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ABSTRACT
Higher educational institutes generatemassive amounts of student data. This data needs
to be explored in depth to better understand various facets of student learning behavior.
The educational data mining approach has given provisions to extract useful and non-
trivial knowledge from large collections of student data. Using the educational data
mining method of classification, this research analyzes data of 291 university students
in an attempt to predict student performance at the end of a 4-year degree program. A
student segmentation framework has also been proposed to identify students at various
levels of academic performance. Coupled with the prediction model, the proposed
segmentation framework provides a usefulmechanism for devising pedagogical policies
to increase the quality of education by mitigating academic failure and encouraging
higher performance. The experimental results indicate the effectiveness of the proposed
framework and the applicability of classifying students intomultiple performance levels
using a small subset of courses being taught in the initial two years of the 4-year degree
program.

Subjects Computer Education, Data Mining and Machine Learning
Keywords Educational data mining, Classification, Student performance prediction, Data
mining, Classification, Student performance prediction, Decision tree, Pedagogical policy

INTRODUCTION
For centuries, the method of educating a large set of students has revolved around
instructions being passed to them in a classroom setting (Romero & Ventura, 2013).
An instructor delivers lectures and gives tasks; a student attempts to solve these tasks to the
best of his/her ability. By monitoring student class behavior, observing their engagement
patterns, and checking their task solutions, the instructor can better assess how well a
student has grasped concepts. These observations or feedback help instructors revise and
modify course contents and the method of lecture delivery. This feedback is an essential
component of higher education systems (Bransford, Brown & Cocking, 1999). Sadly, an
increase in the number of students in a class makes it difficult for the instructor to obtain
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and record this feedback from each student. The absence of this traditional feedback
channel necessitates the exploration of other sources of available data that may aid higher
educational institutes create additional feedback loops.

Higher educational institutes collect and store vast amounts of student data (Baek &
Doleck, 2022; Khan & Ghosh, 2021). This data includes student demographics, test scores,
course assessments, and so on. In recent years, instead of simply storing this data in
filing cabinets, an immense amount of research has been conducted on exploring this
data to better understand various facets of student learning and behavior. The field of
Educational Data Mining (EDM) is an evolving area of research that gained momentum in
2008 (Khan & Ghosh, 2021; Baker, 2014). To find meaningful patterns and hidden insights
in the data emerging from the sector of education, EDM builds on techniques from data
mining, machine learning, and statistics to analyze this data (Viberg et al., 2018). EDM
aims to extract knowledge from educational data and use it for improved feedback and
decision-making (Berland, Baker & Blikstein, 2014). A unique feature of educational data
is the internal hierarchy and correlation amongst data at different levels. Taking this into
consideration, EDM approaches explicitly exploit the non-independence and multi-level
hierarchy in educational data to predict an overall pattern (Romero & Ventura, 2020).
There are five key approaches or research areas in EDM: prediction, relationship mining,
clustering, discovery within models, and distillation of data for human judgment (Peterson,
Baker & McGaw, 2010).

Classification is a popular approach within prediction (Khan & Ghosh, 2021; Viberg et
al., 2018). In classification, educational data is fed to an algorithm specifically designed to
infer or predict the value of an attribute (class label) based on the patterns or relationships
discovered within certain other attributes (predictor variables). Classification has been
applied at various levels of granularity to address an ever-increasing set of problems within
the educational domain such as inferring a student’s emotional state (Dmello et al., 2008),
predicting student drop-outs (Agrusti, Bonavolontà & Mezzini, 2019; Márquez-Vera et al.,
2016; Delen, 2010), developing recommender systems (Mimis et al., 2019; Erdt, Fernandez
& Rensing, 2015), predicting student retention (Shafiq et al., 2022), examining the use of
learning materials uploaded in an e-learning platform (Valsamidis et al., 2011), and to
identify patterns associated with student success in e-learning platforms (Sánchez et al.,
2023). A key application area has been predicting student academic outcomes (Xiao, Ji &
Hu, 2022; Nahar et al., 2021; Viberg et al., 2018; Romero & Ventura, 2020; Fernandes et al.,
2019). Research in this area has been carried out to predict student success in a course,
their grades in a semester, and, to a smaller extent, their success in terms of exam verdict
or grades at the end of a degree (Asad, Arooj & Rehman, 2022; Romero & Ventura, 2013;
Berland, Baker & Blikstein, 2014; Nghe, Janecek & Haddawy, 2007; Asif et al., 2017).

Goal of the research
By analyzing the most basic student data collected by a higher educational institute,
this research aims to devise a classification model that predicts student end-of-degree
performance at an early stage during the course of the degree. The goal is to not only predict
student performance in terms of academic achievement but also discover courses that
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impact this performance. This has been done to provide instructors and policy-makers the
feedback needed tomeet their objective of creating a student-centric learning environment.
The predictionsmade by themodel have also been used to devise a segmentation framework
that can effectively classify students into learner categories and further help in designing a
pragmatic pedagogical policy.

Research Questions
In light of the goal of the research, the work presented in this article attempts to answer
the following questions:

• Is the generation of a predictive model for early detection of student end-of-degree
performance possible using the most basic and readily available learning data collected
by higher educational institutes?
• Can courses that strongly influence the final prediction of student end-of-degree
performance be ascertained to provide intervention?
• Can a segmentation framework be devised to help design a pragmatic pedagogical
policy?

The rest of this article is organized as follows: A review of the related literature has
been presented in ‘Related Work’ followed by ‘Classification’ which outlines the process
of classification, the working mechanism of some popular classifiers used in this article,
and the metrices used to evaluate the performance of a classifier. ‘Research Methodology’
explores the experimental setup of this research followed by the Experimental Results and
Discussion. Finally, a conclusion and suggestions for future work have been presented in
‘Conclusion and Future Work’.

RELATED WORK
Higher educational institutes constantly strive to provide an environment that fosters
student-centric learning (Romero & Ventura, 2020). The proper analysis of data emerging
from the sector of higher education has the potential to manifest results that can not only
help enhance student performance but also elevate teaching effectiveness. EDM is being
increasingly used to improve educational outcomes. In particular, researchers have focused
on developing classification models to predict student performance (Baek & Doleck, 2022;
Xiao, Ji & Hu, 2022).

Nghe, Janecek & Haddawy (2007) investigated students’ undergraduate andpostgraduate
academic performance at two universities. For Can Tho university in Vietnam, a total of
20,492 undergraduate student records between the years 1995 to 2002 have been explored.
The attributes of gender, English language skill, age, family job, and CGPA in the second
year of study have been used to predict GPA at the end of the third year of education.
Decision trees and Bayesian classifiers have been used to classify student performance.
Experiments have been conducted to classify students into four GPA-based classes: fail,
fair, good, and very good; three classes: fail, good, and very good; and two classes: fail and
pass. The decision tree outperformed in all the experiments. It was observed that accuracy
of the classification model increased when the number of class labels was decreased;
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classifier performance for four classes was 72.95% which improved to 86.47% when made
to predict three classes. The performance further improved to to 94.03% for prediction of
two class labels. For the Asian Institute of Technology in Thailand, 936 student records were
explored between 2003 and 2005. The attributes of university entrance GPA, proficiency
in English, and gender have been used to predict GPA at the end of the first year of the
master’s program. Here, too, the decision tree outperformed with an accuracy of 70.62%
for four classes, 74.36% for three classes, and 92.74% for two classes.

Miguéis et al. (2018) explored data of 2459 students belonging to an engineering and
technology school of a European public research university between the years 2003 to
Student data available after the first year of a degree program has been used to predict
degree-level student academic performance. The data for this research included socio-
demographic features, social-economic features, high school background, and data of the
first year of the degree. Several classification algorithms have been explored, including
Naïve Bayes (NB), Sequential Minimal Optimization (SMO), decision trees, and Random
Forests (RF). The classification model based on RF exhibited an accuracy of 96.1%.

Kabakchieva (2013) analyzed data of 10330 students across 20 attributes between the
years 2007 to 2009 in a Bulgarian educational institute. After an initial exploration of data,
6 attributes have been removed, and the study has been conducted using student attributes
that, among others, included gender, previous education, score in the university entrance
exam, and current semester score. Student performance has been classified into five
classes (excellent, very good, good, average, or bad) using the decision tree, NB, K-nearest
neighbor, and rule-based classifiers. Although the decision tree-based J48 outperformed,
all the classifiers achieved an accuracy of less than 70%. The university admission score
was discovered as the most influencing attribute towards the final class prediction.

Aman et al. (2019) analyzed data of 1,021 students pertaining to academic, demographic,
and socio-economic attributes between the years 2014 to 2017. To ascertain the relevance of
the considered category of attributes, experiments were performed using only academic and
combinations of academic, demographic, and socio-economic attributes. Some attributes
considered in this research include gender, division obtained in previous studies, literacy
rate, study mode, and the index of poverty of student residential areas. The best results
were found using all attributes.

In contrast to the studies discussed thus far, a significant decrease in the dataset size
can be observed in the remaining studies. Nahar et al. (2021) have predicted student
performance by experimenting on data of 80 students from the department of CSE, Notre
Dame University Bangladesh. Student performance has been classified into three categories
of good, bad, and medium, based on data from student mark sheets and a behavior survey.
Experiments have been conducted using decision trees, NB, RF, and techniques of bagging
and boosting. The accuracy of their experiments ranged between 64% to 75% on the test
data.

Zimmermann et al. (2015) explored data of 171 students belonging to the Bachelor and
Master programs in Computer Science at ETH Zurich, Switzerland. The research analyzed
how efficiently student undergraduate performance could indicate student graduate-level
performance. Using linear regression in conjunction with variable selection strategies,
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this research showed that 54% of the variance in graduate-level performance could be
explained by undergraduate-level performance. The grade point average of the third year
was highlighted as the most significant indicator of overall student performance.

Asad, Arooj & Rehman (2022) used the attributes sessional marks and internal marks
obtained by different sets of students undertaking five different courses to predict if a
student will be safe or at risk of failure in the course. Combining the data across the groups,
a total of 176 student records in a bachelor degree program have been analyzed in the
research. Experiments have been conducted using decision trees, NB, RF, SMO, and Linear
Regression. The accuracy of their experiments ranged between 88% to 95%. One concern
in the used dataset is the imbalance in the class labels which may have caused biased results.

Nieto, García-Díaz & Montenegro (2019) explored data from students belonging to a
public sector engineering university in Colombia. A total of 19 attributes comprising of
student academic and certain derived variables (1st, 2nd, and 3rd quartile of grades) have
been explored. Classification approaches of RF, decision trees, and SMO have been used
with a varying set of feature-selected attributes. The classification model based on SMO
achieved the highest accuracy of 84.43% using all 19 attributes.

Asif et al. (2017) explored the data of 210 students of a public sector university in Pakistan
to predict their degree-level performance. This research analyzed the marks obtained by
students in various subjects during the first two years of the university degree. Each subject
has been treated as an indicator of the final performance prediction. The findings of
the research indicate that student performance at the degree level could be successfully
predicted by solely using academic marks. Although the NB classifier exhibited the best
results with an accuracy of 83.65%, it was established that all classification models are not
human interpretable; a model based on the NB classifier could not be used to visualize the
generated model. The model based on the decision tree was used to derive subjects that
influenced the degree level performance. The decision tree classifier exhibited an accuracy
of 69.23%.

In light of the discussed papers, it is evident that various sets of student learning and
descriptive attributes have been used to predict student end-of-degree performance with
varying degrees of success. Researchers have explored personal features such as age, gender,
marital status, parents’ education level and job, as well as student learning data such as
marks/grade obtained in high school, marks obtained in university entrance exam, and
academic marks across various subjects. Some studies have made use of only academic
marks, while others have used either a combination of academic and derived or academic
and demographic attributes. Based on the reviewed studies it was observed that classifier
accuracy is strongly influenced by the number of class labels being predicted; a greater
aggregation of academic performance leads to a higher classifier accuracy (Asif et al.,
2017; Nghe, Janecek & Haddawy, 2007). Another observation was that most studies have
focused solely on predicting student performance and not on finding the factors/features
that increase or decrease this performance (Nahar et al., 2021; Aman et al., 2019; Nieto,
García-Díaz & Montenegro, 2019; Kabakchieva, 2013; Nghe, Janecek & Haddawy, 2007).
The resultant model needs to be interpreted in order to provide feedback necessary
for academic improvement (Xiao, Ji & Hu, 2022). Based on the explored literature, it
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is also apparent that there is no ‘best’ classification algorithm; different classifiers have
outperformed each other in the discussed papers based on the nature of the examined
data. A trend that can be seen is that experiments have mostly been conducted using
decision trees, NB, RF, and SMO. It remains to be seen, however, if the performance of the
final classification model is significantly influenced by varying the number of class labels,
using feature selection, and using academic attributes in conjunction with derived and
demographic attributes.

CLASSIFICATION
Classification is a popular approach of prediction which, after learning from a set of data,
constructs a model that can be used to predict a designated class label for new and, as
yet, unseen data (Mohammed, Khan & Bashier, 2016). This process can be broken down
into two stages of operation. The first stage is termed the training or learning phase,
where labeled educational data are fed to a classification algorithm(classifier) (Romero &
Ventura, 2013). The classifier examines and analyzes this data and generates a classification
model Quinlan (1993). The generated classification model represents the pattern or logic
of how the provided data is categorized into one or more class labels. Thus, classification
can be regarded as the task of approximating a mapping function f from certain input
variables x to discrete output variables y or y = f (x). An important consideration during
this stage is ensuring that the dataset used to train the model has a balanced representation
of the class labels (Miguéis et al., 2018). If the sample used to train the model has a biased
or skewed distribution towards the classes, the resultant model might have poor predictive
performance, especially towards the minority class (Hassan et al., 2021).

Classifiers can be broadly categorized based on their internal mechanism of generating
a classification model (Han, Pei & Kamber, 2011). Some popular classifiers include
decision trees, rule-induction, probabilistic, support vector machines, and memory-based
classifiers (Khan & Ghosh, 2021).

Decision tree classifiers are so named as the model generated by them resembles a
flow chart or tree structure (Baker & Inventado, 2014). Every internal node in the tree
represents a conditional test. Each branch represents the outcome of the test. Starting from
a root node, the tree branches out into internal nodes and branches that finally conclude
at some leaf node. The leaf node represents the class label. The root node represents the
most significant attribute of the dataset and can be determined using various approaches,
including entropy, information gain, and GINI index (Mohammed, Khan & Bashier, 2016).
J48 is a popular classifier in this category. The RF classifier builds on the concept of decision
trees. Instead of generating a single decision tree, the RF generates a forest of decision trees.
A class label is established by taking into consideration the output of all the generated
trees (Asif et al., 2017). A key attraction of decision tree-based classifiers is their simplicity
and the fact that the resultant model can be deciphered. The visual representation of the
tree can be used to identify attributes that most strongly influence the final prediction of a
class label as well as to understand the exact combination of the attributes and their precise
configurations that lead to a particular class label (Viberg et al., 2018; Quinlan, 1993).
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Another set of classifiers that generate understandable models are rule-based. If-Then
conditions are utilized to generate the target function based on the training data (Han, Pei
& Kamber, 2011). JRip is a popular rule-based classifier that specifically handles overfitting
while learning through reduced error pruning. TheNB is a probabilistic classifier that works
on the Bayes Theorem. This classifier is quick and resistant to overfitting (Mohammed,
Khan & Bashier, 2016). SMO is another popular classifier that iteratively trains a support
vector machine. It is used to solve optimization problems by incrementally dividing
problems into smaller sub-problems (Han, Pei & Kamber, 2011).

Unlike classifiers that learn from the training set and then discard it once a mapping
function or model of their understanding has been generated, memory-based classifiers
store the entire training set. To classify new data items, these classifiers compare the
test data with the entire stored training set at run-time (Mohammed, Khan & Bashier,
2016) For this reason, these classifiers termed instance-based or lazy. These classifiers are
computationally expensive, requiring considerable storage space, especially if the training
set is large. However, these classifiers do not make assumptions on the training data and
thus are adaptable to problems where the learned assumptions may fail. KStar is a popular
memory-based classifier.

The second stage of the classification process is the test phase (Khan & Ghosh, 2021).
Once the mapping function has been approximated, it is used to predict the class label of
new data that the model has not been trained on. Labels for the test data are known yet
kept hidden to evaluate the performance of the model. An important consideration while
building a classification model is how well the model learns the target function from the
training data and how accurately the model generalizes to new data (Xiao, Ji & Hu, 2022;
Romero & Ventura, 2020).

The output of a classification model may be one of the four possibilities: true positive
(TP), false positive (FP), true negative (TN), or false negative(FN) (Zeng, 2020). Consider
a scenario where the data has been categorized into two classes: P and N. A TP is a correct
prediction made by the model for class P. Similarly, a TN is a correct prediction made
for class N. FP and FN are incorrect predictions. An FP means an incorrect prediction for
class P; data that should have been classified into class N has been incorrectly labeled as
belonging to class P.

A confusion matrix is often employed for evaluating the performance of a classification
model (Bucos & Drăgulescu, 2018). Table 1 provides the structure of a confusion matrix for
a binary classifier.

Accuracy, precision, recall, and F1 score are some evaluation measures computed using
the confusion matrix. Accuracy is a measure of correctness. It is used to evaluate how often
the predictions made by a classifier are correct (Nieto, García-Díaz & Montenegro, 2019;
Farsi, 2021). Accuracy can be measured using the formula:

Accuracy =
TP+TN

TP+FP+TN +FN
(1)

The recall is the ability of a classification model to find all relevant cases(points of
interest) in the provided data. It measures how many instances of interest were predicted
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Table 1 Binary confusionmatrix.

Predicted: P Predicted: N

Actual: P TP FN
Actual: N FP TN

correctly out of all the instances of interest (Farsi, 2021).

Recall =
TP

TP+FN
(2)

Precision is used to measure the fraction of instances the classification model considers
relevant that actually are relevant (Aman et al., 2019; Hassan et al., 2021). This metric is
used to quantify the correct positive predictions. In other words, it is the ratio of correct
positive predictions to all positive predictions made by the model.

Precision=
TP

TP+FP
(3)

The F1 score or F-value is the harmonic mean of precision and recall (Khan & Ghosh,
2021; Farsi, 2021). As it takes into account both FP and FN, it performs well on balanced
and imbalanced datasets (Hassan et al., 2021). F1 score is measured as:

F1Score= 2×
Precision×Recall
Precision+Recall

(4)

The weighted F1 score is an average of F-values across all class labels, weighted based
on the class distribution (class size). Apart from these evaluation metrics, Kappa is also
commonly used to evaluate the performance of a classification model (Peterson, Baker &
McGaw, 2010; Fleiss, 1971). Kappa works under the assumption that a correct prediction
could have been made simply by chance. This assumption makes Kappa a useful measure
for evaluating the performance of classifiers trained on balanced as well as imbalanced data.
Kappa can have a value between 0-1. Similar to accuracy, a higher Kappa value is better; a
value above 0.3 signifies that the output of the classifier is not based on chance (Asif et al.,
2017).

RESEARCH METHODOLOGY
Figure 1 outlines the research methodology followed in this article. An explanation of each
step is provided in the subsequent sections.

Data collection
The first step of this research was the collection of student data. The current research
explores data of students enrolled in the Bachelor of Engineering degree program at the
Department of Software Engineering, Mehran University of Engineering and Technology,
Pakistan. Data from291 students belonging to three consecutive batches (13SW: 2013-2016,
14SW: 2014-2017, and 15SW: 2015-2019) has been collected. The data was collected from
two main sources: institutional records and individual student files. The Institutional
Review Board approved this study with reference number 136.43 on 27-2-2020. The
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Figure 1 Research methodology.
Full-size DOI: 10.7717/peerjcs.1294/fig-1

institutional records comprised of marks obtained by the student in each subject during
the course of the bachelors degree. A total of 28 subjects (theory and practical treated as
separate heads) are taught by the end of the 2nd year of education in the Department
of Software Engineering. As this research attempts to predict student end-of-degree
performance based on student academic achievement in the initial two years of the
degree program, every subject has been treated as a feature for the prediction of student
end-of-degree performance.

Studies byMiguéis et al. (2018) and Asif et al. (2017) suggest academic background prior
to the enrolment into the university may influence student performance at the university
level, thus, themarks obtained in the university admission test, Higher SecondaryCertificate
(HSC) exams, and Secondary School Certificate (SSC) exams have also been collected
through student files maintained by the department. This data was maintained manually
and had to be extracted and computerized so that it could be used in this research. The
examined literature presents some conflict over the significance and level of influence of the
demographic attribute of gender on overall student academic performance (Khan & Ghosh,
2021). To examine the influence of gender on the prediction of student performance, this
attribute has also been considered in this research.

Building on the premise that derived attributes can play a significant role towards student
performance prediction (Nieto, García-Díaz & Montenegro, 2019), two derived attributes:
1st year accumulative score and 2nd year accumulative score have been computed; bringing
the total number of attributes to 34. A description of some attributes used in this research
has been presented in Table 2. The complete list of attributes used in this research, along
with their description, has been provided in the Appendix. The data used in this study has
also been attached as an additional file named DegreeData_Classification.csv. Although
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Table 2 Attributes in the dataset.

Attribute Description Type Value

SSC SSC ExamMarks Academic 0–850
HSC HSC ExamMarks Academic 0–1100
Ad_Test University Admission Test Marks Academic 0–100
ENG11 Functional English Academic 0–100
MTH108 Applied Calculus Academic 0–100
SW111 Computer Programming Academic 0–100
SW111_Pr Computer Programming Practical Academic 0–50
Score_First 1st Year Accumulated Score Derived 0–10
Score_Second 2nd Year Accumulated Score Derived 0–20
Gender Student Gender Demographic M-F

the student identities have been anonymized by substituting student ids with unique
identifiers, this data is not meant for publication as it may be considered sensitive for the
university and the students.

Data engineering
Data integration, cleaning and transformation
After obtaining data of all the attributes considered in this study, the data of all the three
batches was integrated into a single dataset. The data was then analyzed to ensure it did
not contain missing or erroneous entries. As no missing or null values were uncovered, the
data did not require further scrutiny.

As per the policy ofMehranUniversity of Engineering andTechnology (set in accordance
to the Higher Education Commission of Pakistan), the final percentage of a student in a
bachelor degree is computed by the following formula:

Final%= 0.1×1styear%+0.2×2ndyear%+0.3×3rdyear%+0.4×4thyear%. (5)

The final percentage at the end of the degree is calculated by summing 10% of the
percentage obtained in the 1st year, 20% of the percentage obtained in the 2nd year, 30%
of the percentage obtained in the 3rd year, and 40% of the percentage obtained in the
final year of the degree. Per the marks obtained in the 1st year of the degree program, the
percentage of each student at the end of the 1st year has been computed. A similar practice
was followed for the 2nd year percentage. Using these values, the accumulated scores or
10% of the 1st year percentage and 20% of the 2nd year percentage have been computed.
The computed values of accumulated scores have been treated as derived attributes in this
research.

As this research measures academic success in terms of the total percentage obtained
at the end of the degree, experiments have been conducted under two settings. First, four
classes have been established based on student academic success:
1. Class A: High-Achievers (> =85%)
2. Class B: Above-Average (75%–84%)
3. Class C: Average-Achievers (65%–74%)
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Table 3 Class distribution for the considered batches.

Student details 15SW 14SW 13SW Total

Students in Class A 10 16 22 48
Students in Class B 40 27 31 98
Students in Class C 37 28 22 87
Students in Class D 24 15 19 58
Students in Class SP 50 43 53 146
Students in Class NI 61 43 41 145
Total students 111 86 94 291

4. Class D: Under-Achievers (<65%)
Second, two classes have been established based on student academic success:

1. Class SP: Satisfactory Performance (> =75%)
2. Class NI: Need Improvement (< =74%)

Data visualization Classifiers are vulnerable when trained on imbalanced class labels
(Hassan et al., 2021); with imbalanced labels resulting in classification models that provide
unreliable and biased predictions. Before proceeding with the experiment, it is important
to ensure that each label is well-balanced. The class distribution details provided in Table 3
help analyze the class labels’ distribution and ensure the results’ authenticity for the next
step.

Taking a closer look at the figures provided in Table 3, the class labels for both sets of
experiments have a balanced distribution. Classes A andDhave slightly lesser representation
than classes B and C but the values are within the acceptable percentage (Khan & Ghosh,
2021; Asif et al., 2017). The classes SP and NI for the second experiment are equally
represented.

Feature selection Although the amount of data used to train a classifier has great influence
on the effectiveness of the generated model, the size of the data alone does not ensure the
accuracy and quality of the generated model (Asif et al., 2017). The number of attributes
(dimensions / features) being explored, the level of influence these attributes have on
the prediction of the class label, and the removal of attributes that inversely affect the
prediction of the class label can greatly improve the quality of the generated model
(Matharaarachchi, Domaratzki & Muthukumarana, 2022). Thus, an important step before
knowledge discovery is ensuring the use of optimal attributes for the classifier (Farsi, 2021).

CfsSubsetEval is a correlation-based feature evaluator in Weka (Witten & Frank, 2002;
Eibe, Hall & Witten, 2016) which utilizes Pearson’s correlation(r) to determine attributes
that strongly influence the prediction of the class label (Hall, 1998). As this research uses a
large number of attributes, feature selection using CfsSubsetEval has been explored to find
the most significant attributes (see Table 4).

Another unique aspect of this research is that feature selection has been applied on the
collected data in three stages. First, feature selection has been applied on all the academic
attributes only; the demographic attribute of gender and the derived attributes have not
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Table 4 Feature selected attributes.

Experiment - 4 classes Experiment - 2 classes

SNo AC AC+DR AC+DR+DM AC AC+DR AC+DR+DM

1 ES121 SW125 Gender SSC SSC Gender
2 MTH112 SW215 SW125 SW111_Pr EL101_Pr SSC
3 SW121 SW214 SW215 ES121 SW121_Pr EL101_Pr
4 SW122 SW224 SW214 SW122 SW125 SW121_Pr
5 SW125 SW223 SW224 SW121 MTH212 SW125
6 MTH212 SW221 SW223 SW121_Pr SW215 MTH212
7 SW211 SW221_Pr SW221 SW125 SW214 SW215
8 SW214 SW212 SW221_Pr MTH212 SW211 SW214
9 SW215 SW222 SW212 SW215 SW223 SW211
10 SW224 SW222_Pr SW222 SW214 SW221 SW223
11 MTH217 Score_First SW222_Pr SW224 SW221_Pr SW221
12 SW223 Score_Second Score_First SW211 SW212 SW221_Pr
13 SW221 Score_Second SW223 SW222 SW212
14 SW221_Pr SW221 Score_Second SW222
15 SW212 SW221_Pr Score_Second
16 SW222 SW212
17 SW222_Pr SW221_Pr
18 SW222
19 SW222_Pr

Notes.
AC, Academic; DR, Derived; DM, Demographic.

been used. Second, derived attributes have been added to the academic attributes, and
feature selection has been applied to the combination. Finally, all the academic, derived,
and demographic attributes have been used. This has been done to better analyze the effect
of the features on the final prediction.

Knowledge discovery
The following steps have been followed for knowledge discovery in this article:

• Following the reviewed literature (Nghe, Janecek & Haddawy, 2007; Miguéis et al.,
2018; Kabakchieva, 2013; Zimmermann et al., 2015; Nieto, García-Díaz & Montenegro,
2019; Asif et al., 2017; Aman et al., 2019; Asad, Arooj & Rehman, 2022), six popular
classification algorithms: NB, J48, JRip, RF, SMO, and KStar, have been used to predict
student performance at the end of a 4-year degree program. For each algorithm,
experiments have been conducted using different combinations of the collected data.

– The first set of experiments has been conducted using all the academic attributes
provided in the Appendix.

– The second set of experiments uses a combination of all the academic and derived
attributes.

– The demographic attribute of gender has been added to the existing attributes for the
third set of experiments.
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– The fourth set of experiments has been conducted using the feature selected subset
of academic attributes (see Table 4).

– The fifth set of experiments has been conducted using the feature selected subset of
academic and derived attributes.

– The sixth set of experiments has been conducted using the feature selected subset of
academic, derived, and demographic attributes.

• For the discovery of an optimal classification model, the generated models have been
evaluated using the metrices of Accuracy, F-Score (weighted average), and Kappa. The
statistical difference in classifier performance has also been examined by means of
p-value, computed using the Friedman test (k-1 degrees of freedom), to establish the
significance of the results (Settouti, El Amine Bechar & Amine Chikh, 2016).
• After the selection of the preferred classification model, it is imperative to further
explore the model to understand how the attributes influence the final prediction of a
class label.

– To identify the courses that most significantly influence the academic performance
of a student, the generated model has been visualized and examined in detail to
understand the exact combination of the attributes and their precise configurations
that lead to a particular class label.

• Finally, to identify students for intervention and necessary pedagogical actions, a
segmentation framework in the form of a cross-tabular matrix has been proposed in this
research.

EXPERIMENTAL RESULTS AND DISCUSSION
As discussed in ‘Feature Selection’, the removal of attributes that inversely affect the
prediction of the class label can greatly improve the quality of the generated model.
CfsSubsetEval is a correlation-based feature evaluator used to find attributes that positively
influence the prediction of the class label (Hall, 1998). As also explained, this study uses a
total of 34 attributes (31 academic, two derived, and one demographic). Feature selection
using CfsSubsetEval has been applied on three combinations of these collected attributes.
Table 4 presents the resulting feature selected attributes obtained using CfsSubsetEval.

Observing Table 4, after the application of the CfsSubsetEval on the academic attributes,
17 out of the 31 academic attributes have been identified as attributes positively influencing
the final prediction of student performance while predicting four class labels. Similarly, 19
out of the 31 academic attributes have been identified as attributes positively influencing
the final prediction of student performance while predicting two class labels. The resulting
subset of attributes after the application of CfsSubsetEval on the combination of academic
and derived, and academic, derived, and demographic attributes for the classification of 4
and two class labels can also be seen in Table 4.

As explained in ‘Knowledge Discovery’, experiments have been conducted on different
combinations of the collected data using widely popular classification algorithms. Table
5 presents the results of the various conducted experiments. The attribute set used with
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each of the classifiers has been presented in the first column. The p-value for the observed
classifier performance has been computed to monitor the statistical significance of the
results. The statistical difference (p-value) for classifier performance has been presented in
Table 6.

Observing the results in Tables 5 and 6, several classifiers exhibited good performance.
While predicting four class labels, the most optimal performance was exhibited by the
model generated by the NB classifier with an accuracy of 84.87%, weighted average F1
score of 0.848, and a Kappa score of 0.7942. These results were obtained using a feature
selected subset of academic, derived, and demographic attributes. The model generated
by the RF classifier achieved the second highest accuracy of 83.50%. The RF classifier
achieved these results while working under two configurations: (i) a feature selected subset
of academic and derived attributes, and (ii) a feature selected subset of academic, derived,
and demographic attributes. The SMO classifier exhibited an accuracy of 82.13% on a
feature selected subset of academic and derived attributes, while the J48 classifier achieved
an accuracy of 81.44% on a feature selected subset of academic and derived attributes.
Unlike the NB classifier, RF, SMO, and J48 showed better performance when working with
a feature selected subset of academic and derived attributes. Interestingly, apart from the
model generated by the NB classifier, demographics have not been featured in the optimal
model generated by any other classifier.

Focusing on the classifier performance under the six attribute configurations, it can be
observed that the accuracy, F1 score, and Kappa score of all six classifiers improved when
working with a combination of academic and derived attributes. The NB classifier had
an accuracy of 78.01% while working with only academic attributes; the accuracy of the
classifier improved to 80.06% when working with a combination of academic and derived
attributes. For the J48 classifier, the accuracy improved from 68.72% to 73.19%. Also, a vast
improvement in the accuracy, F1 score, and Kappa score of the classifiers can be observed
when working on a feature selected subset of academic and derived attributes. The accuracy
of the NB classifier improved to 84.53% while the J48 classifier exhibited an accuracy of
81.44% on a feature selected subset of academic and derived attributes. The improvement
in the Kappa score of the classifiers can also be observed across the various configurations.
For the J48 classifier, the Kappa score improved from 0.5744 while working with academic
attributes to 0.7480 while working with a feature selected subset of academic and derived
attributes.

An interesting observation is that the models based on the decision tree and rule-based
classifiers have exhibited better performance when working with a combination of the
academic and derived attributes; the performance of these classifiers has decreased when
working with the demographic attribute of gender.

For the prediction of two class labels, themodel generated by the SMOclassifier exhibited
the highest accuracy of 93.13%, weighted average F1 score of 0.935, and a Kappa score of
0.8694. This performance was exhibited while working with a combination of academic,
derived, and demographic attributes. The NB classifier had the second highest accuracy of
92.78% while working with a feature selected subset of academic and derived attributes.
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Table 5 Performance evaluation.

Experiment - 4 classes Experiment - 2 classes

Classifier Accuracy
(%)

F1 score Kappa
score

Accuracy
(%)

F1 score Kappa
score

NB(AC) 78.01 0.776 0.7015 89.35 0.893 0.7869
NB(AC+DR) 80.06 0.800 0.7288 90.72 0.907 0.8144
NB(AC+DR+DM) 79.72 0.796 0.7243 90.38 0.904 0.8075
NB(FS AC) 83.50 0.834 0.7761 91.41 0.914 0.8282
NB(FS AC+DR)

* 84.53 0.844 0.7897 92.78 0.928 0.8557
NB(FS AC+DR+DM)

a* 84.87 0.848 0.7942 92.78 0.928 0.8557
J48(AC) 68.72 0.684 0.5744 89.00 0.890 0.7801
J48(AC+DR) 73.19 0.732 0.6333 89.00 0.890 0.7801
J48(AC+DR+DM) 72.16 0.722 0.6183 89.35 0.893 0.7870
J48(FS AC) 70.44 0.703 0.5958 89.00 0.890 0.7801
J48(FS AC+DR)a* 81.44 0.814 0.7480 90.72 0.907 0.8145
J48(FS AC+DR+DM)

* 79.72 0.796 0.7244 90.72 0.907 0.8145
JRip(AC) 70.44 0.702 0.5973 87.97 0.880 0.7595
JRip(AC+DR)* 77.66 0.773 0.6977 90.38 0.904 0.8075
JRip(AC+DR+DM) 72.16 0.719 0.6214 89.35 0.893 0.7870
JRip(FS AC) 71.13 0.707 0.6069 90.03 0.900 0.8007
JRip(FS AC+DR)a 74.91 0.749 0.6561 88.32 0.883 0.7663
JRip(FS AC+DR+DM) 73.53 0.731 0.6396 86.94 0.869 0.7388
RF(AC) 81.09 0.812 0.7397 91.07 0.911 0.8213
RF(AC+DR)a 83.50 0.835 0.7737 90.72 0.907 0.8144
RF(AC+DR+DM) 80.75 0.808 0.7360 91.07 0.911 0.8213
RF(FS AC)* 71.13 0.707 0.6069 90.03 0.900 0.8007
RF(FS AC+DR)a 83.50 0.836 0.7731 91.07 0.911 0.8213
RF(FS AC+DR+DM)

a 83.50 0.835 0.7731 90.72 0.907 0.8144
SMO(AC) 79.72 0.798 0.7211 92.09 0.921 0.8419
SMO(AC+DR) 81.78 0.819 0.7494 92.44 0.924 0.8488
SMO(AC+DR+DM)

* 81.78 0.818 0.7498 93.47 0.935 0.8694
SMO(FS AC) 81.44 0.816 0.7443 91.75 0.918 0.8351
SMO(FS AC+DR)

a 82.13 0.822 0.7537 92.78 0.928 0.8557
SMO(FS AC+DR+DM) 81.78 0.819 0.7496 93.13 0.931 0.8625
KStar(AC) 72.51 0.726 0.6227 87.29 0.873 0.7457
KStar(AC+DR) 75.94 0.760 0.6700 88.32 0.883 0.7663
KStar(AC+DR+DM) 76.28 0.764 0.6745 87.97 0.880 0.7594
KStar(FS AC)a* 76.97 0.771 0.6823 89.35 0.893 0.7869
KStar(FS AC+DR) 75.60 0.757 0.6656 87.29 0.873 0.7457
KStar(FS AC+DR+DM) 75.26 0.754 0.6605 89.00 0.890 0.7800

Notes.
aindicates the result with highest accuracy generated by a classifier when predicting four.

class labels and *indicates the result with the highest accuracy generated by a classifier when predicting two class labels.
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Table 6 Statistical difference in classifier performance.

Experiment - 4 classes Experiment - 2 classes

Classifier p-value Classifier p-value

NB vs J48* 0.01431 NB vs J48* 0.01431
NB vs JRip* 0.01431 NB vs JRip* 0.01431
NB vs RF 1 NB vs RF 0.68309
NB vs SMO 1 NB vs SMO* 0.04123
NB vs KStar* 0.01431 NB vs KStar* 0.01431
J48 vs JRip 0.68309 J48 vs JRip 0.68309
J48 vs RF* 0.01431 J48 vs RF* 0.04123
J48 vs SMO* 0.01431 J48 vs SMO* 0.01431
J48 vs KStar 1 J48 vs KStar 0.10247
RF vs JRip* 0.04123 RF vs JRip* 0.04123
RF vs KStar 0.10247 RF vs KStar* 0.01431
JRip vs Kstar 0.10247 JRip vs Kstar 0.10247
SMO vs JRip* 0.01431 SMO vs JRip* 0.01431
SMO vs RF 0.41422 SMO vs RF* 0.01431
SMO vs KStar* 0.01431 SMO vs KStar* 0.01431

Notes.
*p-value significant p ≤ 0.05.

Looking at the results presented in Table 5, it can be seen that the accuracy, F1 score
and Kappa scores have greatly improved when working with two class labels. The accuracy
of models generated by all six classifiers is approximately equal to or above 90%. The
Kappa scores have also greatly improved. Similar to the experiments of predicting 4 class
labels, the model with the highest accuracy while predicting two class labels has been
built using academic, derived, and demographic attributes. Most classifiers have shown an
improvement when working with a feature-selected subset of attributes.

The results presented in Table 5 demonstrate that it is possible to generate a model for
the early detection of student end-of-degree performance using the most basic and readily
available learning data collected by higher educational institutes. Thus, the first research
question has been answered in the affirmative.

Classification model
Even though experiments have been conducted with several classifiers, as previously
established by Asif et al. (2017), and discussed in ‘Classification’, the target courses under
their exact configurations cannot be identified with all classifiers. Keeping in mind that a
goal of this research is not only the early prediction of student academic performance, but
also early intervention through the identification of courses that play a significant role in
influencing the academic performance of a student, a trade-off needs to be made between
classifier accuracy in favour of the interpretability of the model.

The results of the decision-tree classifier J48 have been considered here to identify
courses that can help educators provide the necessary intervention, at an early stage, to
at-risk students. Due to the extensive size of the generated model (tree) for classification of
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Figure 2 J48 model for predicting the class of learners at the end-of-degree (I).
Full-size DOI: 10.7717/peerjcs.1294/fig-2

students into four classes, it has been split in two parts. The left-side of the J48 tree for the
classification of students into four classes has been presented in Fig. 2 and the right-side of
the J48 tree has been presented in Fig. 3.

As explained in the ‘Classification’ section, the root node of a decision tree identifies the
attribute which most strongly influences the final prediction of the class label. Similarly,
nodes at a higher level in the tree (closer to the root node) play a stronger role in influencing
the final class label. From the model in Figs. 2 and 3, it can be observed that the derived
attribute of the accumulated score at the end of the 2nd year is the most important feature
towards the final prediction of student performance. Several paths can be taken along the
tree to reach the leaf nodes. The most direct paths leading to the leaf nodes D, C, and B
have been presented in Fig. 4.

Following the blue arrows in Fig. 4A), if a student has a 2nd year accumulated score of
greater than 12 and scores less than 53 marks in the course SW214, the resulting class of
the student will be D. Similarly, following the arrows in Fig. 4B), if a student has a 2nd
year accumulated score of greater than 12, more than 53 marks in the course SW214 and
a score of 39 marks in the course SW125, the resulting class of the student will be C. The
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Figure 3 J48 model for predicting the class of learners at the end-of-degree (II).
Full-size DOI: 10.7717/peerjcs.1294/fig-3

Figure 4 Courses influencing the final prediction of student end-of-degree performance.
Full-size DOI: 10.7717/peerjcs.1294/fig-4

performance of a student in these courses directly influences the final performance class of
a student.

Thus, observing Figs. 2 and 3, the courses SW214, SW125, SW221_Pr, SW222, SW212,
and SW223 have been identified as the main courses that affect student end-of-degree
performance while classifying students into four classes.

Following the same logic, when observing the J48 tree for the classification of students
into two classes (see Fig. 5), the derived attribute of the accumulated score at the end of the
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2nd year is the most important feature towards the final prediction of student performance
into two classes. The courses SW125, SW221_Pr, EL101_Pr, SW214, SW223, and SW211
have been identified as playing a key role in the final prediction of student end-of-degree
performance. Some interpretations that can be made from the model presented in Fig. 5
are:
• Having a 2nd year accumulated score of less than or equal to 14 and a score of less than
or equal to 39 in SW125 will result in graduating under Class NI.
• Having a 2nd year accumulated score of between 14–15 and a score of greater than 43
in EL101_Pr will result in graduating under Class SP.

An examination of the model presented in Figs. 2, 3, and 5 answers research question
two. It is now safe to conclude that courses strongly influencing the final prediction of
student end-of-degree performance can be ascertained.

Segmentation framework
To identify students for intervention and necessary pedagogical actions, a segmentation
framework in the form of a cross-tabular matrix has been proposed. To generate the
segmentation matrix, student academic performance at the end of the 2nd year of
their university education has been computed. Using the classification model, student
performance at the end of the degree has been predicted. The segmentationmatrix confronts
the observed student performance at the end of the 2nd year against the final performance
predicted by the model. As this research uses two approaches to classify students, two
segmentation matrixes have been generated. Figure 6 presents the segmentation matrix
where students have been classified into two classes based on the percentage obtained at
the end of the degree: SP (satisfactory performance: >= 75%) or NI (needs improvement:
< = 74%).

Evident from Fig. 6, a majority of students stay in the same segment at the end of the
degree as they did at the end of the 2nd year of the degree program: 121 students reside in
the satisfactory performance segment, and 136 students reside in the needs improvement
segment. 16 students have moved from the satisfactory segment to the needs improvement
segment. The segmentation matrix raises two main concerns. First, a very large proportion
of students (136) is persistently performing below a satisfactory performance level. Second,
16 students that resided in the satisfactory segment up until their 2nd year fall into the
needs improvement segment by the completion of their degree. As evident from their
prior results, these students have the potential to perform better. The students in these
two segments are being neglected by the educational institute. A system of feedback,
intervention, mediation, and active involvement of the instructors and policy-makers can
help students move from these segments.

Using two classes allows us to understand student performance to a small extent.
However, bifurcating these classes into further subdivisions will help pinpoint students
across various performance levels. Figure 7 presents the segmentationmatrixwhere students
have been classified using the second approach. Here, students have been segregated into
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Figure 5 J48 model for predicting the class of learners at the end-of-degree (two classes).
Full-size DOI: 10.7717/peerjcs.1294/fig-5

four classes: A (high achievers: > = 85%), B (above-average achievers: 75%–84%), C
(average achievers: 65%–74%), and D (underachievers: <65%).

Observing the diagonal of the segmentation matrix in Fig. 7, most students graduate in
the same performance segment they belonged to at the end of their 2nd year: 43 students
in Class-A, 63 in Class-B, 50 in Class-C, and 55 in Class-D. The cells adjacent to the
diagonal identify students whose performance changes after the 2nd year. Observing the
last row of the segmentation matrix, 13 students that were in Class-A at the end of the
2nd year are predicted to finish their education in Class-B, and 4 students that reside in
Class-A are predicted to finish their education under Class-C. Observing the second row
from the top, 21 students who reside in Class-C at the end of the 2nd year have been
predicted to complete the degree in the Class-B performance segment. These students have
potential, and perhaps having the right pedagogical strategies may help them jump up to
the high-achiever segment. A major concern in the segmentation matrix is the top-right
cell: 55 students that are predicted to complete their degree as underachievers in Class-D.

The suggested approach identifies 16 student segments allowing the institute to design
a pedagogical policy to specifically target each segment. A robust, pragmatic policy can be
devised to mitigate factors that lead to poor performance levels and identify academically
motivated students. Using the approach proposed in this research, it can be concluded that
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Figure 6 Student segmentationmatrix (two classes).
Full-size DOI: 10.7717/peerjcs.1294/fig-6

a segmentation framework based on student performance can be devised to help design a
pragmatic pedagogical policy.

Discussion
Higher educational institutes collect and store multiple facets of student data. The analysis
of this data has the potential of uncovering patterns and insights that can shape pedagogical
policies. The aim of this research has been the exploration of the most basic data collected
by higher educational institutes to devise a classification model that can predict student
end-of-degree performance at an earlier stage during the course of the degree. Consistent
with the research conducted byNghe, Janecek & Haddawy (2007),Asif et al. (2017),Miguéis
et al. (2018), Nieto, García-Díaz & Montenegro (2019) and Aman et al. (2019), the current
research validates that it is possible to successfully predict student performance at the end
of a degree program using student data at some earlier point during the course of the
degree.

As the reviewed studies differed in the attributes used, efforts were made in the
current research to conduct experiments that would build upon concepts provided in
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Figure 7 Student segmentationmatrix (four classes).
Full-size DOI: 10.7717/peerjcs.1294/fig-7

the aforementioned studies. To this end, the first set of experiments focused only on
using academic attributes (marks in SSC, HSC, university admission test, and the marks
in subjects studied in the first two years of the degree program). The results outlined
in Table 5 clearly indicate that consistent with the studies conducted by Miguéis et al.
(2018) and Asif et al. (2017), student performance can be predicted using only academic
attributes. However, it needs to be noted that experimenting with a feature-selected subset
of academic attributes greatly improved the performance of the classifiers. In the case of the
NB classifier, the performance in terms of accuracy increased from 78.01% to 83.50%when
predicting 4 classes and from 89.35% to 91.41% when predicting two classes. Similarly, the
Kappa score of the NB classifier improved from 0.7015 to 0.7761 when predicting 4 class
labels and from 0.7869 to 0.8282 when predicting 2 class labels.

The current research computed two new attributes of accumulated scores at the end
of the 1st and 2nd year of the degree program. The addition of these derived attributes
significantly improved the classifiers’ performance. While predicting four class labels,
the J48 classifier exhibited an accuracy of 68.72% using only academic attributes, which
improved to 73.19% with the addition of the derived attributes. This accuracy further
increased to 81.44% when a feature-selected subset of academic and derived attributes
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was used. Similarly, for the NB classifier, an accuracy of 84.53% was observed on a
feature-selected subset of academic and derived attributes.

The addition of the attribute of gender did not play a significant role in the final prediction
for all classifiers. Although the addition of this attribute improved the performance of the
NB and SMO classifiers, it had the opposite effect on the performance of the J48, KStar,
and JRip classifiers. Thus the conflict of using the attribute of gender still stands (Khan &
Ghosh, 2021). Consistent with the findings of Asif et al. (2017), Zimmermann et al. (2015),
and Nghe, Janecek & Haddawy (2007), it was also observed that classifier performance is
inversely proportional to the number of class labels. The lesser the number of class labels,
the better the performance of the classifier; all classifiers in the current study exhibited
better results when classifying student performance into two class labels. Also, consistent
with the conclusion established while reviewing the previous studies, there is no ‘best’
classification algorithm for the prediction of student performance. The nature of the
data being explored and the number of class labels being predicted greatly influence the
performance of a classifier.

At the end of the experiments, it can be concluded that a classification model to predict
the class a student will graduate in can successfully be generated with a subset of academic
and derived attributes. Using feature selection greatly improves the classifiers’ overall
performance and can aid in reducing the complexity of the final model.

The entire purpose of predicting student end-of-degree performance at an earlier stage
during the course of the degree program is to ensure that students can be provided help
and intervention to ensure that they maximize their full potential. As pointed out by Xiao,
Ji & Hu (2022), the interpretation of the generated model is an important step towards
providing feedback for academic improvement. Visualizing the generated model allows
an understanding of how student performance in various courses influences the final
academic class of a student. An interpretation of the J48 decision tree has been presented
in this article to identify courses that strongly influence the final performance of a student.
Instructors can monitor student performance in the highlighted courses and provide the
needed feedback for early intervention.

In order to identify students for intervention and necessary pedagogical actions, a
segmentation framework in the form of a cross-tabular matrix has also been proposed in
this research. The goal here was to confront the observed student performance at the end of
the 2nd year of the degree program against the final performance predicted by the model.
The suggested approach in this article identifies 16 student segments and allows instructors
to foresee the academic trajectory of each student. The use of the proposed framework will
provide instructors and policy makers a mechanism of identifying students at various levels
of academic performance along with the knowledge of how this performance will fluctuate
over the course of the degree. A robust, pragmatic policy can, thus, be devised to mitigate
factors that lead to poor performance levels and even identify academically motivated
students. A proactive intervention policy that specifically targets each performance segment
can also be devised.
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CONCLUSION AND FUTURE WORK
This research explores and analyzes the most basic student data available in a 4-year
degree program. Three research questions have been investigated in this article. The first
question focused on the generation of a classification model for early identification of
student end-of-degree performance using the most basic and readily available learning
data collected by higher educational institutes. It was observed that student performance
at the end of a degree program could successfully be predicted using a feature-selected
combination of academic and derived attributes. The second question focused on deriving
courses that strongly influence the final prediction of student performance. The model
generated using the J48 classifier has been used to indicate the courses that influence the
final prediction of student performance. Furthermore, the marks obtained in these courses
can be used to classify students into various performance levels and thus be used to provide
intervention to students at risk of obtaining poor grades. The third question involved the
generation of a segmentation framework. A cross-tabular segmentation matrix has been
used to confront the computed student performance at the end of the 2nd year against
the final performance as predicted by the generated model. The resultant segmentation
matrix identifies students in various performance segments. The early identification of
these students provides the opportunity to robustly devise a pragmatic policy to specifically
target each performance level.

This research aims to provide instructors and policymakers with the much-needed
feedback to truly create a student-centric learning environment. Several courses have
been identified as indicators of student performance in this research. An important
future direction can be to explore student performance in these courses. This will provide
the educational institute an added opportunity to improve educational outcomes. Also,
using the approach outlined in this article, predictive models can be built for the early
identification of student performance across the other degree programs offered by the
university. The early prediction of student performance will help in designing a pedagogical
policy that can increase the quality of education by not only mitigating academic failure
but also by encouraging higher performance.

APPENDIX

Attribute Description Value
Gender Student gender M-F
SSC SSC ExamMarks 0–850
HSC HSC ExamMarks 0–1100
Ad_Test University Admission Test Marks 0–100
ENG11 Functional English 0–100
MTH108 Applied Calculus 0–100
SW111 Computer Programming 0–100
SW111_Pr Computer Programming Practical 0–50
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Attribute Description Value
ES121 Electronics Engineering 0–100
ES121_Pr Electronics Engineering Practical 0–50
ES101 Electrical Engineering 0–100
ES101_Pr Electrical Engineering Practical 0–50
MTH112 Linear Algebra & Analytical Geometry 0–100
SW121 Data Structures & Algorithms 0–100
SW121_Pr Data Structures & Algorithms Practical 0–50
SW122 Digital Computers & Logic Design 0–100
SW122_Pr Digital Computers & Logic Design Practical 0–50
SW125 Professional Ethics 0–50
MTH212 Differential Equations & Fourier Series 0–100
SW214 Information Systems 0–100
SW215 Software Economics & Management 0–50
SW224 Computer Architecture & Organization 0–100
SW211 Operating Systems Concepts 0–100
SW211_Pr Operating Systems Concepts Practical 0–50
MTH217 Laplace Transform & Discrete Mathematics 0–100
SW223 Operations Research 0–100
SW221 Object Oriented Programming 0–100
SW221_Pr Object Oriented Programming Practical 0–50
SW212 Microprocessor Technology 0–100
SW212_Pr Microprocessor Technology Practical 0–50
SW222 Database Management Systems 0–100
SW222_Pr Database Management Systems Practical 0–50
Score_First 1st Year Accumulated Score 0–10
Score_Second 2nd Year Accumulated Score 0–20
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