
Submitted 28 October 2022
Accepted 23 February 2023
Published 17 March 2023

Corresponding author
Ying He, hdj@cqut.edu.cn

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.1296

Copyright
2023 Shi et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A local cost simulation-based algorithm
to solve distributed constraint optimization
problems
Meifeng Shi1,2, Feipeng Liang1, Yuan Chen1 and Ying He1

1Department of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China
2 Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

ABSTRACT
As an important incomplete algorithm for solvingDistributed Constraint Optimization
Problems (DCOPs), local search algorithms exhibit the advantages of flexibility, high
efficiency and high fault tolerance. However, the significant historical values of agents
that affect the local cost and global cost are never taken into in existing incomplete
algorithms. In this article, a novel Local Cost Simulation-based Algorithm named
LCS is presented to exploit the potential of historical values of agents to further
enhance the exploration ability of the local search algorithm. In LCS, the Exponential
WeightedMoving Average (EWMA) is introduced to simulate the local cost to generate
the selection probability of each value. Moreover, populations are constructed for
each agent to increase the times of being selected inferior solutions by population
optimization and information exchange between populations. We theoretically analyze
the feasibility of EWMA and the availability of solution quality improvement. In
addition, based on our extensive empirical evaluations, we experimentally demonstrate
that LCS outperforms state-of-the-art DCOP incomplete algorithms.

Subjects Agents and Multi-Agent Systems, Optimization Theory and Computation
Keywords DCOPs, LCS, EWMA, Inferior solutions

INTRODUCTION
Multi-agent system (MAS) (Ferber & Weiss, 1999) is a computing system composed of
multiple autonomous agents that can interact with each other. It is an important research
area of distributed artificial intelligence. The Distributed Constrained Optimization
Problems (DCOPs) (Modi et al., 2005) have emerged as one of the main coordination
techniques in MAS. It is based on the constrained relationship between agents to make
decisions and select a set of values with minimum constraint cost. DCOPs have been
successfully applied in real-world coordination tasks, such as sensor networks (Farinelli,
Rogers & Jennings, 2014), task scheduling (Sultanik, Modi & Regli, 2007), power networks
(Fioretto et al., 2017), etc.

Algorithms for DCOPs can be classified into complete algorithms that guarantee to
find of the optimal solution and incomplete algorithms that can find the approximate
optimal solution in a short time. The complete algorithms can be roughly classified into
the search-based algorithm (Gershman, Meisels & Zivan, 2009) by traversing the solution
space and inference-based algorithm (Petcu & Faltings, 2005; Petcu & Faltings, 2007) by

How to cite this article Shi M, Liang F, Chen Y, He Y. 2023. A local cost simulation-based algorithm to solve distributed constraint opti-
mization problems. PeerJ Comput. Sci. 9:e1296 http://doi.org/10.7717/peerj-cs.1296

https://peerj.com/computer-science
mailto:hdj@cqut.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1296
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1296

performing variable elimination. Complete algorithms based on search mainly include
SynchBB (Hirayama & Yokoo, 1997), AFB (Gershman, Meisels & Zivan, 2009) and ADOPT
(Modi et al., 2005). Among them, SynchBB is a synchronous algorithm, which uses the
idea of branch delimitation to solve DCOP, mainly uses the boundary value to prune
the solution space and then compresses the space to find the optimal solution. AFB is an
asynchronous algorithm, which is an improved version of SynchBB. In AFB, the agent
assigns values to variables sequentially and transmits the partial resolution and the cost
of the partial solutions. By receiving the information, the agent asynchronously calculates
the upper and lower bounds of the current partial solution, so that it can judge whether
backtracking is needed as early as possible, which improves the pruning efficiency of the
algorithm. ADOPT adopts a depth-first search tree as a communication structure, and uses
a best-first search strategy to perform distributed backtracking. The main representative
of the complete algorithm based on inference is DPOP (Petcu & Faltings, 2005), which
uses pseudo-tree (Freuder & Quinn, 1985) as the communication structure, calculates
and transmits the utility corresponding to the assignment combination from the bottom
to top, and obtains the optimal solution through the elimination operation of the joint
utility tables. Since DCOPs are NP-Hard (Modi et al., 2005), the computational overheads
of complete algorithms will increase exponentially as the scale of the problem increases,
which limits their application in practical engineering.The advantage of low computational
overheads of incomplete algorithms makes them more popular in large-scale applications.

Incomplete algorithms are generally classified into three categories: local search
algorithms, inference-based algorithms, and sampling-based algorithms. Inference-based
algorithms mainly include Max-Sum (Farinelli et al., 2008), Bounded Max-sum (Rogers et
al., 2011), Max-sum_ADVP (Zivan et al., 2017) and Damped Max-sum (Cohen & Zivan,
2017). In Max-sum, the agent optimizes the goal by passing messages in the factor graph
(Aji & McEliece, 2000) to continuously accumulate beliefs. Bounded Max-sum transforms
the original problem into an acyclic graph by removing the relationship edges that have
the least impact on the solution quality in the cyclic factor graph. The problem is then
solved using the Max-sum algorithm and an approximation ratio is calculated to improve
the quality of the solution. Max-sum_ADVP solves the repeated utility problem by adding
its own fetch values to the information sent by each variable node and eliminates the
assumption of invalid value. Damped Max-sum converts the standard factor graph into an
equivalent split-constrained factor graph to control the asymmetry of each constraint, in
order to achieve the purpose of balancing exploration and utilization.

Sampling-based algorithms include DUCT (Ottens, Dimitrakakis & Faltings, 2012), D-
Gibbs (Nguyen, Yeoh & Lau, 2013), SD-Gibbs (Nguyen et al., 2019) and PD-Gibbs (Nguyen
et al., 2019) that take statistical samples of the value context to solve DCOPs by constructing
another structure. Among them, DUCT applies sampling and confidence bounds to solve
DCOP. The main idea of D-Gibbs is to transform DCOP into a maximum likelihood
estimation problem in Markov random fields. SD-Gibbs and PD-Gibbs have a linear-space
memory requirement and solve some large memory limitation problems.

The local search algorithms are the most popular ones because of their simple logic,
flexibility and effectiveness. Local search algorithms mainly include DSA (Zhang et al.,

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 2/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

2005), MGM (Maheswaran, Pearce & Tambe, 2004), DSAN (Arshad & Silaghi, 2004),
MGM-2 (Maheswaran, Pearce & Tambe, 2006), MGM-3 (Maheswaran, Pearce & Tambe,
2006; Leite, Fabrício & Jean-Paul, 2014) and GDBA (Okamoto, Zivan & Nahon, 2016). DSA
records the current local cost according to the values of neighbors and selects the value
that can reduce the local cost to the greatest extent according to the probability. MGM
considers the local cost of neighbors, and the agent with the largest local gain can change
the value. DSAN introduces the dynamic probability idea of the simulated annealing
method to jump out of the local optimum. Algorithms such as MGM-2 and MGM-3 use
the idea of k-optimal (Bowring et al., 2008), agents cooperate locally to improve the quality
of local solutions, but the larger k is, the greater the time complexity will be. GDBA extends
DBA (Zhang et al., 2005) to DCOP, stipulates concepts such as effective cost, constraint
violation and modified matrix range, and has achieved good results. In the iterative process
of the local search algorithm, although the total cost of the solution shows a downward
trend, it does not decrease monotonically. After falling to the lowest value, since the agent
does not know the current global cost state, the agent will continue to change the value
according to the local strategy. Therefore, in order to record the optimal solution in the
iterative process and make the algorithm show anytime effect, the Anytime Local Search
Framework (Zivan, Okamoto & Peled, 2014) was proposed. The framework relies on a
breadth-first tree structure to record the global state. In addition, PDS (Yu et al., 2017) also
proposes a partial decision-making framework. It is able to apply local search algorithms
and improve the quality of local search algorithm solutions by local decision mechanisms.

Recently, population-based methods and frameworks have emerged and can achieve
high-quality solutions. ACO_DCOP (Chen et al., 2018) adapts the traditional Ant Colony
Optimization to solve DCOPs by the pheromone mechanism ameliorated. ACO_DCOP
defines pheromone as global cost and heuristic information as local cost, and the agent
combines the information from both parts to make a decision. A genetic algorithm-
based (LSGA) (Chen et al., 2020) framework uses genetic codes to crossover variation the
assignment combination.

However, as the iterative trace of the algorithm, the historical values of agents are never
considered in the previously mentioned algorithms. To study the influence of the historical
values of agents on local search algorithms, a novel Local Cost Simulation-based algorithm
named LCS is proposed by combining the Exponentially Weighted Moving Average
(EWMA) and population optimization technology, which improves the development of
solutions and exploration capabilities. First, EWMA is used to simulate the local cost to
generate the selection probability of each value. Then, populations are constructed for
each agent to increase the selection times of inferior solutions. Finally, to break out of the
local optima to explore other solution spaces, the population interaction is introduced
into LCS. We theoretically analyze the feasibility of EWMA, availability of solution quality
improvement of the proposed LCS.We also experimentally show the superior performance
of LCS over the state-of-the-art DCOPs incomplete algorithms based on our extensive
empirical evaluations. Specically, our contributions can be summarized as follows:
(a) We use EWMA to model historical local costs, which provides an effective idea for

using historical values to estimate the local cost.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 3/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

(b) We design a probability-based strategy so that values with lower local cost simulation
values have a higher probability of being selected.

(c) We design a population cooperation mechanism to improve the exploitation and
exploration ability of LCS.

BACKGROUND & RELATED WORK
Distributed constraint optimization problems
A DCOP can be defined as a tuple (A,X,D,F) (Chen et al., 2020) where.

• A={a1,...,an} is a set of agents.
• X={x1,...,xm} is a set of variables, where each variable is assigned to an agent.
• D={D1,...,Dm} is a set of finite variable domains, where the values of the variables are
taken from finite domains D1,...,Dm.
• F= {f1,...,fq} is a set of constraints, where each constraint fi :Di1× ...×Dik→R≥0
specifies a non-negative cost for every possible value combination of a set of variables.

For ease of understanding and discussion, we assume that one agent controls only one
variable and all constraints are binary. Therefore, in this article, agent and variable can
be considered as the same concept and can be replaced with each other. Figure 1 shows a
simple DCOP example.

The solution objective of DCOP is to find an assignment X∗ that minimizes the sum of
constraint costs arising between all agents.

X∗= argmin
di∈Di,dj∈Dj

∑
fij∈F

fij(xi= di,xj= dj). (1)

Local search framework for DCOPs
The local search algorithms are typical incomplete algorithms for solving DCOP problems.
In each round, an agent sends the message that includes value or other information to
neighbors in the constraint graph and receives the messages from neighbors. Then, the
agent will select a new value in terms of the messages and decide whether to replace the
old one according to different replacement strategies. There are different ways to create
messages in different algorithms. In DSA, when the value of neighbors changes, the agent
searches its domain to find a value that can reduce local cost, and replaces the old value
using the new one with a probability. But in MGM, only the agent with maximal gain
among all its neighbors can replace old value. In this article, DSA is used to illustrate this
framework.

Table 1 presents the sketch of DSA. Firstly, the agent initializes a value randomly and
sends it to all neighbors (line 1–2). Then, the algorithm executes a repeated iterative loop
(line 3–9) until the termination condition is met. During the loop, an agent collects the
values received from neighbors and selects a new value that reduces the local cost most (line
4–5). Finally, the agent decides to assign the new or the old value according to a probability
p (line 7–9). If (1≥ 0 andp≤ random()), assign the new value. Else, assign the old value.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 1 A DCOP instance. (A) constraint graph; (B) constraint matrices.
Full-size DOI: 10.7717/peerjcs.1296/fig-1

Related work
Most of incomplete algorithms for DCOPs are context-free (Deng et al., 2021). The
local search algorithms (Chapman et al., 2011) is defined as: at each iteration, agents
communicate only the states of the variables under their control to their neighbours on
the constraint graph, and that reason about their next state based on the messages received
from their neighbours.

In the most typical local search algorithm DSA, an agent sends its value to its neighbors,
and at the same time receives the value sent from neighbors. Then, according to the received
value, each agent chooses a value from its variable domain that can minimize the local cost
to replace the old one with probability. If the the old value is replaced, the agent will resend
it to its neighbors. In another typical algorithm, MGM, all agents need to send additional
gain messages to their neighbors. Then through the message passing mechanism, only the
agent with the largest gain among all neighbors can replace the old value. GDBA extends
the DBA algorithm to the general DCOP problem and spans 24 combinations of three
design choices. The three designs are strategies to modify the basic cost using multiple
weights or additional penalties, definitions of constraint violations such as non-zero cost,
non-minimal cost and maximum cost, and modifying the scope of the cost table like
entries, rows, columns, or tables during breakthrough. DSAN is an improved version of
DSA by applying simulated annealing to make DSA jump out of the local optimum.

The LCS proposed in this article mainly utilizes the historical information that current
local search algorithms ignore. The exponential weighted moving average method is used
to maintain and update the local cost simulation value, and the population cooperation
mechanism is used to fully search the local cost simulation value, thereby improving the
quality of the solution.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 5/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-1
http://dx.doi.org/10.7717/peerj-cs.1296

Table 1 The sketch of DSA.

Algorithm 1 Distributed Stochastic Algorithm

For each agent x i executes:
1. value←Choose_Random_Value()
2. send value to neighbors
3. while (no termination condition is met)
4. collect neighbors’ value
5. select a new value which reduces the local cost most
6. 1← the number of the local cost reduced by the new value
7. if (1≥ 0andrandom()≤ p) then
8. assign the new value
9. send value to neighbors

PROPOSED METHOD
Motivation
In local search algorithms, only two successive rounds of information are taken into
account and the historical information from previous rounds is wasted. For the DSA, the
current value depends on the local cost difference between the current round and the
previous round. That is, the value only depends on changes in a single round of neighbors’
values. The local cost is non-increasing in this strategy, and it is easy to fall into a local
optimum. MGM follows the main idea of DSA, although the interactive competition
between neighbors has been added to determine the value changes. For DSAN (Arshad &
Silaghi, 2004), only the idea of Simulate Anneal Arithmetic (SAA) is introduced to control
the search process to disturb the assignment probability when the algorithm falls into the
local optima. The same is true for PDS, LSGA, etc. All of them make no use of the series of
changes in local cost and its historical records of values.

In fact, for the local search algorithms, the purpose of the agent to change values is
generally to reduce the local cost. At the time of local cost decreases, global cost always
performs a downward trend as rounds increase. Various improved local search algorithms
all focus on the conflict between local cost and global cost because when the global cost
decreases while the local costs of some agents increase.

These improvement strategies are committed to making algorithms break away from the
monotonic decline of local cost to jumpout of the local optima and search for higher-quality
solutions. All of these improved algorithms have not taken into account the change records
of the local cost. The sum of the local costs of all agents is equal to the global cost of the
system. It can be seen that the change of global cost is closely related to that change of the
local cost. Suppose that the estimated local cost of each value is known, we can select the
lower one to get a lower global cost. There are different local costs and different changes
for different values. Thus, it is necessary to estimate the local cost for each value in the
domain according to the historical value of agents to guide their assignments. Based on
this, we propose a novel algorithm named LCS to solve DCOP based on the idea of local
cost simulation.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

Table 2 The sketch of LCS.

1

Algorithm 2 T�� L�� Algorithm

1 I�������	� P�
�����
� �, �, �, �, �, ���
2 foreach do �� ∈ �
3 foreach do�� ∈ ��
4 calculate by formula (1)est

0��(��)
5 StartCycle()

Function Start�S���:

6 foreach do�� ∈ �,� ∈ �
7 randomly selects a value from ���,� ← ��
8 �� ← �� ∪ ���,�
9 Sends ValueMessage({ }) to neighbors�, ��

When received Value :(m, ����_�
m
)

10 update local view with (m, ����_�
m
)

11 foreach do��,�
12 calculate by formula (2)����,�
13 foreach do�� ∈ �
14 foreach do�� ∈ ��
15 update by formula (3)est��(��)
16 if then(�������_����� % ��� = 0)

17 foreach do �� ∈ �
18 foreach do�� ∈ ��
19 exchange by formula (4)est��(��)
20 SelectValue()

Function SelectValue:

21 clear ��
22 foreach do��,�
23 elects a value by formula (5)���,� ← s
24 �� ← �� ∪ ���,�
25 Sends ValueMessage({ }) to neighbors�, ��

PeerJ Comput. Sci. reviewing PDF | (CS-2022:10:78633:2:2:NEW 21 Feb 2023)

Manuscript to be reviewedComputer Science

LCS
LCS consists of two phases: initialization and local cost simulation. We modify the existing
ALS framework to make it compatible with the population of LCS. The sketch of LCS
can be found in Table 2. Each value in the agent value range has a local cost simulation
value that needs to be maintained, and the simulation value is the simulation value of the
historical local cost generated when the value in the value range is selected. When the value
of ai is di, the local cost simulation value of di is denoted as est(di).
Definition 1: An individual is a value with a serial number. Individuals with the same serial
number in all agents represent a solution. A population is a collection of individuals with
its own unique local cost simulation.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 7/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

Definition 2: estck(di)
r is the simulation (or estimation) of the local cost that di ∈Di will

produce. Where ck ∈ C is the serial number of the population, and r is the number of
simulation updates.

Initialization initiates the simulation and assigns values to individuals. Suppose that there
are C populations, each of which has P individuals (C and P are the hyper-parameters).
Since the algorithm has not yet started, we create the same initial simulation for all
populations. For agent ai, the initial simulations (estimations) can be calculated by:

est0ck (di)=
∑
m∈Ni

max
dj∈Dm

cost(di,dj) (2)

where est0ck (di) is the initial estimation for ck ∈C. The estimation can simulate previous
local costs and be updated according to the change of the local cost. It reflects the quality
of di and records the change of neighbors’ values. Here it represents the worst case for di.
And Ni is the neighbor of ai, cost(di,dj) isthe constraint cost generated when ai takes the
value of di, and its neighbor aj takes the value of dj.

Taking Fig. 1 for an example, we assume that there are two populations, with two
individuals in each population respectively. The estimations for x1 should be calculated by:

est0c1 (1)= est0c2 (1)= 4+3+5= 12

est0c1 (2)= est0c2 (2)= 5+5+4= 14

After the estimations are initialized, each agent executes the StartCycle to start message-
passing. The agent constructs populations and individuals to save values per round. We
use Vi to represent the value set of populations for ai. At the first round, individual p∈ P
of population ck ∈C selects an initial value Vck,p in the domain for itself randomly. After
the selection of all individuals, the agent sends the set Vi with values to all neighbors.

For example in Table 3, after initialization, the individuals in each agent are randomly
assigned.

Local cost simulation is a procedure to search for solutions. In this phase, the agent
communicates continuously with its neighbors, calculates the local cost to update the
simulated value, conducts population interaction to better simulate the local cost, and
conducts a sufficient search for the potential of the value.

After the agent receives the sets Vm of neighbors, LCS needs to update simulations by
local cost. The local cost for each individual can be calculated by:

locck,p=
∑
m∈Ni

costi,j
(
Vck,p,i,Vck,p,m

)
(3)

where locck,p is the local cost which is calculated by individual p of population ck and the
same individuals of neighbors.

Continuing the example above, local costs for x1 can be calculated using:

locc1,p1 = 3+3+2= 8,locc1,p2 = 4+3+5= 12

locc2,p1 = 3+1+5= 9,locc2,p2 = 2+4+4= 10.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

Table 3 Initialization example for population.

Vc1,p1 Vc1,p2 Vc2,p1 Vc2,p2

V1 1 1 1 2
V2 2 1 2 1
V3 2 2 1 2
V4 1 2 2 1

When the local cost of each individual has been obtained, the agent needs to update
the estimation to simulate its change. Considering the temporal relationship between local
cost and round, we use the EWMA to simulate the local cost. The updating method of
estimation is defined as:

estrck (di)= estr−1ck (di)∗βck+ locck,p ∗
(
1−βck

)
(4)

where βck is the decay rate of population ck, and r is the number of updates.
Here, we assume that βc1 = 0.5,βc2 = 0.6.est0ckcan be found at formulation 1. The

estimations for x1 can be calculated as:

est1c1 (1)= 12∗0.5+8∗0.5= 10

est2c1 (1)= 10∗0.5+12∗0.5= 11

est1c2 (1)= 12∗0.6+9∗0.4= 10.8

est1c2 (2)= 14∗0.6+10∗0.4= 12.4

After the update, the simulations of x1 become: estc1 (1)= est2c1 (1)= 11,estc1 (2)=
est0c1 (2)= 14,estc2 (1)= est1c2 (1)= 10.8,estc2 (2)= est1c2 (2)= 12.4. If there is no superscript
on estck(di), it means estck(di) is the current latest value.

After each population has updated its simulated values, a new estimate of the local cost
that is closer to the actual local cost is obtained. At this time, in order to give full play to the
advantages of the population, LCS sets up an exchange round, allowing the populations
to share the simulated values they have found, which can tell those populations with poor
simulated values that they have better values and better directions. to explore. The LCS
pre-sets the exchange interval rounds, and every ecy rounds, the agent will exchange the
obtained analog values. The purpose of the exchange operation is to share different search
directions between populations. The exchange is defined as:

estck (di)= estck (di)∗(1−γ)+min
c ∈ C

estc(di)∗γ (5)

where γ is the learning rate. It can affect the reduction of estimation, by which the
population can evolve to the best one.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 9/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

Since just update, minc ∈ C estc(1)= est1c2 (1)= 10.8, minc ∈ C estc(2)= est1c2 (2)= 12.4.
We assume if γ = 0.5, the exchange values for x1 can be calculated by:

estc1 (1)= 11∗0.5+10.8∗0.5= 10.9

estc1 (2)= 14∗0.5+12.4∗0.5= 13.2

estc2 (1)= 10.8∗0.5+10.8∗0.5= 10.8

estc2 (2)= 12.4∗0.5+12.4∗0.5= 12.4

After being updated and exchanged, each individual executes a new round to select values.
The agent needs to calculate the probability for each population since the estimations in
populations are different. Reciprocal of estimation is used to get the probability. The
probability for selecting value di is defined as:

prbck (di)=

(
1/estck(di)

)α∑
d′i∈Di

(
1/estck(d

′

i)
)α (6)

where α is a parameter that significantly affects the quality of the solution by enhancing
the selected probability of di. Because the range of estimation for different problems is
distinct, it is necessary to set different α. Assume α= 8 here, the probability for c1 of x1
can be calculated by:

prbc1 (1)=
(1/10.9)8

(1/10.9)8+(1/13.2)8
= 0.822

prbc1 (2)=
(1/13.2)8

(1/10.9)8+(1/13.2)8
= 0.178.

After finishing the new Vck,p selection, the agent sends the new Vito neighbors again. At
this time, one round is completed and the agent repeats the local cost simulation until all
rounds are over. Because of the ALS, the optimal solution is x1= 1,x2= 2,x3= 2,x4= 1,
which gets the lowest cost 8 in this round.

THEORETICAL ANALYSIS
Theory
In this section, we prove the feasibility of EWMA, the availability of solution quality
improvement, and the superiority of population interaction.
Lemma 1. EWMA will approach the actual local cost as the rounds go infinity.
Proof. Exponential weighted moving average means that the weighted coefficient of value
decreases exponentially as time and can simulate the average value of a time series. The
closer value is to the current moment, the greater the weighted coefficient is. In LCS, with
the increasing of rounds the influence of previous local costs decreases, the average value
obtained by EWMA can put less attention on it and focuses on the local costs in recent
rounds. EWMA can alter the decay rate β to emphasize different rounds, the expression is:

vt=β ∗vt−1+(1−β)∗θt (7)

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 10/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

when v0= 0, there are:

vt= (1−β)
(
θt+βθt−1+β

2θt−2+···+β
t−1θ1

)
. (8)

From formula (8), θ corresponds to the local cost, the weighting coefficient
corresponding to θ1 is β t−1. When t is large, the coefficient value is close to 0 and decreases
exponentially. The weighting coefficient corresponding to θt is 1, and the weight ratio is
relatively large. There are multiple populations in the LCS, and different β can be set for
the population. Both focus on different stages and control the diversity of searches.
Proposition 1.The quality of solutions improves as the number ofmessage rounds increases
before convergence.
Proof.What is the idea of LCS? The relationship between global cost and local cost is:

glc=
1
2

∑
ai∈Agent

locai (9)

where glc is the global cost, locai is the local cost of agent ai. The function of LCS is to
approach locai :

lim
r→∞

estrck (di)= loc(di) (10)

We assume that the algorithm converges at the zth round. According to the converse
method, we assume that the quality of the algorithm solution decreases as the number of
iteration rounds increases. Then the quality of the algorithm solution at round u is less than
round u−x, x is the number of rounds in which the algorithm falls into local optimum.
To simplify the proof, we assume that x = 1. (1< x< u< z)

estuck (di)−est
u−1
ck (di)< 0 (11)

estu−1ck (di)∗βck+ locck,p ∗
(
1−βck

)
−estu−1ck (di)< 0 (12)

locck,p ∗
(
1−βck

)
−estu−1ck (di)∗

(
1−βck

)
< 0 (13)

(locck,p−est
u−1
ck (di))∗

(
1−βck

)
> 0 (14)

where estuck is is the simulated value of the local cost of the uth round, locck,p is the local
cost of the corresponding round.

Formula (11) is the inequality obtained from the assumption. Bring formula (4) to get
formula (12). Merge similar terms to formula (13) and according to formula (10), the value
of locck,p is greater than estu−1ck , then the assumption does not hold. Therefore, the quality
of solutions improves as the number of message rounds increases before convergence.

Complexity
In this section, we analyze the complexity of LCS. We define the number of agents |A| = n,
the number of neighbors of agent xi is |N|.

In the initialization and local cost simulation, only population messages need to be sent
per round, so the size of the message isO(|C|∗|P|), where |C| is the number of populations
and |P| is the number of individuals per population.

The time complexity of LCS mainly depends on the update of simulations and the
calculation of value messages. When updating the simulations, it is necessary to calculate

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 11/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

the local cost for each individual. When calculating local cost, one individual requires
O(|N|) complexity. So, complexity for all populations requires O(|C| ∗ |P| ∗ |N|). For
the calculation of the value message, the agent just needs to traverse the simulations to
calculate the probability. The calculation of probability and selection of value can be
done sequentially. So, the time complexity of the calculation of the value message is
O(|C| ∗max(|P|,|M|)), where |M| is the length of the domain. In summary, the time
complexity of LCS is O(n).

EMPIRICAL EVALUATIONS
Benchmark problems
We empirically evaluate our proposed method with peer algorithms including DSA (type-
C and p= 0.6), MGM, GDBA, PDS, ACO_DCOP (K = 19), Max-sum_ADVP, Damped
Max-sum and LSGA. DSA, MGM and GDBA are implemented under the ALS framework.
For PDS and LSGA, we choose PDS-DSA and LSGA-DSA (M = 18) who perform the best.
And LCS is run on ALS framework to record the optimal solution during the iterations.

Our extensive empirical evaluations are benchmarked on four types of problems
including random DCOPs, scale-free networks (SFN), weighted graph coloring problems
(WGC) and random meeting scheduling problems (Chen et al., 2020). The recommended
values of α are shown in Table 4. For random DCOPs, we set the agent number to 70
and 120, domain size to 10, choose the constraint uniformly from [1,100], and consider
the graph density 0.1 (for sparse) or 0.6 (for dense). For SFN, we set the agent number to
150, domain size to 10, choose the constraint uniformly from [1,100], and consider the
problems with m1= 20, m2= 3 (for sparse) and m1= 20,m2= 10 (for dense). For WGC,
we set the agent number to 120, the available color number to 3, constraint density to
0.05, and choose the constraint uniformly from [1,100]. For random meeting scheduling
problems, we set the agent number to 90, themeeting number to 20, the available time-slots
to 20, and travel times are randomly selected from 6 to 10. The experimental results take the
average of 50 independent problems that each execute 30 times. We run our experiments
on a laptop with an Intel Core i7-6700 CPU 2.60 GHz and 8 GB RAM.

Memory footprints & network load
In terms of memory footprints, we set different population sizes to test on random DCOPs
and scale-free networks. We take the maximum value of memory footprints for multiple
runs of the algorithm. Table 5 shows that population sizes, density and the agent number
are all proportional to memory footprints. In terms of network load (Nguyen et al., 2019),
that is, the amount of information passed around the network, LCS send a polynomial
amount of information in each iteration.

Influence of population size
In order to discuss the influence of population size on the performance of the LCS, we
ensure that the parameters α,β,γ of LCS are constant and usemany different combinations
of population sizes of C= 1,2,3,4,5,P = 8,16,24,30. We choose sparse random graphs of
70 agents and the obtained results are shown in Table 6. From the analysis of the results,

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 12/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

Table 4 The recommended value for α.

Problems α

DCOP_70_0.1 11
DCOP_70_ 0.6 32
DCOP_120_0.1 15
DCOP_120_0.6 43
SFN_150_20_3 10
SFN_150_20_10 20
WGC_120_0.05 2
Meeting scheduling 14

Table 5 The memory footprints of LCS with different population sizes on randomDCOPs and SFN
(memory footprints(MB)).

C*P randomDCOPs SFN

A=70 A=120 A=150

sparse dense sparse dense sparse dense

4*8 66.9 165.7 102.5 500.1 154.8 403.8
4*16 68.7 172.8 107.4 539.4 162.9 466.5
4*24 68.9 174.2 122.6 572.6 166.9 498.3
4*30 69.1 190.2 142.6 583.2 175.0 589.6

Table 6 Comparison of different C and P on randomDCOPs (|A| = 70, p= 0.1) (cost/time (ms)).

P/ C 8 16 24 30

1 5970/858 5481/896 5405/924 5383/932
2 5416/894 5327/949 5300/947 5289/951
3 5331/899 5277/983 5258/1001 5250/1077
4 5287/917 5261/995 5240/1093 5234/1197
5 5269/930 5250/1077 5232/1231 5228/1441

the higher the number of populations C and the number of individuals P is set, the higher
the solution quality of the algorithm is, and the running time of the algorithm increases.
However, after the solution quality decreases to a certain level, continuing to increase C
and P only results in a small gain. At this point, the increasing trend of the algorithm
running time becomes larger and the gain ratio obtained is not high. Therefore, according
to the results of the table, C= 4,P= 24 is chosen to weigh the solution quality and running
time.

Influence of population learning rate
In order to discuss the influence of population learning rate on the performance of the
LCS, we set different population learning rate γ and the obtained results are shown in
Table 7. We still choose sparse random graphs of 70 agents and γ = 0,0.1,0.3,0.5,0.7,0.9.
And to make the population emphasize different phases, β = 0.9,0.8,0.7,0.6 are selected,
but you can also try other values. By analyzing the experimental results, when γ = 0, no

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 13/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

Table 7 Comparison of different on randomDCOPs (|A| = 70, p= 0.1).

γ 0 0.1 0.3 0.5 0.7 0.9

cost 5302 5270 5262 5249 5240 5245

value exchange between populations was performed at this time. Comparison with the
cost of the algorithm after the introduction of the population learning rate γ shows poor
results. The effectiveness of the algorithm was improved after the introduction of γ , which
confirmed the effectiveness of population cooperation. According to the result, γ = 0.7
performs the best solution.

Influence of population cooperation mechanism
In this section, we evaluate the influence of the population cooperation mechanism. We
call the LCS without population cooperation mechanism as LCS-WPCM. We set the same
parameter for both algorithms as C= 4, P= 24, β ={0.9,0.8,0.7,0.6} and γ = 0.7.

Figures 2 and 3 show the convergence curve of LCS-WPCM and LCS on sparse and
dense random graphs with 70 agents. From Figs. 2 and 3, we can see that whether in sparse
graph or dense graph, population cooperation mechanism can improve the convergence
quality of LCS.

Comparisons with the state-of-the-art algorithms
In this section, LCS was compared with the comparison algorithm on the four
Benchmark problems. According to the previous analysis, we set the parameters of LCS as
C= 4, P= 24, β ={0.9,0.8,0.7,0.6} and γ = 0.7. The Max-sum_ADVP and the Damped
Max-sum for our comparison experiments are non-anytime, so we give the experimental
results separately.

Figures 4–6 show the comparison between LCS and other algorithms in random
DCOPs (|A| = 70, p= 0.1;|A| = 70, p= 0.6), and Table 8 gives the comparisons of
all other problems. All differences are statistically significant for p− value< 1×10−36.
Compared to the other algorithms, LCS improves the solution quality on sparse problems
by 2.2% ∼ 21.8% and on dense problems by 0.7% ∼ 5.7%. By analyzing the decline curve
of LCS, it can be found that some more twists and turns are caused by multiple search
phases and population interaction. In the initial phase of iteration, LCS decreases more
slowly than LSGA-DSA or ACO_DCOP because estimations have not been simulated well.
But after a full search, LCS performs better than all other algorithms and cost shows a
slow downward trend all the time. LCS has good search ability for both sparse and dense
problems, while the other algorithms are biased to only one of them and cannot catch up
with the LCS algorithm.
Figures 7–9 show the comparison between LCS and other algorithms in random DCOPs

(|A| = 120, p= 0.1;|A| = 120, p= 0.6). Compared to the other algorithms, LCS improves
the solution quality on sparse problems by 1.5% ∼ 19.3% and on dense problems by
0.4% ∼ 4.0%. Population-based LSGA-DSA and LCS with population achieved better
results than other algorithms, but LSGA-DSA results were not as good as LCS, which
proves that the local cost of simulation in DCOP is better than genetic algorithm coding.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 2 Sparse random graphs (|A| = 70, p= 0.1).
Full-size DOI: 10.7717/peerjcs.1296/fig-2

Figure 3 Dense random graphs (|A| = 70, p= 0.6).
Full-size DOI: 10.7717/peerjcs.1296/fig-3

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 15/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-2
https://doi.org/10.7717/peerjcs.1296/fig-3
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 4 The cost of LCS, DSA, MGM, GDBA, PDS-DSA, ACO and LSGA-DSA for randomDCOPs
(|A| = 70, p= 0.1).

Full-size DOI: 10.7717/peerjcs.1296/fig-4

Since the global cost increases with the number of agents and the problem size, the degree
of improvement of LCS is lower than before. However, the LCS algorithm still has higher
solution quality than other algorithms for sparse and dense problems due to the local cost
simulation method and population cooperation with each other.

Figures 10– 12 show the comparison between LCS and other algorithms in scale-
free networks(|A| = 150, m1= 20,m2= 3;|A| = 150, m1= 20,m2=10). From the
experimental results it can be seen that the algorithm runs longer on this problem because
of its larger size. Compared to the other algorithms, LCS improves the solution quality
on sparse problems by 2.1% ∼ 26.6% and on dense problems by 1.0% ∼ 9.8%. The
improvement effect shows that the algorithm improves less on the dense problem than on
the sparse problem. The reason for this is that as the number of neighbors connected to
the centroids in the scale-free network increases, the simulation accuracy of the local cost
is affected and its fluctuation range becomes larger. However, the algorithm preserves the
probability of being selected for all values in the value domain, so the effect of this error is
improved, which makes the LCS still outperform the other algorithms. Table 8 shows that
LCS has good search capability for both sparse and dense problems in different problems,
where other algorithms can not catch up with the effect of LCS.

Figures 13 and 14 presents the comparison of LCS with other algorithms on weighted
graph coloring problems (|A| = 120, p= 0.05). Compared to the other algorithms, LCS
improves by 38.4% ∼ 85.3%, which is a great improvement. In this problem, it can be

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 16/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-4
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 5 The cost of LCS, DSA, MGM, GDBA, PDS-DSA, ACO and LSGA-DSA for randomDCOPs
(|A| = 70, p= 0.6).

Full-size DOI: 10.7717/peerjcs.1296/fig-5

Figure 6 The cost of LCS, Max-sum_ADVP and DampedMax-sum for randomDCOPs (|A| = 70).
Full-size DOI: 10.7717/peerjcs.1296/fig-6

found that all algorithms solve with a lower value of global cost, and the solution of
PDS-DSA algorithm has dropped to more than 300, which is already a better solution.
However, in contrast to it, LCS drops the solution to about 200, which greatly improves
the solution quality. The weighted graph coloring problem favors DCSP (Yokoo et al.,

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 17/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-5
https://doi.org/10.7717/peerjcs.1296/fig-6
http://dx.doi.org/10.7717/peerj-cs.1296

Table 8 Comparison of LCS and the benchmarking algorithms on difference configuration of random
DCOPs and SFN.

Problems randomDCOPs SFN

A=70 A=120 A=150

sparse dense sparse dense sparse dense

DSA 6006 56473 21421 178316 9500 44435
MGM 6715 57609 22615 180505 10978 45729
PDS-DSA 5372 56052 20322 177781 8231 43088
LSGA-DSA 5429 55321 20275 176185 8521 42728
GDBA 5791 56069 21093 177529 9025 43944
ACO_DCOP 5436 55790 – – – –
Max-sum_ADVP 6574 58272 21808 182814 9818 46963
Damped Max-sum 6019 55356 24766 181156 8287 46572
LCS 5257 54922 19970 175461 8059 42322

Figure 7 The cost of LCS, DSA, MGM, GDBA, PDS-DSA and LSGA-DSA for randomDCOPs (|A| =

120, p= 0.1).
Full-size DOI: 10.7717/peerjcs.1296/fig-7

1998) similarly, which proves that LCS may be superior in solving similar problems such
as DCSP.

Figure 15 presents the comparison of LCS with other algorithms on random meeting
scheduling problems(|A| = 90). We omit the results of MGM and GDBA due to their
inferior performances (Chen et al., 2020). Compared to the other algorithms, LCS improves

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 18/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-7
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 8 The cost of LCS, DSA, MGM, GDBA, PDS-DSA and LSGA-DSA for randomDCOPs (|A| =

120, p= 0.6).
Full-size DOI: 10.7717/peerjcs.1296/fig-8

Figure 9 The cost of LCS, Max-sum_ADVP and DampedMax-sum for randomDCOPs (|A| = 120).
Full-size DOI: 10.7717/peerjcs.1296/fig-9

by 0.6% ∼ 4.2%. In this problem, it can be found that all algorithms solve with a lower
value of global cost. Experimental results show that LCS outperforms other algorithms and
can improve real-world problems.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 19/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-8
https://doi.org/10.7717/peerjcs.1296/fig-9
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 10 The cost of LCS, DSA, MGM, GDBA, PDS-DSA and LSGA-DSA for scale-free networks (|A|

= 150, m1= 20, m2= 3).
Full-size DOI: 10.7717/peerjcs.1296/fig-10

CONCLUSIONS
The changing of the local cost that can be obtained from historical agent values has a
significant influence on the performance of the local search algorithm. LCS is presented
in this article to exploit the potential of historical values of agents to further develop the
exploration ability of the local search algorithm. The proposed LCS makes up for the
vacancy that local cost historical information has never been considered in the local search
algorithms. In LCS, the designed EWMA provides an effective scheme for estimating local
cost and the population interact mechanism giving a strategy to improve the exploitation
and exploration ability of local search algorithms. We theoretically analyze the superiority
of LCS from two different aspects. Finally, our experimental results show that LCS is
superior to the competing algorithms including the latest local search algorithms and
population-based algorithms. In future work, we will explore how to solve the problem of
reliance on parameter α andmake LCS self-adaptive according to the scale of the problem.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 20/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-10
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 11 The cost of LCS, DSA, MGM, GDBA, PDS-DSA and LSGA-DSA for scale-free networks (|A|

= 150, m1= 20, m2= 10).
Full-size DOI: 10.7717/peerjcs.1296/fig-11

Figure 12 The cost of LCS, Max-sum_ADVP and DampedMax-sum for scale-free networks (|A| =

150).
Full-size DOI: 10.7717/peerjcs.1296/fig-12

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Thisworkwas supported by the Youth Project of Science andTechnologyResearch Program
of Chongqing Education Commission of China (No. KJQN202001139), the Chongqing

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 21/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-11
https://doi.org/10.7717/peerjcs.1296/fig-12
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 13 The cost of LCS, DSA, MGM, GDBA, PDS-DSA and LSGA-DSA for weighted graph coloring
problems with 120 agents.

Full-size DOI: 10.7717/peerjcs.1296/fig-13

Research Program of Basic Research and Frontier Technology (NO. cstc2018jcyjAX0287),
and the Scientific Research Foundation of Chongqing University of Technology. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Youth Project of Science and Technology Research Program of Chongqing Education
Commission of China: KJQN202001139.
Chongqing Research Program of Basic Research and Frontier Technology:
cstc2018jcyjAX0287.
Scientific Research Foundation of Chongqing University of Technology.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Meifeng Shi conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 22/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-13
http://dx.doi.org/10.7717/peerj-cs.1296

Figure 14 The cost of LCS, Max-sum_ADVP and DampedMax-sum for weighted graph coloring
problems with 120 agents.

Full-size DOI: 10.7717/peerjcs.1296/fig-14

Figure 15 The cost of all algorithms for randommeeting scheduling problems with 90 agents.
Full-size DOI: 10.7717/peerjcs.1296/fig-15

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 23/26

https://peerj.com
https://doi.org/10.7717/peerjcs.1296/fig-14
https://doi.org/10.7717/peerjcs.1296/fig-15
http://dx.doi.org/10.7717/peerj-cs.1296

• Feipeng Liang performed the experiments, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.
• Yuan Chen analyzed the data, prepared figures and/or tables, and approved the final
draft.
• Ying He analyzed the data, authored or reviewed drafts of the article, and approved the
final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1296#supplemental-information.

REFERENCES
Aji SM, McEliece RJ. 2000. The generalized distributive law. IEEE Transactions on

Information Theory 46(2):325–343 DOI 10.1109/18.825794.
ArshadM, Silaghi MC. 2004. Distributed simulated annealing. In: Distributed constraint

problem solving and reasoning in multi-agent systems, 112.
Bowring E, Pearce JP, Portway C, JainM, TambeM. 2008. On k-optimal distributed

constraint optimization algorithms: new bounds and algorithms. In: Proceedings
of the seventh international joint conference on autonomous agents and multiagent
systems, 607–614 DOI 10.1145/1402298.1402309.

Chapman AC, Rogers A, Jennings NR, Leslie DS. 2011. A unifying framework
for iterative approximate best-response algorithms for distributed constraint
optimization problems1. The Knowledge Engineering Review 26(4):411–444
DOI 10.1017/S0269888911000178.

Chen Z, Liu L, He J, Yu Z. 2020. A genetic algorithm based framework for local search
algorithms for distributed constraint optimization problems. Autonomous Agents and
Multi-Agent Systems 34:41 DOI 10.1007/s10458-020-09464-9.

Chen Z,Wu T, Deng Y, Zhang C. 2018. An ant-based algorithm to solve distributed
constraint optimization problems. In: Proc. of the 32th AAAI conference on artificial
intelligence, 4654–4661 DOI 10.1609/aaai.v32i1.11580.

Cohen L, Zivan R. 2017.Max-sum revisited: the real power of damping. In: International
conference on autonomous agents and multiagent systems. Cham: Springer, 111–124
DOI 10.1007/978-3-319-71679-4_8.

Deng Y, Yu R,Wang X, An B. 2021. Neural regret-matching for distributed constraint
optimization problems. In: IJCAI, 146–153.

Farinelli A, Rogers A, Jennings NR. 2014. Agent-based decentralised coordination for
sensor net-works using the max-sum algorithm. Autonomous Agents and Multi-Agent
Systems 28(3):337–380 DOI 10.1007/s10458-013-9225-1.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 24/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1296#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1296#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1296#supplemental-information
http://dx.doi.org/10.1109/18.825794
http://dx.doi.org/10.1145/1402298.1402309
http://dx.doi.org/10.1017/S0269888911000178
http://dx.doi.org/10.1007/s10458-020-09464-9
http://dx.doi.org/10.1609/aaai.v32i1.11580
http://dx.doi.org/10.1007/978-3-319-71679-4_8
http://dx.doi.org/10.1007/s10458-013-9225-1
http://dx.doi.org/10.7717/peerj-cs.1296

Farinelli A, Rogers A, Petcu A, Jennings NR. 2008. Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In: Proceedings of the 7th
conference on AAMAS, 639–646.

Ferber J, Weiss G. 1999.Multi-agent systems: an introduction to distributed artificial
intelligence. Reading: Addison-wesley.

Fioretto F, YeohW, Pontelli E, Ma Y, Ranade SJ. 2017. A distributed constraint
optimization (DCOP) approach to the economic dispatch with demand response.
In: Proceedings of the 16th conference on AAMAS. 999–1007.

Freuder EC, QuinnMJ. 1985. Taking advantage of stable sets of variables in constraint
satisfaction problems. In: IJCAI, 1076–1078.

Gershman A, Meisels A, Zivan R. 2009. Asynchronous forward bounding for distributed
cops. Journal of Artificial Intelligence Research 34:61–88 DOI 10.1613/JAIR.2591.

Hirayama K, YokooM. 1997. Distributed partial constraint satisfaction problem. In:
International conference on principles and practice of constraint programming. Berlin,
Heidelberg: Springer, 222–236.

Leite A, Fabrício E, Jean-Paul A. 2014. Distributed constraint optimization problems:
review and perspectives. Expert Systems with Applications 41(11):5139–5157
DOI 10.1016/j.eswa.2014.02.039.

Maheswaran RT, Pearce JP, TambeM. 2004. Distributed algorithms for dcop: a
graphical-game-based approach. In: Proceedings of the international conference on
parallel and distributed computing systems (PDCS), 432–439.

Maheswaran RT, Pearce JP, TambeM. 2006. A family of graphical-game-based algo-
rithms for distributed constraint optimization problems. In: Coordination of large-
scale multiagent systems. Boston: Springer, 127–146 DOI 10.1007/0-387-27972-5_6.

Modi PJ, ShenWM, TambeM, YokooM. 2005. ADOPT: asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence 161(1–
2):149–180 DOI 10.1016/j.artint.2004.09.003.

Nguyen DT, YeohW, Lau HC. 2013. Distributed gibbs: a memory-bounded sampling-
based dcop algorithm. In: Proceedings of the 12th conference on AAMAS, 167–174.

Nguyen DT, YeohW, Lau HC, Zivan R. 2019. Distributed gibbs: a linear-space sampling-
based DCOP algorithm. Journal of Artificial Intelligence Research 64:705–748
DOI 10.1613/jair.1.11400.

Okamoto S, Zivan R, Nahon A. 2016. Distributed breakout: beyond satisfaction. In: Proc.
of the 25th IJCAI, 447–453.

Ottens B, Dimitrakakis C, Faltings B. 2012. DUCT: an upper confidence bound
approach to distributed constraint optimization problems. In: Proceedings of the 26th
AAAI conference on artificial intelligence, 528–534.

Petcu A, Faltings B. 2005. DPOP: a scalable method for multiagent constraint optimiza-
tion. In: IJCAI, 266–271.

Petcu A, Faltings B. 2007.MB-DPOP: a new memory-bounded algorithm for distributed
optimization. In: Proceedings of the 21th IJCAI, 1452–1457.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 25/26

https://peerj.com
http://dx.doi.org/10.1613/JAIR.2591
http://dx.doi.org/10.1016/j.eswa.2014.02.039
http://dx.doi.org/10.1007/0-387-27972-5_6
http://dx.doi.org/10.1016/j.artint.2004.09.003
http://dx.doi.org/10.1613/jair.1.11400
http://dx.doi.org/10.7717/peerj-cs.1296

Rogers A, Farinelli A, Stranders R, Jennings NR. 2011. Bounded approximate
decentralised coordination via the max-sum algorithm. Artificial Intelligence
175(2):730–759 DOI 10.1016/j.artint.2010.11.001.

Sultanik E, Modi PJ, Regli WC. 2007. On modeling multiagent task scheduling as a
distributed constraint optimization problem. In: Proceedings of the 20th IJCAI,
1531–1536.

YokooM, Durfee EH, Ishida T, Kuwabara K. 1998. The distributed constraint satisfac-
tion problem: formalization and algorithms. IEEE Transactions on Knowledge and
Data Engineering 10(5):673–685 DOI 10.1109/69.729707.

Yu Z, Chen Z, He J, Deng Y. 2017. A partial decision scheme for local search algorithms
for distributed constraint optimization problems. In: Proceedings of the 16th
conference on AAMAS, 187–194.

ZhangW,Wang G, Xing Z,Wittenburg L. 2005. Distributed stochastic search and
distributed breakout: proper-ties, comparison and applications to constraint
optimization problems in sensor networks. Artificial Intelligence 161(1–2):55–87
DOI 10.1016/j.artint.2004.10.004.

Zivan R, Okamoto S, Peled H. 2014. Explorative anytime local search for distributed
constraint optimization. Artificial Intelligence 212:1–26.

Zivan R, Parash T, Cohen L, Peled H, Okamoto S. 2017. Balancing exploration and
exploitation in incomplete min/max-sum inference for distributed constraint
optimization. Autonomous Agents and Multi-Agent Systems 31(5):1165–1207
DOI 10.1007/s10458-017-9360-1.

Shi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1296 26/26

https://peerj.com
http://dx.doi.org/10.1016/j.artint.2010.11.001
http://dx.doi.org/10.1109/69.729707
http://dx.doi.org/10.1016/j.artint.2004.10.004
http://dx.doi.org/10.1007/s10458-017-9360-1
http://dx.doi.org/10.7717/peerj-cs.1296

