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ABSTRACT
One of the fundamental requirements of a real-time system (RTS) is the need to
guarantee re-al-time determinism for critical tasks. Task execution rates, operating
system (OS) overhead, and task context switching times are just a few of the parameters
that can cause jitter and missed deadlines in RTS with soft schedulers. Control
systems that are susceptible to jitter can be used in the control of HARD RTS as
long as the cumulative value of periodicity deviation and worst-case response time
is less than the response time required by that application. This artcle presents field-
programmable gate array (FPGA) soft-core processors integration based on different
instruction set architectures (ISA), custom central processing unit (CPU) datapath,
dedicated hardware thread context, and hardware real-time operating system (RTOS)
implementations. Based on existing work problems, one parameter that can negatively
influence the performance of an RTS is the additional costs due to the operating system.
The scheduling and thread context switching operations can significantly degrade the
programming limit for RTS, where the task switching frequency is high. In parallel with
the improvement of software scheduling algorithms, their implementation in hardware
has been proposed and validated to relieve the processor of scheduling overhead and
reduce RTOS-specific overhead.

Subjects Computer Architecture, Embedded Computing, Real-Time and Embedded Systems,
Operating Systems
Keywords Field-programmable gate arrays (FPGAs), MIPS32, MicroBlaze, ARM, Asynchronous
event handling

INTRODUCTION
As demonstrated in practice, Moore’s law validated the theory of continuous scaling and
miniaturization of transistors in an integrated circuit (IC). This theory, along with the
concept of abstraction, has guided the semiconductor industry to the present day leading
to the emergence of System on Chip (SoC), hybrid scheduling (Ghavidel, Sedaghat &
Naghibzadeh, 2020; Aurora Dugo et al., 2022), heterogeneous multicore processors (Pei,
Kim & Gaudiot, 2016a; Krishnakumar et al., 2020), and hardware microkernels (Dantas,
De Azevedo & Gimenez, 2019a), today’s computing systems (Bae, 2021) and Internet of
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Things (IoT) concepts. With technological development, designers of central processing
units have developed modern IC in various forms such as FPGAs (Li et al., 2022), complex
programmable logic devices (CPLDs), or application-specific integrated circuits (ASICs),
which are faster and smaller, consume less power and, last but not least, are cheaper. In
current practical research, they continue to improve the performance of processors, ISAs,
and RTOSs by multiplying thread contexts, integrating scheduling algorithms into the
hardware, and minimizing the response time for the entire RTS (Dantas, De Azevedo &
Gimenez, 2019b; Pei, Kim & Gaudiot, 2016b).

RTS holds a primordial place in today’s society because most systems used to facilitate
automation processes are controlled by microprocessors. The specific role of RTS is to
provide predictable and deterministic control of a process. RTS are those systems that
provide a correct response within a predetermined time frame. The response speed is not a
specific feature of RTS, it is rather an abstract term in the automation process. Events jitter,
however, is a characteristic RTS specific that is separate from the one mentioned above. For
that reason, and perhaps because of a blurred picture of the subject, some engineers have
considered that RTS research is not a future-oriented field because the continuous increase
in processor speed will produce equipment fast enough to meet the requirements of the
most demanding applications. In reality, task execution speed does not imply a guaranteed
scheduling scheme for all task sets in the system. Specialized processors exploit themassively
parallel in-memory processing capability of DRAM to execute non-deterministic finite
automata, improving performance over traditional architectures (Mittal, 2019).

The emergence of reduced instruction set computer (RISC) architecture had a dramatic
start in terms of the historical trend in processor architecture. Even though this architecture
has been defined and designed in a variety of ways by different groups, its key elements are
as follows:

• A large number of general purpose registers (GPR) that partially compensate for the
lack of memory instructions and the use of compiler technology to optimize the use of
these registers;
• A simple and limited instruction set, about 35 instructions of fixed length (32 bits) for
MIPS32, and a small number of addressing modes;
• A special focus on optimizing the pipeline, enabling the execution of instructions in
minimum time.

A first feature of the RISC architecture is a machine instruction per machine cycle. A
machine cycle is defined as the time required to fetch two operands from GPR, perform an
arithmetic or logical operation and store the result in a register. Therefore, RISC processor
instructions should not be more complicated and their execution must be at least as fast
compared to complex instruction set architecture (CISC) processor micro-instructions.
However, new RISC architectures are proposed to improve some aspects of ISA. For
example, in RISC-V ISA there are four types of instruction formats R, I, S and U (Gruin
et al., 2021a), then there is a variant of the S and U types, which are SB and UJ. In order
to minimize the combinational delays in the decoding stage, the RISC-V instruction set
architecture places the most important fields in the same place in each instruction. Thus,
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for the immediate field, the bits are shuffled in the instruction format. Register-to-register
operation is another feature of the RISC architecture, as a simpler control unit and a
simplified and optimized instruction set was required for the use of registers containing
frequently accessed operations.

The CISC architecture also provides such instructions, additionally including mixed
memory to memory and register/memory operations. On the other hand, almost all
RISC instructions use simple register-level addressing (Patterson & Hennessy, 2011).
Some additional addressing modes such as displacement and program counter (PC)
relative can be included, other more complex modes can be synthesized in software.
Another feature of the RISC architecture is the simple instruction format, favouring many
practical implementations such as PIC32 or advanced RISC machine (ARM). Thus, the
fixed and aligned instruction length, the fixed location of the OpCode field as well as a
simplified control unit allow opcode decoding and operand register access to be performed
simultaneously. Comparing the advantages of RISC and CISC architectures, it can be stated
that RISC processors can improve their performance by implementing CISC features, and
designs based on CISC architectures such as the Pentium II can benefit from certain RISC
features.

Due to the complexity and high number of automation applications and response times
imposed in RTS, existing problems such as ‘‘robot axes do not move smoothly’’, ‘‘robot
control accuracy is diminished’’ and ‘‘network performance is insufficient’’ may exist when
software RTOSs are integrated. The challenges in real-time embedded systems are very
rigorous, and some RTS cannot use RTOS, because in some cases, the RTOS overhead is
too high or the system does not reach the required performance. These architectural and
implementation aspects result in the following drawbacks: it is difficult to add or modify
software; large-scale software design is cumbersome; very expensive to modularize and
upgrade software.

The research gap could be filled by HW implementation of certain RTOS functions
resulting in the concept of HW-RTOS. However, despite the implementation in the FPGA
of necessary resources, HW-RTOS offers a high level of real-time performance, supported
by fast execution of the API and guaranteeing fast response to the interrupt, reduced RTOS
overhead and footprint, tick offloading, HW ISR (hardware interrupt service routine) and
significantly lower CPU resource usage.

The research motivation behind this research project is the minimization of task
context switching time and the implementation of a predictable event-based hardware
scheduler. The proposedHW-RTOS validates and provides excellent real-time performance
with low hardware and software overhead compared to conventional software RTOS
implementations used in the industry. This architectural aspect allows specifying a worst-
case execution time, which guarantees the design of predictable real-time systems.

The main contributions are the following:

• The proposal of a solution to minimize the task context switching time (based on a
proposed patent for the concept of CPU resource multiplication);
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• The implementation of a flexible and versatile scheme for handling time events, mutex,
message and interrupt type events attached to a task, i.e., these events can be prioritized
at the thread level;
• The proposal of an algorithm for handling interrupt events implemented in nHSE
hardware scheduler.

This article begins with an introduction in Section 1, and Section 2 presents the authors’
proposed articles in the literature. Section 3 presents the experimental resources and
Section 4 describes soft-core FPGA integration processor based on custom datapath
implementations. Finally, Section 5 concludes this article presenting the improvements
brought by this research.

RELATED WORK
In RENESAS (2018), elements that introduce overcontrol relative to the runtime of
RTOS mechanisms are identified and measured. An RTOS is often used in embedded
systems for several reasons. These include the fact that it is easier to create a multi-
task environment using RTOS, and the use of semaphores and events specific to inter-
task communication simplifies the implementation of inter-task synchronization and
communication. This results in easiermodularization and reuse of software, thus improving
software development productivity as well as improved reliability of the designed system.

This article addresses specific scheduling methods within two-stage real-time
systems (2S-RTS) that schedule and execute aperiodic tasks considering firm and soft
deadlines (Leng et al., 2020). The authors propose and validate a new sharing-based
heuristic scheduling algorithm called HS-2S-RTS. The tested scheduling algorithm can
achieve efficient online scheduling and ensures all the strict constraints on the imposed
deadlines. The implementation of this project also maximizes the minimum CPU share
allocated to soft tasks, the schedulability of both firm and soft tasks can be improved in the
context of RTS.

In article (Nordström et al., 2005), the authors use TRONproject research and implement
a processor using a hardware component called real-time unit (RTU). The RTU component
is realized in the hardware description language VHDL and is composed of a scheduler
that provides communication between processes. It has been developed as an Intellectual
Property (IP) component. The use of the component is achieved through a set of registers
located inside the main RAM and a software kernel, about 2 Kb in size, which allows
the scheduler to interact with the hardware kernel. Experimental results revealed that the
shortest response time of a system call, is much lower in the case of the RTU component,
only when the hardware part of the RTU is compatible with the software part of the
µC/OS-II operating system.

Recent real-time systems need an increase in processing power, leading to the adoption
of single and multi-core processors. However, single-core processors are proposed to
incorporate acceleration mechanisms that combine out-of-order executions, complex
pipelines, caches and in-branch speculation. In Gruin et al. (2021b) MINOTAuR, an open
source time-predictable RISC-V core based on the Ariane core is presented. The authors
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Figure 1 Block design implementation based onMicroBlaze soft-core and Artix-7 FPG.
Full-size DOI: 10.7717/peerjcs.1300/fig-1

first modify Ariane to make it time predictable, following the approach used for processor
design.

If the scheduling algorithm is implemented in hardware, the scheduling process is
accelerated. Experimental results, presented in the article (Gupta et al., 2010), show that
performance tests run for the three types of implementations validate the hardware
scheduler is about 5 times more efficient than software implementations and three times
faster when it comes to task scheduling.

Based on the idea of abstraction within the computer architecture and at the same time
the rapid development of FPGA circuits, MicroBlaze soft-core was proposed (AMD, 2017).
The MicroBlaze processor in an Arty SoC configuration has an operating frequency of 100
MHz, although it can operate at over 200 MHz. Once the soft SoC configuration for Arty
is vasidated and designed, embedded system designers can write and debug programs for
this RISC soft-core proposed by Xilinx. The design methodology involves exporting the
SoC design from the Vivado IPI to the Xilinx Software Development Kit (XSDK), which
is an integrated development environment for designing programs in C using MicroBlaze
(Fig. 1). After transferring the IPI to the XSDK, it is automatically configured to include
libraries corresponding to the included peripheral blocks. So FPGA-based design and Arty
programming is very similar to using other SoC platforms or microcontrollers. In this
architectural context programs are written in C, later loaded into the Xilinx FPGA via USB
and then optionally debugged in hardware with appropriate tools.

The article (Chen et al., 2019) proposes and validates a particular method of reducing the
communication frequency between CPU and FPGA for reconfigurable hybrid hardware.
Thus, the processing speed of the tested design is higher by simplifying the communication
between CPU and FPGA since it divides the software into master hardware execution
threads and slave execution threads. These execution threads have the ability to run
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independently on the FPGA, the CPU only needs to take the output from the reconfigurable
circuit. This reduces unnecessary communication time as the control logic part of the CPU
is implemented in the FPGA.However themain execution thread in the FPGA is responsible
for the hardware processing control logic.

Vector processors promise improved energy efficiency for data-parallel work-
loads (Platzer & Puschner, 2021). They also have the potential to reduce the performance
gap between platforms suitable for time-critical applications and mainstream processors.
Current trends for improving energy efficiency and the emergence of massive parallel data
workloads have prompted massive research for architectures that may be more amenable
to WCET analysis. Vector processors are also very important for real-time applications
with parallel data processing. Some examples of applications in this category would be
advanced driver assistance systems and autonomous vehicles.

In article (Pujari, Wild & Herkersdorf, 2015), the authors present a new approach for a
Network On Chip (NOC) architecture, where each processor core has a task control unit,
called a TCU (Thread control unit). This unit schedules tasks based on sensor information
and according to the importance of each task. Each TCU calculates the cost for each task
and selects the smallest one. The authors proposed, for the practical part, an architecture
with two MPSoC cores, which are interconnected by a NOC link, using the Virtex6 FPGA
development board. Each MPSoC core contains four Leon3 RISC processors and a TCU.

In article (Nacul, Regazzoni şi & Lajolo, 2007), a hardware-implemented RTOS (HW-
RTOS) integrating an OS based on dual-core processor Symmetric MultiProcessor (SMP)
architecture. Task communication is specified at the software interface level, and the
HW-RTOS handles the application communication and task scheduling requirements.
HW-RTOS is able to use the task migration provided by the SMP architecture much
more efficiently than a traditional RTOS system. Dual-core processor architecture
contains two processors with cache memory, data memory and a common bus. The
HW-RTOS is composed of two independent scheduling modules for each processor. Each
module communicates with the controlled ARM processor through a dedicated port. This
architecture uses a hardware scheduler only to schedule tasks, and context switching is done
in software. Only communication between tasks and access to shared memory is done in
hardware. The performance of the architecture has been measured using two applications:
an application that filters a graph representing typical operations performed by the kernel
of a multimedia application, and an application using a kernel that processes packet-based
communication.

The proposed design described in Coluccio et al. (2022) replaces the data memory with a
circuit that is capable of storing data and performing calculations in memory, respectively.
In this context, the authors propose a RISC-V framework that supports logic-in-memory
operations. The results presented by the authors demonstrate an improvement in algorithm
execution speed and also a reduction in energy consumption. Note that the main advantage
of this framework is the ability to compare the performance of different logic-in-memory
solutions at code execution. Since the framework is based on a standard memory interface,
different logic-in-memory architectures, based on both CMOS and emerging technologies,
can practically be placed inside the microprocessor. In this article (Coluccio et al., 2022),
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the efficiency of the framework is verified using a CMOS volatile memory and a memory
based on a new emerging technology, race circuit logic.

Recent SoC implementations are often considered for analysis, they are evaluated for
processing performance, FPGA area and resource utilization, power consumption and
efficiency. In Doerflinger et al. (2021) the authors compare leading open-source RISC-V
application class designs, running identical benchmarks on design platforms but with
defined configuration settings. However, the experimental data obtained helps to make the
right choice of designers for future projects with increasingly different processing needs.
The authors present results for the Xilinx Virtex UltraScale+ family and GlobalFoundries
22FDX ASIC technology, so it can be stated that the large variations in results highlight
the importance of processor selection for SoC implementations. The tests demonstrate
that the ranking order depends on the selected technology, which can be FPGA or ASIC,
and the primary requirements such as efficiency, cost or performance. Clearly, there is
no generally optimal implementation for choosing a processor with a particular hardware
design platform for that architecture.

The commercial RTOS core µC/OS-II (Labrosse, 2002) was implemented in C language
with small pieces of code written in assembly language. The Real-Time Unit (RTU)
component was used to replace the task scheduling, semaphore management, and
specialized registers in the µC/OS-II operating system. The experimental results, presented
in this article, revealed that the shortest response time of a system call, is much lower in
the case of the RTU component, only when the hardware part of the RTU is compatible
with the software part in the µC/OS-II operating system. For better compatibility, the
RTU component requires modifying the bus interface and expanding the size of the data
transferred to 32 bits. This will increase the number of processor cycles to set up a timeout
and will shorten the response time of a system function group time-out call to the RTU.
Another enhancement to the RTU would be to add the ability for tasks to support dynamic
priority for better compatibility with the µC/OS-II operating system.

EXPERIMENTAL RESOURCES
In the research related to this article, the main resources used are the Virtex-7 development
kit, Vivado DS, Verilog HDL, oscilloscope, personal computer, Vivado simulator, and
MIPS32 ISA. The major advantages brought by this development platform based on
Virtex-7 programmable logic technology are guaranteed high performance relative to
power consumption, integration using 28 nm technology, Digital Signal Processing (DSP)
performance, and I/O bandwidth. The XC7VX485T-2ffg1761C FPGA circuit features
485760 Logic Cells, maximum 8175 Kb Distributed RAM, 1030 Block RAM/FIFO w/ECC
(36 Kb each), 2800 DSP Slices, one Analog Mixed Signal/XADC module, as well as other
important resources.

The XC7VX485T FPGA is composed of three main elements: Look-Up Tables (LUTs),
Flip-Flops (FFs), and routing channels. These representative elements in programmable
logic technology are connected together to form a flexible and high-performance device.
A LUT is a table that determines how the output is affected by any of the signals present at
the inputs. Thus, a LUT consists of a RAM block that is indexed by its entries. The output
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of a LUT is represented by the value in the RAM location indexed by the inputs. In the
context of combinational logic, this is represented by the table of truth, which effectively
defines how the implemented circuit behaves.

Microprocessor without Interlocked Pipeline Stage (MIPS) provides a system of
coprocessors (COP) to extend the core functionality of the processor. COP2 may be
available to the user. MIPS Application Specific Extensions (ASE) and User Defined
Instructions (UDI) are two other important aspects. Thus, the MIPS32 and MIPS64
architectures provide robust support for user application-specific extensions. As optional
extensions to the base architecture, they do not supplement each implementation of
the architecture with instructions or capabilities that are only required for a particular
implementation. The MIPS32 and MIPS64 architectures allow specific UDI for each
implementation, which is additional support for ASE. Thus, the Special 2 and COP2 fields
are reserved for the capability defined by each implementation (Ciobanu, 2018). Based
on MIPS32 ISA (Anonymous, 2011), the new instructions specific to the nHSE (hardware
scheduler engine for n threads) have been implemented, a more extensive presentation of
which can be found in the HW_nMPRA_RTOS (a unified acronym for nMPRA, nHSE,
and RTOS API) processor specifications (Gaitan, Gaitan & Ungurean, 2015). Table 1
presents the notations and details in the datapath used for the proposed MIPS32 ISA
based project. Resources in the datapath have been multiplied n times (HW_thread_i),
so a hardware instance for the thread i is denoted by instPi. The preemptive scheduler
switches between instPi threads executing in its own HW_thread_i, providing a context
switching time of up to two processor cycles. External interrupt, time, deadline, mutext,
and message synchronization events are dynamically attached to instPi, inheriting its
priority. Using COP2 instructions implemented for nHSE scheduler, the interrupt event
system, including their individual management, can bemanaged withminimal jitter. COP2
dedicated instructions are decoded independently beside program instructions, based on
the instruction fetch/decode pipeline register information.

CUSTOM SOFT-CORE PROCESSOR FPGA DEVELOPMENT
AND INTEGRATION
The MIPS instruction set architecture has evolved from the original MIPS I™ ISA to the
current MIPS32®, MIPS64®, and micro-MIPS™ versions. In the MIPS III™ version,
integers and 64-bit addresses were introduced and in the MIPS IV™ and MIPS V™ ISAs,
improvements were made to floating point operations as well as the instruction set to
increase the efficiency of the generated code and data flow. Thus, MIPS implementations
have had significant success in the embedded systems domain, with a focus on applications
that require a focus on implementation cost, performance, and power consumption.
However,many of the originalMIPS implementations were targeted at desktop applications
such as servers and workstations.

The MIPS32 and MIPS64 architectures are intended to address applications with
a higher performance requirement for the MIPS-specific instruction set. They offer
a high cost/performance ratio compared to other microprocessor implementations
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Table 1 HW_nMPRA_RTOS notations, nHSE registers implemented in COP2 and datapath
acronyms.

Notation Number of
instances

Description

nMPRA 1 Multi pipeline register architecture where n is the degree
of (MIPS32/RISC-V/ARM Cortex-Mx) datapath resource
multiplication

nHSE 1 Hardware scheduler engine for n threads
HW_nMPRA_RTOS 1 Unified acronym for nMPRA, nHSE and RTOS API
HW_thread_i 4÷32 Private resources of threads (incorporates the PC, register

file, pipeline registers and control&status registers)
instPi (sCPUi) 4÷32 Hardware instances of a thread executed on HW_thread_i

type resource
crTRi 4÷32 Control task register has the role of validating or inhibiting

one of the following events at the level of each instPi:
lr_enTi (time event), lr_enWDi (watchdog timer), lr_enD1i
(deadline 1), lr_enD2i (deadline 1), lr_enInti (interrupt
type event), lr_enMutexi (mutex), lr_enSMi (signal and
message) and lr_run_instPi

crEVi 4÷32 Control events register has the role of indicating the
occurrence of an event validated by crTRi at the level of
each instPi

crEPRi 4÷32 Control events priority register has the role of prioritizing
events at the level of each instPi

ExtIntEv 4 External interrupt signals connected to nHSE module
grINT_IDi 4÷32 Task ID for interrupt attach register

based on traditional architectures. The MIPS32 architecture is not tied to a specific
hardware implementation, so CPU architects can design their own hardware concepts.
These advantages are due to improvements in several research areas such as processor
organization, system-level architectures, very large-scale integration (VLSI) technology,
OSs, and compiler design. The MIPS architecture defines four coprocessors, namely
COP0, COP1, COP2, and COP3. Coprocessor 0 is integrated into the CPU being called
System Control Coprocessor and is defined to support both a virtual memory system
and exception handling. COP0′s role includes translating virtual addresses into physical
addresses, cache subsystem control, exception management, and handling of switches
between core, supervisor, and user states as well as providing a diagnostic model and error
recovery. COP1 is reserved for FPUwhile COP2 is available for particular implementations.
Starting with the Release 1 implementation belonging to MIPS64 and in all Release 2
implementations of the MIPS architecture, COP3 is intended for the FPU.

Proposed soft-core processor datapath multiplication
The HW_nMPRA_RTOS (nMPRA (multi pipeline register architecture, where n
is the degree of multiplication) + nHSE) project datapath presented in this article
used the MIPS32 Release 1 ISA (Ayers, 2020; Meakin, 2010). The HW_nMPRA_RTOS
implementation validated in this article is based on the XUM design described in Ayers
(2020), which is a five-stage pipeline MIPS32 processor. Figure 2 shows the multiplication
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Figure 2 Resource multiplication within the HW_nMPRA_RTOS architecture relative to the XUM
processor.

Full-size DOI: 10.7717/peerjcs.1300/fig-2

of resources at the level of each storage element (flip-flop) in the datapath, i.e., at the level
of an n-fold multiplied pipeline register.

Based on the status signals, the control signals generated by the nHSE module are
nHSE_Task_Select, nHSE_EN_sCPUi, PC_nHSE_Sel, and Reg_Write_nHSE. These signals
control the operation of datapath multiplexing, event trap cell selection, and writing to
COP2 registers.

Also shown in Fig. 2 is the nHSEmodule controlling the dedicated datapath presented in
this article based on validated and prioritized events. OpCode, Rs, Rt, ID_ReadData2_RF
signals are signals from the pipeline to write to the nHSE scheduler registers mapped to
the address space of the corresponding COP2 register file (RF). Reading and writing the
preemptive scheduler registers is done using six instructions at COP2 level, namely CFC2
(copy control word from COP2), CTC2 (copy control word to COP2), LWC2 (load word
to COP2 from data memory), SWC2 (store word to data memory in COP2), MFC2 (move
control word from COP2) and MTC2 (move control word to COP2).

The nHSE_inhibit_CC signal prevents thread context switching when the CPU executes
atomic write/read instructions to/frommemory. Thus, the shared memory location should
not be allowed to be accessed between reads and writes so that a race condition does
not occur between processes. ExtIntEv[3:0] signals are used for asynchronous external
interrupt events with the processor clock running at a frequency of 33 MHz. Finally, the
clock signal is generated by the Xilinx® LogiCORE™ IP Clocking Wizard 6.0 which is
connected to the 200MHz differential clock signal (clock_200MHzP (E19 FPGA pin),
clock_200MHzN (E18)) and the reset is connected to the RESET signal (AV40) of
the Virtex-7 development kit. The synthesizable HW_nMPRA_RTOS implementation
integrates a scheduler implemented in hardware to validate excellent performance at a
more than the convenient cost in terms of FPGA resources used (Găitan & Zagan, 2021;
Zagan & Găitan, 2022).

Figure 3 represent a SoC design overview, showing inclusively the hazard detection
modules, the CPU control unit and COP0. The Verilog TOP_Module connects to the clock
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Figure 3 Structure of the SoC design containing the HW_nMPRA_RTOS processor.
Full-size DOI: 10.7717/peerjcs.1300/fig-3

signals and pins of the FPGA circuit (Ayers, 2020). Once all the modules were designed
and tested, the Top module was created where all the blocks in the project with the
corresponding logic are connected. Top.v represents the Verilog HDL file located at the
highest level in the HW_nMPRA_RTOS project. It is also known as a motherboard that
connects modules such as the CPU, memory, clock signals and I/O devices. All inputs
and outputs, such as clock signals or UART transmit and receive pins, must match the
pins of the FPGA circuit used. The Verilog Processor.v file together with the instantiation
of the modules inside this file creates a complete MIPS32 processor. The high-level
module is the Processor, and its interface consists of five general-purpose hardware
interrupts, one non-maskable hardware interrupt, 8 diagnostic interrupts, and a dual-port
memory interface implemented on-chip using IP Block Memory Generator 8.3 for both
instructions and data. The processor module is the most important instantiated module
in the HW_nMPRA_RTOS design. This file contains for the most part, the instantiation
and linking of the basic processor blocks according to the design schematics. This module
includes very little logic, although it contains most of the instantiated modules. In terms of
boot procedure, the uart_bootloadermodule represents a standard hardware line connected
with a bootloader for data transmission (Ayers, 2020). The LCD module represents the
top-level interface to the display.

As can be seen in Fig. 4, HW_nMPRA_RTOS relies on multiplying the resources in
the datapath for each CPU instance, called HW_thread_i (Table 1). Thus, the notation
PC[instPi] refers to the fact that the PC register is multiplied for each sCPUi (instPi), with
i taking values from 0 to n-1, n being the maximum number of HW_thread_i chosen in
the soft-core FPGA implementation. Multiplied resources have the same inputs, but the
outputs aremultiplexed internally according to i. For this reason, and to simplify the scheme
the outputs have not been indexed (there is only one output depending on i). For the PC,
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Figure 4 Pipeline stages implementation for instruction extracting and decoding based on
HW_nMPRA_RTOS concept.

Full-size DOI: 10.7717/peerjcs.1300/fig-4

Figure 5 Implementation of the pipeline stage for execution and datapath resource multiplication in
correspondence with HW_nMPRA_RTOS register-transfer level (RTL).

Full-size DOI: 10.7717/peerjcs.1300/fig-5

RF, IF/ID, ID/EX, EX/MEM, and MEM/WB (Ayers, 2020) pipeline registers shown in Figs.
4, 5 and 6, their multiplication for each processor instance is indicated by the notation
[instPi] (blurred blocks), the combinational structure being similar. Multiplication of
pipeline registers was proposed and patented in Dodiu & Gaitan (2013).

The MIPS32 and MIPS64 instruction set architecture define a compatible 32-bit and
64-bit family within the global MIPS architectures. The MIPS32 architecture defines the
following registers:
• A PC that is only indirectly affected by certain instructions and is not an architecturally
visible register.
• General purpose working registers: 32-bit GPRs. Two of these registers have
special functions, and register r0 is always zero and is hardware tied to logical zero
(32′h00000000). This register can be used as a destination for any instruction whose
result is to be discarded, or as a source when a null value is required. Register r31 is
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Figure 6 MEM andWB pipeline stages RTL implementation based on HW_thread_i multiplication re-
sources.

Full-size DOI: 10.7717/peerjcs.1300/fig-6

the default destination used by the JAL, BLTZAL, BLTZALL, BGEZAL, and BGEZALL
instructions, but can also be used as a normal register.
• A pair of special registers named HI and LO, needed to store the result of multiplication
and division operations. During the multiplication operation, the HI and LO registers
store the product of the multiplication, and for division, the HI and LO registers to store
the quotient (in HI) and the remainder (in LO) respectively.

In the IF (Instruction Fetch) stage together with the IF/ID (Instruction Fetch/Instruction
Decode) pipeline register, the PC register is loaded with the address corresponding to the
instruction in programmemory to be fetched and then executed in the pipeline next stages.
The PC register update is performed with one of the following addresses from the current
stage or ID stage:

• IF_PCAdd4: output of the PC_Add4 adder;
• ID_JumpAddress: 32 bits representing {ID_PCAdd4[31:28], Instruction[25:0], 2′b00}
for J-type instructions;
• ID_BranchAddress: conditional jump address {14{immediate[15]}, immediate, 2′b0};
• ID_ReadData1_End: address provided by the output of the IDRsFwd_Mux multiplexer
in the ID stage.

The setting of the control signals for the multiplexers PCSrcStd_Mux (for PC
source selection) and PCSrcExc_Mux (for PC exception selection) is performed by the
HW_nMPRA_RTOS processor control unit and the CPZero module implementing
coprocessor 0. In this stage there is also the PC_Add4 adder needed to add by four the
current PC, relieving the arithmetic and logical unit of this operation. Thus, the IF/ID
pipeline register will store the instruction fetched from program memory, the current PC
value required for restart in case of an exception occurring in the next pipeline stages,
and the PC+4 value required for fetching the next instruction. The IF_Stall, ID_Stall,
IF_Exception_Flush, and IF_Flush signals are required by the control unit and the CPZero
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module (Platzer & Puschner, 2021), allowing stalling and flushing of the pipeline in case
of hazard situations and exceptions. Operands read from the GPR will be stored in the
next pipeline stage if the instruction is of type R or I, or will be ignored as is the case for
jump instructions. Figure 4 illustrates the PCSrcStd_Mux and PCSrcExc_Muxmultiplexers
and the 32-bit outputs provided by these combinational circuits. In the ID pipeline stage,
displacement registers are also designed for 32-bit word-level memory alignment, and the
sign extension unit is designed to ensure data word width. As we can see in Fig. 4, this stage
contains both the adder required for the calculation of jump addresses and the condition
comparison unit. This unit has as inputs the two operands read from GPR and the output
provides the logical conditions destined for the control unit. Figure 5 illustrates the pipeline
execute (EX) stage and the pipeline ID/EX register.

One can see the connections between the redirection multiplexers for data hazard
situations (EXRsFwd_Mux, EX_RtFwdLnk_Mux), the EXALUImm_Mux multiplexer for
secondary operand selection, the EXRtRdLnk_Mux multiplexer for destination selection
and the ALU unit. Figure 5 shows some of the signals contained in the ID/EX pipeline
register, which is the largest resource consumer among the pipeline registers. Also illustrated
are the operations provided to the arithmetic and logical unit, the ID_AluOp register, and
the result of the required operation performed in the MEM and WB pipeline stages.
The transmission and storage of the control signals through the datapath are performed
concurrently with the data required for the execution of the operation dictated by the
instruction opcode, thus guaranteeing the consistency of the contexts for an eventual
change of the selected HW_thread_i.

Executing the code loaded via the Boot.coe file will test the datapath by observing the
corresponding waveforms. Figure 5 depicts the signals generated by the HDU to signal the
occurring hazard situation, the data forwarding unit selecting via the EX_RsFwdSel and
EX_RtFwdSel signals the source of the operands in case of the encountered hazard. It can be
seen that the EX_ALUResult register contains the result of the operation performed, while
the EX_EXC_Ov register may indicate an overflow exception (Meakin, 2010). Note the
variation of the EX_AluSrcImm selection signal for the EX-ALUImm_Mux multiplexer.

Figure 6 shows the implementation of theMEMandWBpipeline stages, thus completing
the datapath for MIPS32 ISA-based processor with the HW_nMPRA_RTOS extension
placed in COP2. It can be seen the propagation of the control signals and data redirection
from the MEM pipeline stage. The data-saving operation can be noted when a register is
copied from nHSE (COP2) to a general purpose register at the instPi level enabled via the
nHSE_Task_select[3:0] and nHSE_EN_sCPUi signals.

In the CPU implementation, control unit offer support for a flexible and high
performance processor architecture. Figure 7 shows the inputs and outputs of the Control
module (Ayers, 2020). The signals it outputs represent control lines and register type
exceptions for the datapath as well as the operation passed to the arithmetic and logic unit.
The control signals generation for the datapath occurs in the ID pipeline stage. The nHSE
module illustrated in Fig. 7 is designed to satisfy the following architectural constraints:
• Preemptive scheduling of tasks and therefore interrupts type events;
• Implementation and management of time related events;
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Figure 7 Block diagrams for hazard detection unit, nHSE, COP0 and control unit.
Full-size DOI: 10.7717/peerjcs.1300/fig-7

• PC selection;
• Select HW_thread_i via nHSE selector;
• CPU pipeline registers selection corresponding to each instPi.

The COP0 module shown in Fig. 7 represents MIPS32 Coprocessor 0. This module
implements the processor management unit that allows the use of interrupts, trap cells,
system calls as well as other exceptions. Distinction is made between user mode and
kernel mode, providing status information with the ability to override program flow. This
processor is designed for bare-metal memory accesses, therefore it cannot have virtual
memory. However, the COP0 coprocessor subset complies with the MIPS32 architecture
specification. Exceptions can occur in any pipeline stage, implying that more than one
exception can be handled in a single cycle. When this happens, only redirection exceptions
from the MEM stage to the EX stage are handled. The HazardControl module implements
hazard detection and data redirection, allowing the HW_nMPRA_RTOS processor to
operate correctly in the presence of data, structural and control hazards. This module
detects if the current instruction requires data that is present in the HW_thread_i pipeline
registers and needs to be forwarded or if the pipeline needs to be stalled. Most instructions
read from one or more registers, and normally this happens in the instruction decode
stage. However, accessing the GPR from the ID stage is slowed down when one or more
stages in the HW_thread_i pipeline, such as EX, MEM, or WB, contain instPi instructions
that perform an eventual write to the GPR but have not yet done so. The Control_Unit
module is the control unit of the HW_nMPRA_RTOS processor. This unit sets the control
signals in the datapath for each instruction read from memory. The signals depend on the
executed instruction fields, the results of the condition test unit, and the ID_Stall signal
provided by the hazard detection unit. Thus, the control signals accompany the instruction
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through each HW_thread_i pipeline stage, determining all necessary states and operations
that the nMPRA processor must execute sequentially for each pipeline stage. Depending
on CPU control signals and nHSE logic, Control_Unit sets the control bits required to
execute each instPi instruction.

Branch detection options that are based onmutual exclusion (Branch_EQ, Branch_GTZ,
Branch_LEZ, Branch_NEQ, Branch_GEZ, Branch_LTZ), cover portions of datapath that
are not directly controlled by status signals. Note that these bits are part of the OpCode
field of the instruction or other fields, representing an abstracted image of the instruction
encoding. When new instructions are introduced, designers must ensure that they do not
generate false information in the control bit status. In the MIPS architecture, jump and
branch instructions have a delay slot, which means that the instruction following a jump
or branch is executed before the jump or branch occurs. MIPS processors execute the
jump or branch instruction and the delay slot instruction as an indivisible unit. If there is
an exception as a result of the execution of the delay slot instruction, the jump or branch
instruction is not executed and the exception appears to be caused by the jump or branch
instruction.

Within the HW_nMPRA_RTOS processor, all jump and branch operations cause the
execution of the instruction in the branch delay slot, regardless of whether the branch is
performed or not. Exceptions related to jump instructions are part of the branch likely
instruction group and are not implemented in the control module. In addition to this,
there is a group of conditional jump instructions, called branch likely, for which the next
instruction that is in the so-called delay slot is executed only if branching occurs. Even
though branch likely instructions are included in the MIPS specification, the software is
encouraged to avoid these instructions as they will be removed from future revisions of
the MIPS architecture. Therefore, the branch likely conditional jump instructions (BEQL,
BGEZALL, BGEZL, BGTZL, BLEZL, BLTZALL, BLTZL, BNEL) have not been implemented
in the HW_nMPRA_RTOS soft-core processor. For the datapath corresponding to the
HW_nMPRA_RTOS processor, all signals are active on 1L. The jump and branch lines
determined by PCSrc as well as those determined by the arithmetic and logical unit
operation are handled by the control unit.

InGăitan & Zagan (2021), instructions dedicated to the control of theHW_nMPRA_RTOS
integrated scheduling unit are described. Its behavior is controlled via a dedicated
instruction set, supporting dynamic interrupt management mechanisms and power-safe
functions. The HW_nMPRA_RTOS processor RF contains HW_thread_i \time 32 general
purpose registers of 32 bits each and two read ports for them depending on the selected
task. Figure 4 shows the RF for HW_nMPRA_RTOS processor based on HW_thread_i
multiplication. Register 0 is always set to the value 32′h00000000. Writing to the RF is
performed according to the semi-processor selected by the hardware scheduler. At the
positive clock edge, the data provided by the WriteData input (32 bits) is written to the
WriteReg index register (5 bits) on command of the RegWrite signal. The combinational
read from the RF is based on the scheduled task ID_nHSE_Task_Select. Figure 8 shows
the RTL schematic generated by the Xilinx Vivado DS software after synthesizing the
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HW_nMPRA_RTOS processor. This contains all the blocks instantiated in the SoC Top.v
module using Verilog HDL.

ARM Cortex-M4 experimental findings
This subsection presents practical tests performed using Cortex-M4 and a software RTOS
to make a comparison with the hardware RTOS implemented on HW_nMPRA_RTOS.
The overall objective of this article is to present the main issues related to RISC CPU
types, considering their use in embedded system design and implementation. The biggest
advantage of microcontrollers over microprocessors relates to design and hardware costs
which are much lower and can be kept to a minimum. Cortex-M4 processors feature
a configurable interrupt controller that can support up to 240 vectored interrupts and
multiple levels of interrupt priority (from 8 to 256 levels). Interrupt nesting is handled
automatically by hardware, interrupt latency is only 12 clock cycles for memory systems
with zero wait states.

The interrupt-handling capability makes Cortex-M processors suitable for many real-
time applications (Yiu, 2019). The Cortex-M4 processor contains all the features of the
Cortex-M3 processor, has additional instructions to support DSP applications, and has the
option to include a floating point computing unit (FPU).

Cortex-Mx processors have a simple, linear memory map, with the same system-level
and debugging features as the Cortex-M3 processor. There are no special architectural
restrictions that can often be found in 8-bit microcontrollers (e.g., bank-organized
memory, limited stack levels, non-reentrant code, etc.). Designers can program almost
everything in C, including the interrupt handler. ARM Cortex-M4 processor allows
for 240 interrupt requests (IRQ), priorities being programmable by the user, with the
exception of non-maskable interrupt (NMI) and HardFault which have fixed priorities.
Nested Vector Interrupt Controller (NVIC) is used to dynamically decide which interrupt
is more important and to enable or disable them. NVIC supports up to 256 different
interrupt vectors. In the following, we present the jitter measurement corresponding to the
occurrence of an external asynchronous signal related to an embedded device based on a
RISC architecture.

Using the STM32F429ZITmicrocontroller based onCortex-M4 architecture, FreeRTOS,
DIGILENT DISCOVERY ANALOG2 oscilloscope, and WaveForms software, the jitter is
measured in case of external interrupt handling. The asynchronous event with the ARM
processor is in accordance with the falling edge of the signal connected to the PA0 pin,
measuring the period of time until the state of the PG13 pin which controls an LED
changes (the EXTI0_IRQHandler executes the instructions corresponding to the LD3 led
(BSP_LED_Toggle(LED3)). Figure 9 illustrates the WaveForms software for measuring
the real-time response time using NVIC (200 ns/div will be set to time). The Channel C1
signal represents the PA0 digital input connected to the USER button, the oscilloscope
trigger is set on the rising edge (EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Rising).
Oscilloscope Channel C2 displays the signal corresponding to pin PG13 (LD3), its state is
changed by executing GPIO_WriteBit(LED1_Port, LED1_Pin, Bit_SET) function. In the
case of the measurements in Fig. 9A software filtering of the PA0 input signal was also
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Figure 8 Custom soft-core processor FPGA implementation after synthesis in FPGA using Vivado DS
custom soft-core processor FPGA implementation after synthesis in FPGA using Vivado DS.

Full-size DOI: 10.7717/peerjcs.1300/fig-8

performed. It should be noted that Cortex-M4 RISC processors have a three-stage pipeline
design and a Harvard bus architecture with unified memory space for instructions and
data. For the case of using external interrupt and NVIC we obtained a response time of
618.2 ns (Fig. 9B) and for the case of using program data transfer, we obtained a response
time of 32.59 ms (Fig. 9A).

HW_nMPRA_RTOS hardware scheduler implementation setup
To improve real-time performance and minimize RTS jitter, the preemptive scheduler in
the new HW_nMPRA_RTOS component implements in hardware the logic for handling
events attached to each instPi. In the nHSE scheduler, external interrupt events inherit
the priority of the instPi CPU instance to which they are attached, thus guaranteeing the
required deadlines. Table 2 present the application sequence programused for experimental
testing. Thus, the corresponding HW_thread_i datapath was validated with preemptive
instPi scheduling. The instP3 and instP0 instances were executed correctly by checking
the instructions and the corresponding addressing modes. The stmr instruction is of type
MFC2 (move monitoring/control word from COP2) and has opcode 0100_10 and rs
field 00000. Instructions of this type in Table 2 (48060000 h, 48020000 h, 48430001h) are
intended to copy nHSE scheduler registers, such as mrCntRuni, mrTEVi and crEVi, to the
GPR. The movcr instruction (48C10000h) is of type CTC2 with opcode 0100_10, rs field
00110, and has the effect in the case of the presented program to update the crTRi register.
The sw instruction (ADCC0000h) updates the outputs corresponding to the LEDs, which
are mapped in the address space of the data memory (MemAddr[29:26] = 4′b1100), as
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Figure 9 (A) STM32F429ZIT Cortex-M4MCU,WaveForms software and ANALOG2DISCOVERY
DIGILENT oscilloscope to measure response time for program data transfer (32.59 ms); (B) SoC design
timing report based on Xilinx FPGA and Vivado DS.

Full-size DOI: 10.7717/peerjcs.1300/fig-9

can be seen in the experimental tests, namely in the measurement of response time to an
asynchronous CPU event.

Following the tests, the nHSE hardware scheduler specification was revised and the
synthesis and mapping stage in FPGA using Vivado was performed.

Table 3 shows the logic for selecting the interrupt event and assigning it to the instPi for
preemptive execution. The HW_nMPRA_RTOS registers are described extensively in the
processor specification and in Găitan & Zagan (2021).
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Table 2 The application sequence program used for experimental testing.

MIPS32 instructions
(included COP2)

ID_Instruction [31:0]
signals (machine code)

Application
description

. . . instP3 execution on HW_thread_3 scheduled by nHSE

stmr 48060000 h Instruction stmr (store monitoring register): copy from
register mrCntRuni[instP3] COP2 in r6 (GPR)

stmr 48020000 h Instruction stmr: copy from register mrTEVi[instP3] COP2
in r2 (GPR)

addi 20010071 h Add Immediate: R[rt=1]=R[rs=0]+SignExtImm
addiu 24420001 h Add Immediate Unsigned: R[rt=2]=R[rs=2]+SignExtImm
stmr 48430001 h Instruction stmr: copy from the register crEVi[instP3] in r3

(GPR)
addi 20010011 h Add Immediate: R[rt=1]=R[rs=0]+SignExtImm (=0011)
movcr 48C10000 h Instruction movcr (move control register) (wait Rj

instruction): copy from register r1 (GPR) in crTRi[instP3]
COP2 and determines the context switch if instP0 has no
validated and active events

. . . No instPi in execution

. . . instP0 execution on HW_thread_1 (scheduled for
handling an external interrupt type event (ExtIntEv[0])
according to the algorithm in Table 3)

addi 20010000 h Add Immediate: R[rt=1]=R[rs=0]+SignExtImm (=0000)
addi 200E0003 h Add Immediate: SignExtImm= 0003, rd= r14
sll 000E7780 h Shift left logical: Shamt= 30, rd= r14 (I/O LED:

MIPS32_Data_IO_MemAddr[29:26]= 4′b1100)
addi 200C00F0 h Add Immediate: SignExtImm= 00f0, rd= r12, write the

value 32′h000000f0 in r12 (GPR)
sw ADCC0000 h Store word: save r12 (GPR) to the address stored in r14
movcr 48C10000 h Instruction movcr (wait Rj instruction): causes the instP0

dispatch if there are no other active (crEVi) and validated
(crTRi) events for instP1

At each rising edge of the clock signal, the finite state machine (FSM) checks the
current state of the scheduler by testing nHSE_FSM_state variable. When the FSM is in the
FSM_WAIT state then the scheduler does not execute any instPi and the nHSE_EN_sCPUi
signal is disabled (Fig. 2). If FSM is in FSM_sCPU0 state then instP0 is currently executing
(nHSE_sCPUi_Select <= sCPU0_ID) and will test the associated events. The condition
for instP0 to handle an external interrupt event is given by Table 3, line 9. Therefore,
the prioritization of all events is done at the level of each instPi through the crEPRi
register (Table 1). The crTRi[sCPUi_ID] control register validates time, deadline, interrupt
(Table 3, line 19), mutex, and synchronization events, and the crEVi[sCPUi_ID] register
indicates their occurrence. The algorithm tests if an interrupt event has occurred that is
attached to instP0 (grINT_IDi[i_INT0] = = sCPU0_ID) and jump to the trap cell for
interrupt i_INT0. Next, set the PC_nHSE_Sel line (Fig. 4) to select the following value
for the PC register. Otherwise, it is indicated that no event is currently handled by nHSE
(grEv_select_sCPU[sCPU0_ID] <= 3′b111).
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Table 3 Algoithm: Interrupt event handling implemented in nHSE scheduler hardware
(HW_nMPRA_RTOS processor).

1: always @(posedge clock) begin
2: case (nHSE_FSM_state)
3: FSM_WAIT: begin
4: nHSE_EN_sCPUi <= DISABLE;
5: end
6: FSM_sCPU0: begin
7: nHSE_sCPUi_Select <= sCPU0_ID;
8: nHSE_EN_sCPUi <= (cr0MSTOP &Mask1_bit0) ?

ENABLE: DISABLE; // sCPU0 ready?
9: if(((crTRi[sCPU0_ID] &

Mask1_bit4)&&(crEVi[sCPU0_ID] &
Mask1_bit4))&&(∼((crEPRi0[17:15]
<crEPRi0 [14:12])&&((crTRi[sCPU0_ID] &
Mask1_bit5)&&(crEVi[sCPU0_ID] & Mask1_bit5)))|
((crEPRi0[20:18] <crEPRi0[14:12])&&((crTRi[sCPU0_ID]
& Mask1_bit6)&&(crEVi[sCPU0_ID] & Mask1_bit6)))))
begin // external interrupt handling

10: for(i_INT0=NR_INT-1;i_INT0>=0;i_INT0=i_INT0-1)
begin

11: if((grINT_IDi[i_INT0] == sCPU0_ID)) begin
12: if(grEv_select_sCPU[sCPU0_ID] == 3′b111) begin
13: grEv_select_sCPU[sCPU0_ID] <= 3′b100; //the position of

the event generated from crEPRi
14: crEVi[sCPU0_ID] <= crEVi[sCPU0_ID] | 32′h00000080;
15: crTRi[sCPU0_ID] <= crTRi[sCPU0_ID] | 32′h00000080;
16: if(grInt_select_sCPU[sCPU0_ID] == 8′hFF) begin
17: PC_nHSE_Out <= EXC_Vector_Base_INTi[i_INT0]; //

jump to trap cell for interrupt i
18: PC_nHSE_Sel <= 1′b1; //select the following value for the

PC register
19: grInt_select_sCPU[sCPU0_ID] <= i_INT0; //save the

occurrence of the interruption event
20: Inhibit_Context_Switch <= 1′b0;
21: end
22: end
23: else begin
24: PC_nHSE_Sel <= 1′b0;
25: if((Reg_Write_nHSE_WB==1)&(WB_OpCode==Op_Type_CP2)

& (WB_Rs==Rs_Type_CTC2) & ((WB_Immediate ==
16′h0001) & ((Write_Data_WB & 32′h00000080)==
32′h00000000))) begin

(continued on next page)
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Table 3 (continued)

26: grInt_select_sCPU[sCPU0_ID] <= 8′hFF;
27: grEv_select_sCPU[sCPU0_ID] <= 3′b111;
28: end
29: end
30: end
31: end //for
32: end //if interrupts
33: end
34: endcase
35: end //always

The condition in line 31 of the algorithm tests whether the current instruction is
an instruction of type Op_Type_CP2 and whether it is written in COP2 (WB_Rs =
=Rs_Type_CTC2). Thus, the code in Table 3 handles an interrupt event assigned to
a processor instance (instP0), prioritized via the crEPRi register, directly jumps to
its associated trap cell, and ensures correct FSM operation without generating a race
condition. Table 2 presents a benchmark program used for experimental testing, so that
through simulations and practical measurements with the oscilloscope can measure the
time to capture the external event, the time to change the state of the finite state machine
and the context switch.

RESULTS & DISCUSSION
The main technical objective of this concept is to design and integrate HW_nMPRA_RTOS
for a SoC with predictable time behavior and real-time response since the nHSE dynamic
scheduler has a negligible implication on RTOS jitter. So, performing the previous tests
with ARM Cortex-M4 and synthesizing in FPGA the Microblaze soft-core, this subsection
presents the HW_nMPRA_RTOS concept FPGA integration and the interrupt events
response time measurement.

Figure 10 shows the HW_nMPRA_RTOS design synthesis and SoC integration on 28
nm technology (Gary et al., 2017), as well as the soft-core CPU placement and layout in the
Xilinx Virtex-7 FPGA VC707 evaluation kit based on XC7VXX485T-2FFG1761C circuit.
Based on the multiplication of resources in the datapath and the preemptive scheduler
implemented in hardware, thread contexts switching in HW_nMPRA_RTOS is performed
in a maximum of 1 ÷ 2 clock cycles (maximum of 60.6 ns at a frequency of 33 MHz).
Thus, in the case of a software RTOS, the switching of thread contexts takes place in a few
microseconds. From a safety-critical application point of view, the HW_nMPRA_RTOS
architecture represents an innovative, low-cost solution (including RTOS) with better
performance than existing systems in automotive, robotics, medical, motion control,
monitoring, and control of fast and slow processes.

This achieves minimal jitter in handling interrupts and real-time tasks, ensuring the
stability of critical RTSs controlled by HW_nMPRA_RTOS.
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Figure 10 (A) HW_nMPRA_RTOS design optimized for 28 nm system performance and FPGA inte-
gration; (B) HW_nMPRA_RTOS soft-core placement and layout in Xilinx Virtex-7 FPGA VC707 evalu-
ation kit based on XC7VX485T-2FFG1761C circuit.

Full-size DOI: 10.7717/peerjcs.1300/fig-10

Table 4 shows the Artix-7 FPGA resource requirements for MicroBlaze, Cortex-
M3, RISC-V, MIPS32 and HW_nMPRA_RTOS FPGA implementation architectures
(Włostowski, Serrano & Vaga, 2015; Li, Zhang & Bao, 2022; Tsai & Lee, 2022; Sarjoughian,
Chen & Burger, 2008). It can be stated that the flip-flops and combinational logic
requirements are convenient for the architecture proposed in this article, considering that
HW_nMPRA_RTOS guarantees context switching in 1 ÷ 2 clock cycles and predictable
response to interrupt events.

Table 5 shows the power consumption results for three FPGA implementations consid-
ered, namely MicroBlaze, ARM Cortex-M3, RISC-V, MIPS32 and HW_nMPRA_RTOS
(with 4 HW_thread_i). Total on-chip power is represented by static and dynamic on-chip
power which is also referred to as thermal power and includes on-chip dissipated power
from any source. Static on-chip power is composed of the values sum obtained for
static device and static design. The static device coefficient is represented by transistors
leakage power when the device is powered and not configured, and design static (standby
power) indicates the power when the device is configured and there is no switching
activity, although it also includes static power in I/O digitally controlled impedance (DCI)
terminations. Effective thermal resistance depends mainly on the heatsink and board
characteristics, airflow and user selected package.

Thermal margin represent the temperature and power margin to or in excess of the
maximum accepted range for the selected device grade. This value can be used to decide
how best to address the excess power consumed on-chip. Junction temperature presented
in Table 5 is an estimated value (Vivado DS), which is calculated up to the absolute
maximum temperature after witch point 125+ is clearly highlighted and the power thermal
estimates are no longer valid. Thus the total on-chip power is consistent with the hardware
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Table 4 Post-implementation FPGA resource requirements for different CPU pipeline implementations (FPGA chip XC7A100T-1CSG324C).

XC7A100T
(available resources)/
CPU

MicroBlaze Cortex-M3 uRV RISC-V
core (Włos-
towski, Serrano
& Vaga, 2015)

HW_nMPRA_RTOS
(4 HW_thread_i)

Ultraembedded
RISC-V (Li,
Zhang & Bao,
2022)

Aquila RISC-
V SOC
(Kintex-7
KC705) (Tsai &
Lee, 2022)

MIPS32
(multicycle)
(Sarjoughian,
Chen & Burger,
2008)

MIPS32
(pipeline with
cache)
(Sarjoughian,
Chen & Burger,
2008)

LUT (63400) 1512 22559 4242 15958 13170 30705 1751 3453
LUTRAM (19000) 224 6144 608 814 866 5666 136 16
FF (126800) 1389 6384 4047 8613 10002 31739 249 1908
BRAM (135) 8 – 513 148 5 36 – –
DSP (240) 3 3 4 4 4 – – –
IO (210) 25 41 28 32 57 119 46 48
BUFG (32) 3 8 3 15 3 5 2 6
MMCM (6) 1 1 1 1 1 2 – –
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Table 5 Post-Implementation on-chip power results.

Artix-7 FPGA/ CPU MicroBlaze Cortex-M3 uRV RISC-V
core (Włostowski,
Serrano & Vaga,
2015)

HW_nMPRA_RTOS
(4 instPi)

Ultraembedded
RISC-V (Li, Zhang
& Bao, 2022)

Aquila RISC-V SOC
(Kintex-7 KC705)
(Tsai & Lee, 2022)

MIPS32
(multicycle)
(Sarjoughian, Chen
& Burger, 2008)

MIPS32
(pipeline
with cache)
(Sarjoughian,
Chen & Burger,
2008)

Total on-chip power 0.233 W 0.255 W 0.649 W 0.421 W 0.781 W 2.839 W 0.133 W 0.171 W

Static on-chip power 0.098 W (42%) 0.072 W (28%) 0.275 W (42%) 0.252 W (60%) 0.064 W 0.180 W 0.097 W 0.097 W

Dynamic on-chip power 0.135 W (58%) 0.183 W (72%) 0.374 W (58%) 0.169 W (40%) 0.717 W 2.659 W 0.036 W 0.073 W

Confidence level Low Low Low Low Low Low Low Low

Power supplied to
off-chip devices

0 W 0 W 0W 0W 0.506 W 0.44 W 0W 0W

Effective thermal
resistance

4.6 ◦C/W 4.9 ◦C/W 1.1 ◦C/W 1.1 ◦C/W 4.8 ◦C/W 1.8 ◦C/W 4.6 ◦C/W 4.6 ◦C/W

Thermal margin 58.9 ◦C (12.8 W) 73.7 ◦C (14.8 W) 59.3 ◦C (50.1 W) 59.5 ◦C (50.4 W) 71.3 ◦C 55.0 ◦C 59.4 ◦C 59.2 ◦C

Junction temperature 26.1 ◦C 26.3 ◦C 25.7 ◦C 25.5 ◦C 28.7 ◦C 30.0 ◦C 25.6 ◦C 25.8 ◦C
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contexts implemented separately for instPi and also with the junction temperature, so we
can say that the aim of this project has been successfully achieved.

Figure 11 shows the response time to an asynchronous event and the jitter corresponding
to scheduling a set of tasks in hardware. The signal captures are taken with PICOSCOPE
6404D oscilloscope (Pico Technology, St. Neots, UK) with four channels and max 500
MHz. Thus, channel C1 indicates the occurrence of the external asynchronous signal with
the processor clock, C2 indicates the storage of this event by setting the evIi bit in the
crEVi control register (Table 3), C3 indicates the FSM state (nHSE_FSM_state from Table
3), and C4 shows the selection of the appropriate task for execution by the scheduler
(en_pipe_sCPU0).

As can be seen in Fig. 11A, the response time to a prioritized outage event is 75 ns, the
measurement was performed from when the event occurred until nHSE switched instP0 to
HW_thread_0. The jitter is a maximum of 30 ns (Fig. 11B), depending on when the input
signal is captured and stored in the corresponding bit of register crEV0, this event being
validated by the corresponding bit of crTR0.

In contrast to classical processor architectures, where context saving involves saving
registers on the stack causing a jitter effect, the processor architecture described in this
article ensures much-needed predictable behavior in critical situations. The size of the
memory consumed for the implementation of the multiplied resources, PC register, GPR,
and pipeline registers, is directly proportional to the number of implementedHW_thread_i.
To meet the real-time requirements in the RTS domain, nHSE implements a priority-based
scheduling scheme. Future research will consider implementing the earliest deadline first
(EDF) scheduling algorithm in hardware.

CONCLUSIONS
The synthesis and FPGA implementation of this project will facilitate the development
of RTS applications. The research and proposals carried out for this work have been
validated in practice and the scientific results have been compared based on well-chosen
experiments. The scientific contribution and economic benefits of the proposed concept
will imply significant increases in industrial products due to its easy integration into
software applications of new RTS-based applications, and can even be integrated into a
set of Building Internet of Things (BIoT)-based smart switches. To better evaluate the
performance of the processor model addressed in this article, the most representative
implementations in the field were considered in the implementation and performance
analysis of RTOS. Following the presentation and description of the HW_nMPRA_RTOS
architecture and the analysis of processor architectures with hardware-implemented
functions we can deduce the following achievements:

• Studies on the HW_nMPRA_RTOS processor implementation involving the custom
pipeline stages and GPR implementation (Figs. 3 ÷ 7);
• Comparative analysis of the most representative soft-core processor implementations
(MicroBlaze), both hardware and software proposed in the current literature (Section
4.2);
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Figure 11 (A) Response time to an asynchronous CPU event; (B) Jitter corresponding to the tasks
hardware scheduling (soft-core processor frequency is 33MHz).

Full-size DOI: 10.7717/peerjcs.1300/fig-11

• Integration, presentation and description of the nHSE scheduling results implemented,
and validated in practice (Section 4.3 and 4.4).

The existence of dedicated HW_thread_i resources, i.e., the ability to flexibly set instPi
priorities and dynamically attach interrupt events, guarantees in addition to fast event
response and robust priority-based preemptive scheduling.
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