternary n-differentiability J -predicate, denoted

diffn
(
q,S0

)
, is defined by

diffn
(
q,S0

)
⇔ δnq(S0)∈J .

If diffn
(
q,S0

)
is true, then the interval function q is said to be n-differentiable at the closed

interval S0.

Throughout this article, we will employ the following abbreviation.

diffn
(
q1,q2,...,qk

)
S0
⇔ diffn

(
q1,S0

)
∧diffn

(
q2,S0

)
∧ ...∧diffn

(
qk,S0

)
.
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By means of definitions 4.15 and 4.16 plus a simple continuity argument, we have the
following theorem that establishes the criteria for interval differentiability.
Theorem 4.11 (Interval Differentiability Criteria): An interval function qJ ∈ J〈1〉 is
n-differentiable at a J -number S0 if and only if
(i) qJ (S) is proper with a real intension Q(s), and
(ii) Q(s) is continuously n-differentiable at every s0 ∈ S0.

From the fact that images of R-functions are inclusion isotonic (Dawood, 2012), we
have the next key result concerning interval enclosures of R-families.
Theorem 4.12 (Image Enclosure of a Real Family): Let q(s) be a real function in a family
Q(s), with s is restricted to vary on a real closed interval S0, and let q(S0) be the interval
extension of Q(s) at S0. The following two sentences are true.
(i)

(
∀q∈Q

)(
Iq(S0)⊆ IQ(S0)⊆ q(S0)

)
,

(ii)
(
∀δq∈ δQ

)(
Iδq(S0)⊆ IδQ(S0)⊆ δq(S0)

)
.

Moreover, finer enclosures of real families can be obtained via the subdivision method.
The following corollary is implied by theorem 4.12.
Corollary 4.1 (Subdivision Enclosure of a Real Family): Recall the notation used in
theorem 4.12, and let S0 be subdivided into n≥ 1 subintervals. Then

IQ(S0)⊆∪ni=1q(Si)⊆ q(S0).

Obviously, IQ(S0)= limn→∞∪
n
i=1q(Si).

To the best of our knowledge, in all interval literature, an interval-valued function is
assumed to have singleton (real) constants and accordingly an interval function might be
only an extension of a single real function. An interesting and important observation from
the above discussion is that this presumption introduces an unnecessary restriction to the
semantic of an interval function in the general sense. As above characterized, a proper
interval function qJ

(
Si:n;Aj:k

)
is an extension of a whole family of real functions and this

family is a singleton if, and only if, the interval constants Aj are singletons.
With the aid of the notions now at hand, we can then axiomatize the theory TδJ of a

differential interval algebra (henceforth a differential J -algebra).
Definition 4.17 (Theory of a Differential Interval Algebra): Let σ ={+,×;−,−1;0,1} be
a class of non-logical signs, and let TJ be the theory of an interval S-semiring J=

〈
J ;σ J

〉
.

The theory TδJ of a differential J -algebra Jδ =
〈
J ;σ J

;δ
〉
is the deductive closure of

TJ together with the following two axioms.
(i)

(
∀q,u∈J〈1〉

)(
δ
(
q+u

)
= δq+δu

)
,

(ii)
(
∀q,u∈J〈1〉

)(
δ
(
q×u

)
= q×δu+u×δq

)
.

Consider the constant interval functions q(S)= 0J and u(S)= 1J . With the aid
of definition 4.15, obviously δ(0J )= δ(1J )= 0J . More generally, for any interval
constant symbol A, δ(A)= 0J and δ(AS)= A. Accordingly, the set J can be defined
thus: J = {q ∈J〈1〉|δq= 0J }. On grounds of definition 4.15 and axioms (i) and (ii) of
the preceding definition, further properties of interval differentiation can be derived
analogously.
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A CATEGORICAL AXIOMATIZATION OF INTERVAL
DIFFERENTIATION ARITHMETIC
Building on the system TδJ of a differential J -algebra axiomatized in the previous section,
the present section provides a rigorous mathematical foundation for interval differentiation
arithmetic (henceforth 1J -arithmetic). We are almost ready to lay out an axiom system
for the theory T1J of interval differentiation numbers (henceforth 1J -numbers) as a
two-sorted extension of TδJ . By virtue of the mathematical underpinnings presented in
‘A differential interval algebra’, we axiomatize, in the present section, the basic operations
of T1J and prove some of their fundamental properties. Moreover, we prove categoricity
and consistency of 1J -arithmetic.

An obvious starting point is to define interval differentiation n-tuples.
Definition 5.1 (Interval Differentiation n-Tuples): Let Jδ =

〈
J ;σ J

;δ
〉
be a differential

J -algebra, let q be a unary J -function, and for an integer n≥ 0, let J n be the n-th
Cartesian power of J . The set of all interval differentiation n-tuples over J , with respect to
an individual J -constant S0 ∈J , is characterized to be

nUJ =

{
Q∈J n+1

|
(
∃q∈J〈1〉

)(Q =
(
δ0q(S0),δ1q(S0),...,δnq(S0)

)
∧ S0 ∈ dom

(
q
)
∧diffn

(
q,S0

) )}
.

An interval differentiation n-tuple is thus an ordered n-tuple of J -constants. Hereafter,
we will usually write q, δq,..., δnq for δ0q(S0), δ1q(S0), . . . , δnq(S0), respectively. The present
article is concerned with dyadic interval differentiation tuples, that is n-tuples with n= 1;
and we will hereon adopt the name ‘‘interval differentiation numbers’’ (‘‘ 1J -numbers’’, or
‘‘ 1J -pairs ’’) for dyadic interval differentiation tuples. Let UJ designate the set of 1J -
numbers at some J -constant S0, and let the letters Q, U, and V , or equivalently the pairs(
q,δq

)
S0
, (u,δu)S0 , and (v,δv)S0 , be variable symbols varying on the set UJ of 1J -pairs.

Also, let the letters A, B, and C, or equivalently (a,0J )S0 , (b,0J )S0 , and (c,0J )S0 , designate
constants of UJ . In particular, we use 1UJ to designate the 1J -number (1J ,0J )S0 and
0UJ to designate the 1J -number (0J ,0J )S0 . Moreover, it is convenient for our purpose
to define a proper subset of UJ as

U(J ,0)=
{
Q∈UJ |Q =

(
q,0J

)
S0

}
.

We are now ready to axiomatize the theory T1J of an interval differentiation algebra (or
a 1J -algebra) over an interval S-semiring.
Definition 5.2 (Theory of Interval Differentiation Algebra): Let σ ={+,×;−,−1;0,1} be
a class of non-logical signs, and let

(
q,δq

)
S0
, (u,δu)S0 , and (v,δv)S0 be in UJ . An

interval differentiation algebra (or, in short, a 1J -algebra) over a differential J -algebra
Jd =

〈
J ;σ J

;δ
〉
is a two-sorted structure UJ =

〈
UJ ;J ;σUJ

〉
. The theory T1J of UJ is the

deductive closure of the system TδJ of Jd and the following set of axioms.
(IDA1) 1J -equality.

(
q,δq

)
S0
=UJ (u,δu)S0⇔ q(S0)=J u(S0)∧δq(S0)=J δu(S0),

(IDA2) Binary 1J -operations. ◦∈ {+,×}⇒
(
q,δq

)
S0
◦UJ (u,δu)S0 =

(
q◦J u,δ

(
q◦J u

))
S0
,

(IDA3) Unary 1J -operations. � ∈ {−} ∨
(
�∈ {−1}∧0J 6⊆ q(S0)

)
⇒ �UJ

(
q,δq

)
S0
=(

�J q,δ
(
�J q

))
S0
.
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The intended model of the theory T1J corresponds the sets ‘‘ J ’’ and ‘‘ UJ ’’ to the sets
of J -numbers and 1J -numbers, respectively, and the symbols ‘‘ ◦J ’’, and ‘‘ �J ’’ to the
binary and unary J -operations. When the context is clear, for simplicity henceforth, we
will drop the subscripts ‘‘ UJ ’’, ‘‘ J ’’, and ‘‘ S0’’. Also, we will usually write the algebraic
structure UJ as 〈UJ ;+UJ ,×UJ ;0UJ ,1UJ 〉, omitting the set J .

The inclusion and membership relations for 1J -numbers can be defined as follows.
Definition 5.3 (Inclusion Relation on1J -Numbers): The inclusion relation on 1J -
numbers, denoted ⊆UJ , is defined as follows.(
∀Q,U∈UJ

)(
Q⊆UJ U⇔ qJ (S0)⊆ uJ (S0)∧δqJ (S0)⊆ δuJ (S0)

)
.

Definition 5.4 (Membership Relation in1J -Numbers): The membership relation in
1J -numbers, denoted ∈UJ , is defined as follows.

(∀q∈UR)
(
∀Q∈UJ

)(
q∈UJ Q⇔ qR(s0)∈ qJ (S0)∧δqR(s0)∈ δqJ (S0)

)
.

An important notion for our purposes is that of a point 1J -number.
Definition 5.5 (Point1J -Number): By a point (or singleton) 1J -number, denoted[
q
]
=
([
q
]
,
[
δq
])

S0
, we understand a 1J -number whose all components are point intervals,

that is
[
q
]
(S0) and

[
δq
]
(S0) are in J[s].

The set of all point 1J -numbers will be denoted by U[q]. In the sequel, we will make
use of the following theorem that establishes the criteria when a1J -number is a singleton.
Theorem 5.1 (Criteria for Point1J -Numbers): A 1J -number

(
q,δq

)
S0
is point iff

(i) q is a constant point-valued function, that is q= [c]∈J[s], or
(ii) S0= [s0]∈J[s] and each constant in the rule of q is a point interval.

Proof The proof is immediate from theorem 4.6. �

By means of definitions 4.15 plus the rules of differential sum and product, axiomatized
in definitions 4.17, the following theorem is easily derivable from the theory T1J .
Theorem 5.2 (Algebraic Operations of1J -Numbers): Let

(
q,δq

)
S0
and (u,δu)S0 be

two 1J -numbers. Then, the binary and unary 1J -operations are formulated as follows.
(i) 1J -addition.

(
q,δq

)
+UJ (u,δu)=

(
q+J u,δq+J δu

)
,

(ii) 1J -multiplication.
(
q,δq

)
×UJ (u,δu)=

(
q×J u,δq×J u+J q×J δu

)
,

(iii) 1J -negation. −UJ

(
q,δq

)
=
(
−J q,−J δq

)
.,

(iv) 1J -reciprocal. 0J 6⊆ q(S0)⇒
(
q,δq

)−1UJ = (q−1J ,−J q−2×J δq
)
.

To complete our characterization of 1J -arithmetic, we define as customary 1J -
subtraction and 1J -division respectively as Q−U=Q+

(
−U

)
and Q÷U=Q×

(
U
−1
)
.

With the aid of the meta-theoretic notions characterized in definitions 2.2–2.4, we
are able to proceed towards proving three important meta-theorems about the theory
T1J of 1J -numbers, concerning respectively existence, categoricity and consistency of a
1J -algebra.
Theorem 5.3 (Existence of a 1J -Algebra): There exists at least one 1J -algebra.
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8Categoricity is a bedrock of mathematics.
For further details on the key role of
categoricity in logic and mathematics, see,
e.g., Corcoran, 1980, Dawood & Megahed,
2019, and Shapiro, 1985.

Proof Since the theory TJ of aJ -algebra has the model
〈
JR;σ

J
〉
of J -numbers, it follows

that the theory T1J has a model
〈
UJ ;J ;σUJ

〉
, and thus existence of a 1J -algebra is

proved. �

Theorem 5.4 (Categoricity of1J -Arithmetic): The theory T1J of 1J -numbers is
categorical.

Proof The theorem follows from the categoricity of the theory TJ of interval algebra by an
argument analogous to the one used in theorem 4.1. �

That is, the theory T1J uniquely characterizes the algebra of 1J -numbers, and the
structure 〈UJ ;+UJ ,×UJ ;0UJ ,1UJ 〉 is, up to isomorphism, the only possible model of
T1J . To reiterate, in accord to theorem 5.4, the system T1J , axiomatized in definition
5.2, is the ‘‘best’’ axiomatization of 1J -numbers, in the sense that it rightly accounts, up
to isomorphism, for every structure of 1J -arithmetic.8

The next theorem establishes the consistency of the theory T1J of 1J -numbers.
Theorem 5.5 (Consistency of 1J -Arithmetic): The theory T1J of 1J -numbers is
consistent.

Proof In accord to definition 2.4, the proof is immediate from theorem 5.3. The theory
T1J is satisfiable by themodel 〈UJ ;+UJ ,×UJ ;0UJ ,1UJ 〉 and thus is consistent. �

Owing to the categoricity theorem for T1J , the algebraic properties of J -numbers are
naturally assumed priori. Therefore, whenever unambiguous, hereon we will use these
properties without further mention.

Noteworthy, by virtue of the theory developed so far, we have the profound results
that each 1J -number represents a guaranteed interval enclosure of the image of a whole
family of R-functions and their derivatives and accordingly that a 1J -number is an
interval extension of every1R-number that corresponds to each function in the real family
(See ‘Machine implementation of interval auto-differentiation’ for clarifying numerical
examples). In consequence of theorem 4.12, these important results are made precise in
the following immediate theorem and its corollary.
Theorem 5.6 (Differential Enclosure of a Real Family): Let Q be a unary real family
continuously differentiable on a real closed interval S0 and let qJ be its interval extension.
Then, for every qR in Q(
IqR (S0),IδqR (S0)

)
⊆UJ

(
IQ(S0),IδQ(S0)

)
⊆UJ

(
qJ (S0),δqJ (S0)

)
.

Corollary 5.1 (Interval Extension of a1R-Number): Let q be a real function continu-
ously differentiable on a real closed interval S0. Then, for every s0 ∈ S0,(
qR,δqR

)
s0
∈UJ

(
qJ ,δqJ

)
S0
.
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Finally, let us note that we can get sharper enclosures of the pair
(
IQ(S0),IδQ(S0)

)
with

the aid of the subdivision method. In consequence of theorems 5.2 and 5.6 we are led to the
following theorem.
Theorem 5.7 (Subdivision Theorem for1J -Numbers): Recall the notation used in
theorem 5.6, and let S0 be subdivided into n≥ 1 subintervals. Then

(
IQ(S0),IδQ(S0)

)
⊆UJ

n⋃
i=1

(
qJ (Si),δqJ (Si)

)
⊆UJ

(
qJ (S0),δqJ (S0)

)
.

Moreover,
(
IQ(S0),IδQ(S0)

)
= limn→∞

⋃n
i=1
(
qJ (Si),δqJ (Si)

)
.

DIFFERENTIATION EXTENSION OF INTERVAL FUNCTIONS
AND HIGHER-ORDER AUTO-DIFFERENTIABILITY
We aim to fully address and compute higher order and partial auto-derivatives using
only dyadic 1J -numbers (1J -pairs), and without resorting to defining any sort of
n-dimensional Grassmann algebras. Towards this end, we are to extend the theory T1J ,
by introducing the notion of a differentiation extension of J -functions, characterizing
differentiability for 1J -numbers, and establishing their differentiability conditions.

In view of our definition of 1J -numbers, the following alternate characterization of
interval differentiability is at our disposal.

diff1
(
q,S0

)
⇔ δq(S0)∈JR⇔

(
q,δq

)
S0
∈UJ .

In order to have 1J -functions beyond the rational functions defined in ‘A categorical
axiomatization of interval differentiation arithmetic’, an extension principle should be
introduced. Thus we require to extend J -functions to 1J -functions. In accord to the
above characterization, we have the next definition.
Definition 6.1 (Differentiation Extensions ofJ -Functions): For k ∈ {1,...,n}, let uk ∈
J〈1〉 be differentiable at S0 ∈ dom(uk), that is for each uk there is Uk = (uk (S0),δuk (S0))∈
UJ . Let QJ (u1,...,un) be an n-place J -function of u1,...,un which is differentiable at
S0. A differentiation extension of QJ is an n-place 1J -function QUJ

(
U1,...,Un

)
defined

to be

QUJ

(
U1,...,Un

)
= (QJ (u1,...,un),δQJ (u1,...,un)),

and obtained from QJ by replacing, in QJ , each occurrence of a J -function symbol uk by
the corresponding 1J -variable symbol Uk .

The definition is so framed that since diff1(QJ ,S0) is true, the differentiation extension
QUJ of QJ is in UJ . Thus, QJ and QUJ are both defined by the same symbolic rule
but with different types of arguments (variables); QJ is a J -function whereas QUJ

is a 1J -function. By analogy with rational J -functions, a rational 1J -function is a
(multivariate) 1J -function obtained by the application of a finite number of the binary
and unary algebraic1J -operations ◦UJ ∈ {+UJ ,×UJ } and �UJ ∈ {−UJ ,

−1UJ }. Hereon, if
the function type is apparent from the context, the subscriptsJ andUJ will be omitted. For
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instance, whenever unambiguous, we use the notations Q(u1,...,un) and Q
(
U1,...,Un

)
for, respectively, a J -function and its differentiation extension.

Here it will suffice to give an example. Let the J -functions u1(S) = cosS and
u2(S)= S3 be both differentiable at some S0, and let QJ (u1,u2) be differentiable at
S0 such that

QJ (u1,u2)= u1(S)+u2(S)= cosS+S3.

The differentiation extension of QJ is then

QUJ

(
U1,U2

)
= (u1,δu1)S0+(u2,δu2)S0
= (cosS,δcosS)S0+

(
S3,δS3

)
S0

=
(
cosS+S3,δ

(
cosS+S3

))
S0

= (QJ (u1,u2),δQJ (u1,u2))S0

By virtue of our definition of the extension principle for J -functions (definition 6.1),
we are able to define fundamental 1J -functions. For example, replacing Q by the ‘‘cos’’
function, one obtains the trigonometric 1J -function cos(u,δu)S0 = (cos(u),δcos(u))S0 . In
‘Machine implementation of interval auto-differentiation’, we will give further discussion
ondifferentiation extensions ofJ -functions aswell asmore illustrative numerical examples.

Here, let us stress that restricting our discussion to single-variable J -functions is not a
loss of generality, since an n-variableJ -function can be viewed as a class of n single-variable
J -functions. What is noteworthy in addition is that higher-order interval auto-derivatives
can be computed in the framework of our system T1J of dyadic 1J -numbers (1J -pairs).
With the aid of definition 6.1, we next characterize the n-differential operator and the
n-differentiability predicate for 1J -pairs.
Definition 6.2 (n-Differential Operator of a1J -Number): For an integer n≥ 0, the n-
differential operator of a 1J -pair U = (u,δu)∈UJ , in symbols δnU, can be characterized
recursively by
(i) δ0U=U,
(ii) δ1U= (δu,δ(δu))=

(
δu,δ2u

)
= δ1δ0U,

(iii) n≥ 1⇒ δnU=
(
δnu,δn+1u

)
= δ1δn−1U.

Definition 6.3 (n-Differentiability Predicate for a1J -Number): Let n ≥ 0. The
n-differentiability predicate for a 1J -pair U = (u,δu) ∈ UJ , in symbols diffn

(
U
)
, is

characterized by diffn
(
U
)
⇔ δnU∈UJ .

Consequently, the next theorem, concerning higher-order auto-differentiability of
J -functions, is provable.
Theorem 6.1 (n-Differentiability Condition for a1J -Number): Let n≥ 0. Then for a
1J -pair U = (u,δu)∈UJ , we have diffn

(
U
)
⇔ diffn+1(u,S0).

Proof It is clear that if the J -function u is (n+1)-differentiable at S0, then, for n≥ 0,(
δnu,δn+1u

)
S0
∈UJ , and the proof follows by definition 6.3. �

Our main objective in this section is to show that higher-order interval auto-derivatives
are computable using only dyadic 1J -numbers (1J -pairs). Towards this end, we need
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readily available Leibniz’s rules for1J -numbers. By definitions 6.2 and 4.17, plus theorem
5.2, the following theorem is derivable.
Theorem 23 (Leibniz’s Rules for1J -Numbers): Let Q and U be 1J -numbers. Then
(i) δ

(
Q+U

)
= δQ+δU,

(ii) δ
(
Q×U

)
=Q×δU+U×δQ.

By virtue of this theorem, and applying induction, the general Leibniz rule for 1J -
numbers can be easily established. Let Q and U be n-times differentiable 1J -numbers.
Then

δn
(
QU

)
=

n∑
k=0

n!
k!(n−k)!

(
δn−kQ

)(
δkU

)
.

A nice consequence that we wish to point out is that with the general Leibniz rule for1J -
numbers at our disposal, and once we have in our machine implementation differentiation
kernels (seeds) for the higher order dyads (u,δu),

(
δu,δ2u

)
, . . . ,

(
δnu,δn+1u

)
, it is readily

possible to compute higher order auto-derivatives by doing only dyadic 1J -arithmetic. In
other words, within the framework of the theory T1J of dyadic 1J -numbers, higher order
auto-differentiation is directly realizable without resorting to defining a Grassmann algebra
for n-ary vectors of the form (u,δu,...,δnu). This, along with some illustrative examples,
will be discussed further in ‘Machine implementation of interval auto-differentiation’.

Note also that considering only single-variable J -functions is not a loss of generality,
since an n-variable J -function can be viewed as a class of n single-variable J -functions.
Accordingly, partial auto-derivatives, gradients and Hessians are readily computable.

Finally, let us conclude this section with a few additional comments. In accord to
definition 5.5, in the theory T1J of 1J -numbers, a singleton 1J -number defines a 1R-
number. That is, all the results of this section apply to 1R- arithmetic as well. Moreover,
computing the1J - number

(
q,δq

)
S0
is very useful in practice. In engineering and physical

sciences, a recurring problem is to compute the derivatives under parametric uncertainty
(For further details, the reader may consult, e.g., Dawood, 2014, Dawood & Dawood,
2022; Kulisch, 2013; Moore, 1966, Neidinger, 2010; Sommer, Pradalier & Furgale, 2016, and
Tingelstad & Egeland, 2017). Also noteworthy here is that with a few basic modifications,
the categorical systemT1J axiomatized in this text can be extended analogously to compute
fuzzy auto-derivatives (For further details on fuzzy analysis, see, e.g., Goetschel & Voxman,
1986 and Puri & Ralescu, 1983).

THE ALGEBRAIC STRUCTURE OF INTERVAL DIFFERENTI-
ATION ARITHMETIC
Building on the parts of the theory established in ‘A differential interval algebra’ and ‘A
categorical axiomatization of interval differentiation arithmetic’, this section provides a
detailed investigation of the algebraic structure of1J -numbers. By virtue of the categoricity
of the theory T1J (theorem 5.4), the properties of J -numbers are assumed priori.
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We commence this section by establishing the algebraic properties of 1J -addition and
1J -multiplication.
Theorem 7.1 (Algebraic Properties of1J -Addition): The following algebraic properties
hold for 1J -addition.
(i) Identity element for +.

(
∀Q∈UJ

)(
0UJ +Q=Q+0UJ =Q

)
,

(ii) Inverses for +.
(
∀Q,U∈UJ

)(
Q+U=0UJ ⇔Q∈U[q]∧U=−Q

)
,

(iii) Cancellativity for +.
(
∀Q,U,V ∈UJ

)(
Q+V =U+V ⇒Q=U

)
,

(iv) Commutativity for +.
(
∀Q,U∈UJ

)(
Q+U=U+Q

)
,

(v) Associativity for +.
(
∀Q,U,V ∈UJ

)(
Q+

(
U+V

)
=
(
Q+U

)
+V

)
.

Proof The proof for (i) follows from theorem 5.2. (ii) follows from theorems 4.6 and 5.2.
By cancellativity, commutativity and associativity of J -addition, (iii), (iv) and (v) are easily
provable by theorem 5.2. �

Theorem 7.2 (Algebraic Properties of1J -Multiplication): The following algebraic
properties hold for 1J -multiplication.
(i) Annihilating element for ×.

(
∀Q∈UJ

)(
0UJ ×Q=Q×0UJ =0UJ

)
,

(ii) Identity element for ×.
(
∀Q∈UJ

)(
1UJ ×Q=Q×1UJ =Q

)
,

(iii) Inverses for ×.
(
∀Q,U∈UJ

)(
Q×U=1UJ ⇔Q∈U[q]∧U=Q−1∧0 6∈ q(S0)

)
,

(iv) Cancellativity for ×.
(
∀Q,U,V ∈UJ

)((
Q×V =U×V ⇒Q=U

)
⇔ 0 6∈ v (S0)

)
,

(v) Commutativity for ×.
(
∀Q,U∈UJ

)(
Q×U=U×Q

)
.

Proof The proof for (i) and (ii) follows immediately from theorem 5.2. For (iii), assume
that Q×U= 1UJ = ([1],[0]), which yields, by theorems 5.2, 4.6, and the invertibility
properties of J -arithmetic, that Q∈U[q]∧U=Q−1∧0 6∈ q(S0). The converse direction
is easily derivable by assuming the right hand side. By the cancellative properties of J -
arithmetic, (iv) follows from theorems 5.2 and 4.2. By commutativity of J -multiplication,
(v) is easily derivable from theorem 5.2. �

Thus, not all elements of UJ are invertible for addition or multiplication. A
1J -number Q is invertible for addition if, and only if, it is a point 1J -number
and is invertible for multiplication if, and only if, it is a point 1J -number with
0 6∈ q(S0). Also, unlike interval arithmetic, 1J -arithmetic has nonzero zero divisors,
since

(
[0],

[
α,α

])
×

(
[0],

[
β,β

])
=0UJ . Moreover, 1J -multiplication is not associative,

which is figured in the following theorem.
Theorem 7.3 (Associativity of1J -Multiplication): In general, 1J -multiplication is not
associative. That is(
∃Q,U,V ∈UJ

)(
Q×

(
U×V

)
6=
(
Q×U

)
×V

)
.

Proof We prove the statement by a counter example. Let q, u, and v be J -functions
defined respectively as q(S)= S2+S, u(S)= S, and v (S)= [3]×S2. Then, for S0= [−1,1],
we have the corresponding 1J -numbers Q=

(
q,δq

)
= ([−1,2],[−1,3]), U= (u,δu)=

([−1,1],[1]), and V = (v,δv) = ([0,3],[−6,6]). Now, by theorem 5.2, we have
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Q×
(
U×V

)
= ([−6,6],[−21,27]) and

(
Q×U

)
×V = ([−6,6],[−24,27]). Hence Q×(

U×V
)
6=
(
Q×U

)
×V . �

However not associative, 1J -multiplication satisfies two weak associativity properties
namely subalternativity and flexibility. These are established in the next two theorems.
Theorem 7.4 (Subalternativity of1J -Multiplication): 1J -multiplication is subalterna-
tive, that is(
∀Q,U∈UJ

)(
Q ×

(
Q ×U

)
⊆
(
Q ×Q

)
×U

)
.

Proof Let Q and U be in UJ . Then, from the associative and subdistributive properties of
J -arithmetic, we have

Q ×
(
Q ×U

)
=
(
q×

(
q×u

)
,δq×

(
q×u

)
+q×

(
δq×u+q×δu

))
=
((
q×q

)
×u,

(
δq×q

)
×u+q×

(
δq×u+q×δu

))
⊆
((
q×q

)
×u,

(
δq×q

)
×u+

(
q×δq

)
×u+

(
q×q

)
×δu

)
=
((
q×q

)
×u,[2]×

(
q×δq

)
×u+

(
q×q

)
×δu

)
=
(
q×q,[2]×

(
q×δq

))
×(u,δu)

=
((
q,δq

)
×
(
q,δq

))
×(u,δu)

=
(
Q ×Q

)
×U.

Therefore, multiplication is subalternative in UJ . �

Theorem 7.5 (Flexibility of1J -Multiplication): 1J -multiplication is flexible, that is(
∀Q,U∈UJ

)((
Q×U

)
×Q = Q×

(
U×Q

))
.

Proof The theorem follows by the fact that 1J -multiplication is commutative (theorem
7.2). �

Now, we turn to the algebraic property of distributivity. Like the case withJ -arithmetic,
1J -multiplication is not distributive over 1J -addition. For example, consider the
three 1J -numbers Q, U, and V given in the proof of theorem 7.3. Then we have
Q×

(
U+V

)
= ([−4,8],[−14,26]), while Q×U+Q×V = ([−5,8],[−19,26]), and

hence Q×
(
U+V

)
6=Q×U+Q×V . In contrast, 1J -arithmetic is subdistributive

(S-distributive). This is established in the next theorem.
Theorem 7.6 (Subdistributivity in1J -Numbers): 1J -arithmetic is subdistributive, that
is(
∀Q,U,V ∈UJ

)(
V ×

(
Q+U

)
⊆V ×Q+V ×U

)
.
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Proof LetQ,U, andV be any three1J -numbers. According to theorem 5.2, and assuming
the properties of interval operations, we have

V ×
(
Q+U

)
=
(
v×

(
q+u

)
,δv×

(
q+u

)
+v×

(
δq+δu

))
⊆
(
v×q+v×u,δv×q+δv×u+v×δq+v×δu

)
=
(
v×q+v×u,

(
δv×q+v×δq

)
+(δv×u+v×δu)

)
=
(
v×q,

(
δv×q+v×δq

))
+(v×u,(δv×u+v×δu))

=V ×Q+V ×U,

and therefore multiplication subdistributes over addition inUJ . �

The preceding theorem establishes left S-distributivity. Right S-distributivity follows
from commutativity of 1J -multiplication.

We will now make use of the previous results to prove the next theorem about the
algebraic structure of 1J -numbers.
Theorem 7.7 (Commutative NA S-Semiring of1J -Numbers): The structure UJ =

〈UJ ;+UJ ,×UJ ;0UJ ,1UJ 〉 is a commutative ×-NA S-semiring in which ×UJ is
subalternative and flexible.

Proof By theorem7.1, the additive structure 〈UJ ;+UJ ;0UJ 〉 is a cancellative commutative
monoid. By theorems 7.2 and 7.3, the multiplicative structure 〈UJ ;×UJ ;1UJ 〉 is
a noncancellative commutative NA-monoid. In consequence of theorem 7.6, ×UJ

subdistributes over+UJ . By theorem 7.2, 0UJ is an absorbing element for×UJ . According
to definition 2.10, the structure UJ , of 1J -arithmetic, is therefore a commutative ×-NA
S-semiring. Lastly, by theorems 7.4 and 7.5, ×UJ is subalternative and flexible. �

Lastly, we prove two special results on the structure U[q] of point 1J -numbers.
Theorem 7.8 (Sub-Algebraicity of Point1J -numbers): The structure U[q] of point
1J -numbers is a subalgebra of the structure UJ of 1J -numbers. In symbols U[q]vUJ .

Proof By definition of1J -numbers, 0UJ and 1UJ are both elements of the setU[q]⊂UJ .
By theorems 4.6 and 5.1, for ◦∈ {+UJ ,×UJ } and for any

[
q
]
and [u] inU[q],

[
q
]
◦[u] is in

turn in U[q]. Then, the criteria for the subalgebraicity of U[q] is established and therefore
U[q]vUJ . �

Theorem 7.9 (Commutative Ring of Point1J -Numbers): The structure U[q] =
〈U[q];+UJ ,×UJ ;0UJ ,1UJ 〉 is a commutative unital ring in which every element whose
first component is nonzero has an inverse for ×UJ .

Proof Restricting the operations +UJ and ×UJ to the set U[q] in theorems 7.3, 7.6, and
7.2, it follows respectively that ×UJ is associative, ×UJ distributes over +UJ , and every
element whose first component is nonzero has a ×UJ -inverse in U[q]. The proof is thus
established in consequence of theorem 7.7. �

That is, the multiplicatively non-associative S-semiring UJ of 1J -numbers has as a
subalgebra a commutative unital ring U[q].
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MONOTONICITY AND ISOMORPHISM THEOREMS FOR
INTERVAL DIFFERENTIATION NUMBERS
In this section, some monotonicity and isomorphism theorems for 1J -numbers are
established, and finally a corollary concerning the structure of 1R-numbers is entailed. A
first key result we will next prove is the inclusionmonotonicity theorem for1J -arithmetic,
which establishes that the inclusion relation is compatiblewith the algebraic1J -operations.
Theorem 8.1 (InclusionMonotonicity for1J -Numbers): Let Q1, Q2, U1, and U2 be
1J -numbers such that Q1⊆U1 and Q2⊆U2. Let ◦ ∈ {+,×} be a binary 1J -operation
and �∈

{
−,−1

}
be a definable unary 1J -operation. Then

(i) Q1 ◦Q2⊆U1 ◦U2,
(ii) �Q1⊆�U1.

Proof By hypothesis, we have Q1⊆U1 and Q2⊆U2. Then, according to definition 5.3
and theorem 4.4, we have

Q1+Q2=
(
q1,δq1

)
+
(
q2,δq2

)
=
(
q1+q2,δq1+δq2

)
⊆ (u1+u2,δu1+δu2)

=U1+U2.

Analogously,Q1×Q2⊆U1×U2 and�Q1⊆�U1. This completes the proof. �

In consequence of this theorem, from the fact that
([
q(s0)

]
,
[
δq(s0)

])
⊆Q⇔ q∈Q, we

have the following important special case.
Corollary 8.1 (MembershipMonotonicity for1J -Numbers): Let Q and U be
1J -numbers with q ∈ Q and u ∈ U. Let ◦ ∈ {+,×} be a binary 1J -operation and
�∈

{
−,−1

}
be a definable unary 1J -operation. Then

(i) q◦u∈Q◦U,
(ii) �q∈�Q.

Two important results, concerning isomorphism theorems for1J -arithmetic, are figured
in the following theorems.
Theorem 8.2 (Isomorphicity to1R-Numbers): The structure U[q]=〈U[q];+UJ ,×UJ 〉

is isomorphic to the structure UR = 〈UR;+UR,×UR〉 of 1R-numbers. In symbols U[q] '
UR.

Proof Let ι :UR↪→U[q] be the mapping from UR to U[q] given by

ι(q)=
[
q
]
=
([
q
]
,
[
δq
])
.

By means of the fact that point intervals are isomorphic to real numbers (theorem 4.5), it
is straightforward to show that ι is an isomorphism from UR onto U[q]. �

Theorem 8.3 (Isomorphicity toJ -Numbers): The structure U(J ,0)=〈U(J ,0);+UJ ,×UJ 〉

is isomorphic to the commutative S-semiring JR=〈JR;+J ,×J 〉 of interval numbers.
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9The two types (modes) of algorithmic
differentiation are both realizable in the
theory T1J of1J -algebra. Here, we
consider only the forward-type. With a few
basic modifications, the reversed-type is
implementable as well.

Proof Let ι :JR ↪→U(J ,0) be the mapping from JR to U(J ,0) defined by ι
([
α,α

])
=([

α,α
]
,[0]

)
. Obviously, ι is an isomorphism from JR onto U(J ,0) and therefore U(J ,0)'

JR. �

Accordingly, up to isomorphism, the sets JR and U(J ,0) are equivalent, and therefore
the structure U(J ,0) is a commutative S-semiring.

In consequence of theorems 7.9 and 8.2, we have the following corollary concerning the
structure of 1R-numbers.
Corollary 8.2 (Commutative Ring of1R-Numbers): The algebra UR=〈UR;+UR,×UR;

0UR,1UR〉 of 1R-numbers is a commutative unital ring in which every element whose first
component is nonzero has an inverse for ×UR .

MACHINE IMPLEMENTATION OF INTERVAL
AUTO-DIFFERENTIATION
In this last section, we consider some aspects of the computational implementation
of interval auto-differentiation in the framework of our theory T1J of 1J -numbers
(1J -pairs). The algorithm of the theory is coded in Common Lisp as a part of the
software package InCLosure (InCL) (Dawood, 2020 and Dawood, 2023). After providing a
mathematical flavor of the algorithm,9 we offer insights of the theory by giving some simple
examples that illustrate how to concurrently compute guaranteed enclosures of images
of families of real functions and their derivatives, then we deal with a more sophisticated
problem whose result values will be calculated to an arbitrary precision using InCL
commands, and finally, we give a brief account of how to calculate higher order interval
auto-derivatives using the theory T1J of dyadic 1J -arithmetic.

In a way analogous to that of 1R-arithmetic (see, e.g., Dawood, 2014 and Dawood &
Megahed, 2019), 1J -arithmetic can be machine realized. Toward calculating the 1J -pair
of a differentiable J -function at S0 ∈J , we begin with aminimal class of symbolic rules of
differentiable J -functions and their derivatives which acts as 1J -seeds (1J -kernels) for
carrying out the computation. As examples of1J -kernels, one can start with the following
elementary 1J -pairs.(
ASb,AbSb−1

)
, (ln(S),1/S),

(
eS,eS

)
, (sin(S),cos(S)), (cos(S),−sin(S)), and so forth.

The class of unary 1J -kernels will be denoted by P〈1〉, and we will understand by
J -kernels a class K〈1〉 =

{
q∈J〈1〉|

(
q,δq

)
∈P〈1〉

}
. Accordingly, the first-order interval

auto-derivative of a J -function q(S), at S0 ∈J , can be viewed as

q(S),S0
Input
H⇒

1J -Kernels
Chain Rule
1J -Algebra

Output
H⇒

(
q,δq

)
S0
.

To further illustrate, we next give some examples that can be worked by hand.
Example 9.1 (1J -Number for the Cosine Function): Consider the J -function

q(S)= cos
(√

S
)
withs≥ 0.
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Computing the 1J -pair
(
q,δq

)
[1,4] yields(

q,δq
)
[1,4]=

(
cos
(√

[1,4]
)
,−
(
sin
(√

[1,4]
))
/2
√
[1,4]

)
[1,4]

=

(
cos
([√

1,
√
4
])
,−
(
sin
([√

1,
√
4
]))

/2
[√

1,
√
4
])

[1,4]

= (cos([1,2]),−(sin([1,2]))/2[1,2])[1,4]
= ([cos(2),cos(1)],−[sin(1),1]/[2,4])[1,4]
= ([cos(2),cos(1)],[−1/2,−1/4][sin(1),1])[1,4]
= ([cos(2),cos(1)],[−1/2,(−1/4)sin(1)])[1,4].

The first component of the resulting1J -pair, [cos(2),cos(1)], is a guaranteed enclosure
of the image of the real function q(s)= cos

(√
s
)
over the interval [1,4], while the second

component, [−1/2,(−1/4)sin(1)], is a guaranteed enclosure of the image of the real
function δq(s) over the same interval. For example,

q(4)= cos(2)∈ [cos(2),cos(1)]= q([1,4]),

δq(4)=−sin(2)/4∈ [−1/2,(−1/4)sin(1)]= δq([1,4]).

Example 9.2 (1J -Number for a Family of Real Functions): Let QR be the family of real
functions

qR(s,a,b,c)= as3+bs2+ c,

where the variable s∈ S= [−1,2] and the constants a, b, and c are respectively in [−1,1],
[0,1], and [0,2]. We want to compute enclosures of the images of the family QR and its
derivative δQR. The interval extension of QR is the interval function

q(S,[−1,1],[0,1],[0,2])= [−1,1]S3+ [0,1]S2+ [0,2].

The 1J -pair
(
q,δq

)
[−1,2] at the interval S0= [−1,2] is computed as follows.(

q,δq
)
[−1,2]

=
(
[−1,1]([−1,2])3+ [0,1]([−1,2])2+ [0,2],3[−1,1]([−1,2])2+2[0,1][−1,2]

)
[−1,2]

= ([−1,1][−1,8]+ [0,1][0,4]+ [0,2],[−3,3][0,4]+ [0,2][−1,2])[−1,2]
= ([−8,8]+ [0,4]+ [0,2],[−12,12]+ [−2,4])[−1,2]
= ([−8,14],[−14,16])[−1,2].

The intervals [−8,14] and [−14,16] are guaranteed enclosures of the images of the family
QR and its derivative δQR over the interval [−1,2] respectively. In fact, the interval
[−8,14] is the exact image, IQ, of QR over the interval [−1,2].

The previous example clearly embodies that the theory T1J presented in this text is
powerful and reliable for simultaneously providing guaranteed enclosures of families of
real functions and their derivatives. For instance, the following real functions and their
derivatives are members of the families QR and δQR of example 9.2 respectively.

q1(s)= s3+ s2+2,q2(s)=−s3
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δq1(s)= 3s2+2s, δq2(s)=−3s2.

The exact images of these functions are included in the result of example 9.2 as follows.

Iq1 ([−1,2])= [2,14]⊆ [−8,14]= q([−1,2]),

Iq2 ([−1,2])= [−8,1]⊆ [−8,14]= q([−1,2]),

Iδq1 ([−1,2])=
[
−
1
3
,16
]
⊆ [−14,16]= δq([−1,2]),

Iδq2 ([−1,2])= [−12,0]⊆ [−14,16]= δq([−1,2]).

The overestimation of the exact image of δQR in example 9.2 naturally arises from
the interval dependency problem. One noteworthy virtue of the subdivision theorem for
1J -numbers (theorem 5.7) is that one can deploy the subdivision method to decrease the
overestimation and hence obtain arbitrarily sharper intervals that get closer to the exact
image. The next example clarifies the matters.
Example 9.3 (1J -Number with Subdivision): Consider again the J -function of example
9.2 given by

q(S,[−1,1],[0,1],[0,2])= [−1,1]S3+ [0,1]S2+ [0,2].

We desire to compute the 1J -pair
(
q,δq

)
[−1,2] at the interval S0= [−1,2] by subdividing

the interval [−1,2] into the three subintervals [−1,0], [0,1], and [1,2] of width 1. Then,
we compute the 1J -numbers

(
q,δq

)
[−1,0],

(
q,δq

)
[0,1], and

(
q,δq

)
[1,2] as follows.(

q,δq
)
[−1,0]

=
(
[−1,1]([−1,0])3+ [0,1]([−1,0])2+ [0,2],3[−1,1]([−1,0])2+2[0,1]([−1,0])

)
[−1,0]

= ([−1,1][−1,0]+ [0,1][0,1]+ [0,2],[−3,3][0,1]+ [0,2][−1,0])[−1,0]
= ([−1,1]+ [0,1]+ [0,2],[−3,3]+ [−2,0])[−1,0]
= ([−1,4],[−5,3])[−1,0],

Similarly,
(
q,δq

)
[0,1]= ([−1,4],[−3,5])[0,1] and

(
q,δq

)
[1,2]= ([−8,14],[−12,16])[1,2].

Hence the resulting 1J -number by the subdivision technique is given by

([−1,4]∪ [−1,4]∪ [−8,14],[−5,3]∪ [−3,5]∪ [−12,16])= ([−8,14],[−12,16]).

Compared to the naive result in example 9.2, the resulting 1J -pair with the subdivision
method gives a better enclosure, fortunately it is the exact result, for the image of the first
derivative. That is

([−8,14],[−12,16])⊆ ([−8,14],[−14,16]).

In the previous example, the subdivision technique with only three subintervals yields
the exact images. In some problems, when the result is far away from the exact images,
increasing the number of subintervals could give arbitrarily better enclosures of the images
but with the disadvantage of increased computational time. Now, we move on to compute,
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Table 1 InCLosure values for interval automatic differentiation.

Subdivisions InCLosure values for the pair
(
q,δq

)
[−1,2]

1 (no subdivision)
(

[−515.0,191.4427985505345723919],
[−147294.44809204868892190371,145297.44809204868892190371]

)
5

(
[−499.940928,179.8726123514945723919],

[−77358.50282798795561838428,75356.39752085195561838428]

)
10

(
[−466.724862,110.8030425325745723919],

[−75987.53606834857190112981,73699.56740236057190112981]

)
20

(
[−434.82104971875,39.8387755903470333294],

[−75400.15661633499832211557,72660.87036293595925961557]

)
50

(
[−408.379583369088,19.78286094370217251581],

[−75067.10983026439761984353,71855.91048800864805542753]

)
100

(
[−398.096543381742,14.8675821888729383479],

[−74958.36726177567900543373,71542.87733701227696496573]

)

to an arbitrarily sharper intervals, the result of a more sophisticated example using the
software package InCLosure.
Example 9.4 (Interval Auto-Differentiation using InCLosure): Let q(S) be a J -
function defined by

q(S)= [−0.5,−0.4]S10− [−3,−2]S6− sin

e

(
5/8

(
sin

(
cos

(
e

(
3S+ 4e−S

5/3

)))))− [0,2].
The package InCLosure guarantees arbitrarily sharper intervals which are restricted only by
the machine’s computational capabilities. The 1J -pair

(
q,δq

)
[−1,2] for the J -function q

at [−1,2] can be computed using the following InCL command.

IAD "[-0.5,-0.4]*X^10-[-3,-2]*X^6-sin(e^(5/8*(sin(cos(e^(3^X+e^-X/5/3*4))))))-[0,2]"
1 "X=[-1,2]"

This will result in(
[−515.0,191.4427985505345723919],

[−147294.44809204868892190371,145297.44809204868892190371]

)
.

The second parameter, ‘‘1’’, in the preceding InCL command, is the number of subdivisions
(which means no subdivisions). To get sharper results, one can increase the number of
subdivisions arbitrarily. Table 1 shows InCLosure values for the 1J -pair

(
q,δq

)
[−1,2]

computed by subdividing [−1,2] into 1, 5, 10, 20, 50, and 100 subintervals.

Example 9.4 shows that computing auto-derivatives under interval uncertainty, with
the arbitrarily sharper and guaranteed results of InCLosure, is competitive and obviously
preferable to the ordinary numerical approximation methods.

In closing, let us get a grip on how to compute higher-order interval auto-derivatives
in the framework of our theory T1J of dyadic 1J -numbers (1J -pairs). By virtue of
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Leibniz’s rules for 1J -numbers (theorem 6.2), and once we have extended the class P〈1〉 of
1J -kernels by including the higher order dyads (u,δu),

(
δu,δ2u

)
, . . . ,

(
δnu,δn+1u

)
, for an

arbitrary n, we can compute higher order interval auto-derivatives by doing only dyadic
1J -arithmetic. Consequently, within our own development, one can implement higher
order interval auto-differentiation without resorting to defining any sort of n-dimensional
Grassmann algebra for n-ary vectors of the form (u,δu,...,δnu). With this in mind, let us
consider the J -function

q(S)= cos
(
S2
)
+ ln(S).

We desire to compute the 1J -pairs
(
δ1q,δ2q

)
and

(
δ2q,δ3q

)
at some S0 ∈J . Then, the

class K〈1〉 of unary J -kernels should include 1J -pairs up to the third order. That is, for
q1(S)= cos(S), q2(S)= S2, and q3(S)= ln(S), we should have respectively the following
1J -kernels

(cos(S),−sin(S)),(−sin(S),−cos(S)),(−cos(S),sin(S));(
S2,2S

)
,(2S,2),(2,0);(

ln(S),
1
S

)
,

(
1
S
,−

1
S2

)
,

(
−

1
S2
,
2
S3

)
.

Now to compute δ
(
q,δq

)
=
(
δq,δ2q

)
at S0, we have the following dyadic 1J -pairs for

respectively cos
(
S2
)
and ln(S)(

δ
(
q1
(
q2
))
,δ2
(
q1
(
q2
)))

S0

=

(
δq1

(
q2(S0)

)
×δq2(S0),

δ2q1
(
q2(S0)

)
×
(
δq2(S0)

)2
+δq1

(
q2(S0)

)
×δ2q2(S0)

)
=
(
−2S0sin

(
S20
)
,−4S20cos

(
S20
)
−2sin

(
S20
))
,(

δq3,δ2q3
)
S0
=

(
1
S0
,−

1
S20

)
,

where all the values in the above 1J -pairs are computed by direct evaluation of the
1J -kernels. Having now the required 1J -numbers for cos

(
S2
)
and ln(S), one can simply

add the resultant 1J -pairs by 1J -addition to get
(
δq,δ2q

)
at S0.

Likewise, to compute the dyad
(
δ2q,δ3q

)
, we have the following dyadic 1J -numbers

for respectively cos
(
S2
)
and ln(S)(

δ2
(
q1
(
q2
))
,δ3
(
q1
(
q2
)))

S0

=

 δ2q1
(
q2(S0)

)
×
(
δq2(S0)

)2
+δq1

(
q2(S0)

)
×δ2q2(S0),(

δ3q1
(
q2(S0)

)
×
(
δq2(S0)

)3
+2δq2(S0)×δ2q2(S0)×δ2q1

(
q2(S0)

))
+
(
δ2q1

(
q2(S0)

)
×δq2(S0)×δ2q2(S0)+δq1

(
q2(S0)

)
×δ3q2(S0)

)


=
(
−4S20cos

(
S20
)
−2sin

(
S20
)
,8S30sin

(
S20
)
−12S0cos

(
S20
))
,(

δ2q3,δ3q3
)
S0
=

(
−

1
S20
,
2
S30

)
,
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and by 1J -addition of the resultant 1J -numbers we get
(
δ2q,δ3q

)
at S0. This illustrates

that the theory T1J of dyadic 1J -numbers (1J -pairs) is completely sufficient for
computing interval auto-derivatives of first and higher orders.

CONCLUSION
As we detailed in the introduction and elsewhere, combining subtlety of ordinary automatic
differentiation with reliability of interval mathematics results in an intervalized version
of algorithmic differentiation, namely ‘‘interval differentiation arithmetic’’, which so
markedly surpasses its ordinary counterpart in power and reliability. With the aid of
interval mathematics, automatic differentiation can be intervalized to handle uncertainty
in quantifiable properties of real world physical systems and accordingly provide the
computational methods that suffice to deal with the important problem of ‘‘getting
guaranteed bounds’’ of images of real functions and their derivatives; and so, this article
has been devoted to recasting interval differentiation arithmetic in a formalized theory, by
putting into a systematic form its fundamental notions, and thus attaining the advantage
of a concrete algebraic foundation that has then enabled us to extend the theory in such a
manner that adds to its power, reliability, and applicability.

In the first place, after formalizing some set-theoretical and logical notions of particular
importance for our purpose, we gave an axiomatization of a theory of a differential
interval algebra and then we presented the notion of an interval extension of a family
of real functions, together with some analytic notions of interval functions. Secondly,
we set up an axiomatic theory of interval differentiation arithmetic, as a two-sorted
extension of the theory of a differential interval algebra, and then we gave the proofs
for its categoricity and consistency. We consequently constructed the algebraic system
of interval differentiation arithmetic, deduced its fundamental properties, and showed
that it constitutes a multiplicatively non-associative S-semiring in which multiplication is
subalternative and flexible. Then, we established some monotonicity and isomorphism
theorems for interval differentiation numbers and proved a result concerning the structure
of real differentiation numbers. And, lastly, we gave a brief account of the computational
implementation of interval differentiation arithmetic and showed how to concurrently
compute guaranteed enclosures of images of both families of real functions and their first
and higher order derivatives.

From the very beginning, our axiomatic system included the notion of an interval
extension of a family of real functions and the differentiability criteria thereof. Also,
our construction differs in that we did not make use of Clifford’s dual numbers or
Grassmann numbers that are repeatedly ‘borrowed’ or ‘reinvented’ in the literature as
proposed algebraic characterizations respectively for first and higher-order algorithmic
differentiation. Moreover, a well-known fact of logic is that a ‘‘categorical’’ formalization
of a theory is the ‘‘best’’ characterization thereof. By dint of being categorical, the axiomatic
theory presented in this work lays serious claim to being ‘‘best’’ in the sense that it
rightly accounts, up to isomorphism, for all structures of interval differentiation arithmetic.
Furthermore, along the course to themain business of this study, a number of useful notions
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have been introduced and formalized within the context of the proposed theory. Among
these, we can mention interval enclosure of a bounded set, interval extension of a real
family, proper interval functions and the criteria thereof, differentiability and continuous
differentiability of a real family, interval differentiability criteria, differential enclosure of a
real family, differentiation extension of an interval function, and differentiability criterion
for interval differentiation numbers.

We would also remark that, on the strength of our axiomatization, many nice
consequences come for free: categoricity and consistency of both the theory of interval
algebra and the theory of interval differentiation algebra follow immediately, criteria
for differentiability of families of real functions and their interval extensions are easily
established, and the algebras of intervals and real differentiation numbers are both
isomorphically embedded in the algebra of interval differentiation numbers.

The main contribution is therefore both a ‘‘logico-algebraic formalization’’ and an
‘‘extension’’ of interval differentiation arithmetic. The article provides an axiomatization
of a comprehensive algebraic theory of interval differentiation arithmetic based on clear
and distinct elementary ideas of real and interval algebras. We extend this formalized
theory in two directions. On the one hand, although we made use of neither Clifford’s dual
numbers nor Grassmann hyper-dual numbers, our new formalization of dyadic interval
differentiation numbers fully addresses interval auto-derivatives of first and higher order.
On the other hand, by virtue of introducing the notion of an interval extension of a
family of real functions, the theory is extended to provide the mathematical tools to get
guaranteed enclosures of the images of families of real functions and their derivatives.
Noteworthy also is that with a few basic modifications, the categorical system axiomatized
in this text can be extended analogously to compute fuzzy auto-derivatives. Nevertheless,
despite all the aforementioned advantages, guaranteed interval enclosures come at a price:
the interval subdivision method could be computationally inefficient when manipulating
problems involving thousands of uncertain quantities. Fortunately, there are many ways
out of this problems. Among these, we mention, without pretension to be complete,
Hansen’s centered forms, remainder forms, Kulisch’s complete intervals, Kaucher intervals,
and Dawood’s universal intervals (For further details, see, e.g., Dawood & Dawood, 2019a;
Dawood & Dawood, 2020; Dawood & Dawood, 2022, and Shary & Moradi, 2021).

In conclusion, the ‘‘self-validating’’ feature of interval automatic differentiation makes
it useful and applicable in a wide range of scientific fields. In engineering and physical
sciences, a recurring problem is to compute the derivatives under parametric uncertainty.
In this regard, an intervalized theory of algorithmic differentiation is believed to be
very useful for manipulating problems involving quantifiable uncertainties. The system
proposed in this article provides a rigorous and extendedmathematical foundation for both
real and interval automatic differentiation. Being both a formalization and an extension
of differentiation arithmetic as it is currently practised, the authors believe that such a
formalization, hopefully, might have a worthwhile impact on both theoretical research
and real world applications, with computational advantages for the solutions of new types
of practical problems which can be expressed in terms of the mathematical machinery
presented in the body of this article.
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