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Background. An automatic bathing robot needs to identify the area to be bathed in order
to perform visually-guided bathing tasks. Skin detection is the first step. The deep
convolutional neural network (CNN)-based object detection algorithm shows excellent
robustness to light and environmental changes when performing skin detection. The one-
stage object detection algorithm has good real-time performance, and is widely used in
practical projects.Methods. In our previous work, we performed skin detection using
Faster R-CNN (ResNet50 as backbone), Faster R-CNN (MobileNetv2 as backbone), YOLOv3
(DarkNet53 as backbone), YOLOv4 (CSPDarknet53 as backbone), and CenterNet
(Hourglass as backbone), and found that YOLOv4 had the best performance. In this study,
we considered the convenience of practical deployment and used the lightweight version
of YOLOv4, i.e., YOLOv4-tiny, for skin detection. Additionally, we added three kinds of
attention mechanisms to strengthen feature extraction: SE, ECA, and CBAM. We added the
attention module to the two feature layers of the backbone output. In the enhanced
feature extraction network part, we applied the attention module to the up-sampled
features. For full comparison, we used other lightweight methods that use MobileNetv1,
MobileNetv2, and MobileNetv3 as the backbone of YOLOv4. We established a
comprehensive evaluation index to evaluate the performance of the models that mainly
reflected the balance between model size and mAP.Results. The experimental results
revealed that the weight file of YOLOv4-tiny without attention mechanisms was reduced to
9.2% of YOLOv4, but the mAP maintained 67.3% of YOLOv4. YOLOv4-tiny’s performance
improved after combining the CBAM and ECA modules, but the addition of SE deteriorated
the performance of YOLOv4-tiny. MobileNetvX_YOLOv4 (X=1,2,3), which used
MobileNetv1, MobileNetv2, and MobileNetv3 as the backbone of YOLOv4, showed higher
mAP than YOLOv4-tiny series (including YOLOv4-tiny and three improved YOLOv4-tiny
based on the attention mechanism) but had a larger weight file. The network performance
was evaluated using the comprehensive evaluation index. The model, which integrates the
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CBAM attention mechanism and YOLOv4-tiny, achieved a good balance between model
size and detection accuracy.
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12 Abstract

13 Background. An automatic bathing robot needs to identify the area to be bathed in order to 

14 perform visually-guided bathing tasks. Skin detection is the first step. The deep convolutional 

15 neural network (CNN)-based object detection algorithm shows excellent robustness to light and 

16 environmental changes when performing skin detection. The one-stage object detection 

17 algorithm has good real-time performance, and is widely used in practical projects.

18 Methods. In our previous work, we performed skin detection using Faster R-CNN (ResNet50 as 

19 backbone), Faster R-CNN (MobileNetv2 as backbone), YOLOv3 (DarkNet53 as backbone), 

20 YOLOv4 (CSPDarknet53 as backbone), and CenterNet (Hourglass as backbone), and found that 

21 YOLOv4 had the best performance. In this study, we considered the convenience of practical 

22 deployment and used the lightweight version of YOLOv4, i.e., YOLOv4-tiny, for skin detection. 

23 Additionally, we added three kinds of attention mechanisms to strengthen feature extraction: SE, 

24 ECA, and CBAM. We added the attention module to the two feature layers of the backbone 

25 output. In the enhanced feature extraction network part, we applied the attention module to the 

26 up-sampled features. For full comparison, we used other lightweight methods that use 

27 MobileNetv1, MobileNetv2, and MobileNetv3 as the backbone of YOLOv4. We established a 

28 comprehensive evaluation index to evaluate the performance of the models that mainly reflected 

29 the balance between model size and mAP.

30 Results. The experimental results revealed that the weight file of YOLOv4-tiny without 

31 attention mechanisms was reduced to 9.2% of YOLOv4, but the mAP maintained 67.3% of 

32 YOLOv4. YOLOv4-tiny�s performance improved after combining the CBAM and ECA 

33 modules, but the addition of SE deteriorated the performance of YOLOv4-tiny. 

34 MobileNetvX_YOLOv4 (X=1,2,3), which used MobileNetv1, MobileNetv2, and MobileNetv3 

35 as the backbone of YOLOv4, showed higher mAP than YOLOv4-tiny series (including 

36 YOLOv4-tiny and three improved YOLOv4-tiny based on the attention mechanism) but had a 

37 larger weight file. The network performance was evaluated using the comprehensive evaluation 

38 index. The model, which integrates the CBAM attention mechanism and YOLOv4-tiny, achieved 

39 a good balance between model size and detection accuracy.
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40 Introduction

41 A convolutional neural network (CNN) is a machine learning model in a supervised learning 

42 framework. In 2012, AlexNet first used CNN for image classification (Krizhevsky, Sutskever, & 

43 Hinton, 2017), winning the ImageNet large scale visual recognition challenge by an 

44 overwhelming margin. Since then, CNN has been widely used in computer vision tasks such as 

45 image classification (Liu, Soh, & Lorang, 2021) and object detection (Zhou et al., 2022). By 

46 using massive data as learning samples, we can obtain a CNN model with analysis, feature 

47 representation, and recognition capabilities in order to achieve skin detection.

48 Skin detection is a prerequisite for bathing by automatic bathing robots. The intelligent 

49 bathing system detects human skin in the bathing environment based on vision sensors. Skin 

50 detection in bathing scenes is a challenging task. The bathing environment is full of water mist 

51 and various lighting and backgrounds. A skin detection algorithm generally extracts skin features 

52 and then classifies them using a classifier. Traditional skin detection typically exploits 

53 handcrafted features to distinguish between skin and non-skin zones, such as color, texture, and 

54 statistical features. Handcrafted features are not sensitive to environmental changes and are 

55 insufficient for bathing scenarios. Skin detection based on machine learning, which generally 

56 uses supervised methods to construct detectors in order to extract skin features, is less influenced 

57 by environmental factors and has gained more applications in recent years. Salah et al. utilized 

58 CNN trained by skin and non-skin patches to detect skin pixels (Salah, Othmani & Kherallah, 

59 2022). Kim et al. exploited two CNNs for skin detection and compared performance using 

60 different training strategies (Kim, Hwang & Cho, 2017). Lin et al. conducted CNN-based facial 

61 skin detection and optimized the CNN using the Taguchi method (Lin et al., 2021).

62 Instead of merely identifying skin and non-skin areas, we needed to provide the robot with 

63 information about specific skin areas (hands, feet, trunk, etc.) to clean up skin using different 

64 modes. We faced a multi-classification problem rather than a secondary classification problem. 

65 In application areas, one-stage object detection models based on CNN achieve good real-time 

66 performance and are computationally efficient. YOLO series are typical one-stage algorithms. 

67 YOLOv2, YOLOv3, YOLOv4, YOLOv5, and YOLOv7 are anchor-based algorithms that use 

68 anchors as the prior knowledge of the bounding box. YOLOv2 is not good at detecting small 

69 targets and uses Darknet19 as the backbone (Redmon & Farhadi, 2017). YOLOv3 adopts 

70 Darknet53 to extract features (Redmon & Farhadi, 2018). YOLOv4 uses CSPDarknet53 to 

71 extract features and uses SPP and PANet for feature fusion (Bochkovskiy, Wang, & Liao, 2020). 

72 The backbone and the neck parts of YOLOv5 include the CSP structure, and the Focus structure 

73 is proposed. Four models (YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) are provided. 

74 They have different depths and widths. The accuracy continuously improves, but the speed 

75 consumption also increases (Xie, Lin, & Liu, 2022). YOLOv7 proposed the ELAN structure 

76 (Wang, Bochkovskiy, & Liao, 2022). YOLOv1, YOLOv6, and YOLOX are anchor-free 

77 algorithms that lack the prior information of the bounding box and have better scene 

78 generalization in theory. YOLOv1 is less effective for small and dense targets (Redmon et al., 

79 2016). YOLOv6 adopts SPPF and Rep-PAN structures, whose backbone is mainly composed of 
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80 RepVGGBlock modules (Li et al., 2022). YOLOX includes standard versions (YOLOX-s, 

81 YLOLX-m, YOLOX-l, YOLOX-x, and YOLOX-Darknet53) and lightweight versions 

82 (YOLOX-Nano and YOLOX-Tiny) (Ge et al., 2021). YOLOX and YOLOv6 decouple the 

83 regression and classification in the detection head.

84 Our research is based on previous work by our team (Li et al., 2021) that found that 

85 YOLOv4 had a high mAP for skin detection in bath environments. The extensive computation 

86 led YOLOv4 having a slow speed after being deployed to embedded devices. In the study, we 

87 adopted YOLOv4-tiny (Zhao et al., 2022a), the lightweight model of YOLOv4, for skin 

88 detection and investigated the effect of attention mechanisms on YOLOv4-tiny. For full 

89 comparison, we also adopt other lightweight methods, namely, using MobileNetv1 (Howard et 

90 al., 2017), MobileNetv2 (Sandler et al., 2018), and MobileNetv3 (Howard et al., 2019) as the 

91 backbone of YOLOv4.

92 The remaining parts of the paper are arranged as follows: the �Materials & Methods� 

93 section offers an introduction to data set acquisition, YOLOv4-tiny, improved YOLOv4-tiny, 

94 transfer learning, experimental setup, and evaluation indicators. In the �Results� section we 

95 describe the experimental results. In the �Discussion� section we discuss the results related to 

96 our application. In the �Conclusion� section we summarize our research and look at future work.

97 Materials & Methods

98 Data sets acquisition

99 A total of 1,500 images of human skin were collected on the internet, and we considered factors 

100 such as position, illumination, skin color, blurring, and the presence of water mist. The position 

101 factor meant that the skin could appear in the middle or border of an image. In some images, the 

102 skin area was occluded. The difference of illumination in the data sets provided robustness. The 

103 data sets included people with fair skin, medium skin, and dark skin color. Our data sets included 

104 both clear and blurred pictures. The blur degree needed to ensure that the skin area in a picture 

105 was recognizable to the naked eye. In the data sets, some pictures included water mist and some 

106 did not include water mist. Some images included all the areas of the human body, and other 

107 images only included some areas. Ultimately, 1,000 images were selected based on image quality. 

108 We counted the number of pictures using the above factors, and the results are shown in Table 1. 

109 According to different regions, we divided skin into six categories: �Face_skin�, �Trunk_skin�, 

110 �Upperlimb_skin�, �Lowerlimb_skin�, �Hand_skin�, and �Foot_skin�. The image annotation 

111 tool LabelImg (Bhatt et al., 2022) was used to generate XML files corresponding to the images. 

112 The XML file includes the file name, ground truth information, and category information.

113 YOLOv4-tiny

114 The structure of YOLOv4-tiny is shown in Fig. 1. The backbone is CSPDarknet53-tiny, which is 

115 utilized for feature extraction. CSPDarknet53-tiny is composed of DarknetConv2D_BN_Leaky 

116 modules and Resblock_body modules. A DarknetConv2D_BN_Leaky module combines a two-

117 dimensional convolutional layer, normalized processing layer, and activation function. The Mish 

118 activation function (Misra, 2019) in the YOLOv4 is replaced by a Leaky Relu function (He et al., 

119 2015) to improve detection speed. The structure of Resblock_body is illustrated in Fig. 2. The 
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120 skip connection can better combine semantic information and let the model converge quickly, 

121 preventing both model degradation and gradient disappearance (Furusho & Ikeda, 2020). Feat1 

122 and Feat2 are the output feature layers from the Resblock_body module. The Feat2 output 

123 branch of the first two Resblock_body modules is the input of the next module. FPN (Lin et al., 

124 2017) is used to enhance feature extraction and perform feature fusion to combine feature 

125 information at different scales. For the output of the third Resblock_body module, Feat1 is 

126 directly used as the first input of the FPN. The second input of the FPN is the result obtained by 

127 processing Feat2 using the DarknetConv2D_BN_Leaky module. The output P2 of FPN is 

128 obtained using convolution processing on the second input of the FPN. The output P1 of FPN is 

129 obtained by stacking Feat1 and the result obtained using convolution and up-sampling operations 

130 on P2. The structure of FPN is simple, allowing YOLOv4-tiny to have excellent real-time 

131 performance. Compared with YOLOv4, YOLOv4-tiny has two detection heads and predicts at 

132 two scales. The YOLO head is used to obtain classification and regression prediction results. The 

133 structure of the YOLO head is straightforward. The two feature layers for prediction are acquired 

134 using a small amount of convolution of P1 and P2. YOLOv4-tiny still makes the detection based 

135 on anchors, using fixed-size anchors as a prior for object boxes, tiling many anchors on images, 

136 and adjusting anchors to bounding boxes by the prediction results. �13×13� and �26×26� 

137 represent the granularity of grids. �33� represents the prediction results adapted to our 

138 application, i.e., 3×(4+1+6), where �3� represents the number of anchors, �4� indicates the 

139 number of location parameters, �1� denotes the confidence score, and �6� is the number of 

140 categories to be identified.

141 The loss function includes bounding box location loss Lloc, classification loss Lcls, and 

142 confidence loss Lconf. The overall loss L is calculated as Eq. (1).

143
loc cls confL L L L  

(1)

144 Lloc measures the position error between the prediction box and the GT box. The evaluation 

145 indicators include IOU, GIOU (Rezatofighi et al., 2019), DIOU, and CIOU (Zheng et al., 2019), 

146 as summarized in Table 2. We introduce CIOU loss as Lloc, as indicated in Eq. (2).

147  2 21 o , gt

locL I U b b d     (2)

148 (3)      2
2= 4 arctan arctangt gtw h w h   

149 (4) = +1- oI U  

150 Where ρ2(b,bgt) represents the European distance between the central points of the prediction box 

151 and the GT box, d represents the diagonal distance of the minimum area enclosing the prediction 

152 box and the GT box, α is weight, and υ expresses the consistency of the aspect ratio. υ and α are 

153 calculated as demonstrated in Eq. (3) and Eq. (4).

154 Lcls measures the category error between the prediction box and the GT box, as shown in Eq. 

155 (5). K×K represents the number of grids on feature maps of different scales, and c represents the 

156 category. If the j-th prior box of the i-th grid has objects to be predicted, Iij
obj=1; otherwise, 

157 Iij
obj=0. qi(c) and pi (c) represent the actual value and predicted value of the probability that the j-
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158 th prior box of the i-th grid belongs to category c, respectively. The Lcls is optimized using a label 

159 smoothing approach to suppress the overfitting problem during training (Zhang et al., 2021). qi(c) 

160 is expressed as Eq. (6) where ytrue(c) represents the one-hot hard label, ε is a constant, and N 

161 represents the total number of categories.

162  (5)     
0

( ) log ( ) 1 ( ) log 1 ( )
K K

obj

cls ij i i i i

i c classes

L I q c p c q c p c


 

       

163

     1i trueq c y c
N

  
(6)

164 Lconf adopts a cross-entropy loss function, as shown in Eq. (7). M represents the number of 

165 prior boxes. Di and Ci represent the actual and predicted values of confidence. If the j-th prior 

166 box of the i-th grid has no object to be predicted, Iij
noobj=1; otherwise, Iij

noobj=0.

167 (7)           
0 0 0 0

log 1 log 1 log 1 log 1
K K M K K M

obj noobj

conf ij i i i i ij i i i i

i j i j

L I D C D C I D C D C
 

   

              

168 Improved YOLOv4-tiny based on attention mechanisms

169 The attention mechanism has a variety of implementations (Niu, Zhong, & Yu, 2022). The core 

170 of the attention mechanism is to make the network pay attention to needed areas. In general, 

171 attention mechanisms can be divided into the channel attention mechanism, the spatial attention 

172 mechanism, and a combination of the two (Tian et al., 2021). In this paper, the following 

173 attention mechanisms were used:

174 (1) Squeeze-and-excitation (SE) (Hu, Shen, & Sun, 2018). SE is a typical implementation of 

175 the channel attention mechanism that obtains the weights of each channel in the feature maps. 

176 The inter-dependencies among channels are modeled explicitly. Instead of introducing a new-

177 built spatial dimension for the fusion of feature channels, SE uses a feature rescaling strategy. 

178 Specifically, the importance of each channel is acquired spontaneously by self-learning. SE 

179 includes squeeze and excitation operations. The squeeze operation conducts feature compression 

180 across the spatial dimension, and converts a two-dimensional feature map into a real number that 

181 owns a global receptive field. The output size matches the number of input channels. The 

182 excitation operation is equivalent to the mechanics of gates in recurrent neural networks, where 

183 weights are created for each channel employing learned parameters, and explicitly models the 

184 correlation between feature channels. Finally, the weights, which are output by excitation 

185 operations, represent the importance of each channel. The rescaling of features in the channel 

186 dimension is accomplished by multiplying the weights by features of each channel (Huang et al., 

187 2019). The specific implementation of SE is shown in Fig. 3.

188 (2) Efficient channel attention (ECA). ECA is an improved version of SE. Wang et al. 

189 argued that seizing all channel dependencies is ineffective and unessential for the SE block 

190 (Wang et al., 2020). Convolution operation owns the cross-channel information capture 

191 capability. ECA removes the fully connected layer of SE and learns weights by 1D convolution 

192 operation on the globally averaged pooled features. The specific implementation of ECA is 

193 shown in Fig. 4.
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194 (3) Convolutional block attention module (CBAM). CBAM (Woo et al., 2018) performs 

195 channel attention and spatial attention mechanism processing for feature maps, as shown in Fig. 

196 5. The implementation of the channel attention module (CAM) can be divided into two parts. 

197 Global average pooling and maximum global pooling are performed separately for the input 

198 feature maps. The outputs are processed using a shared, fully connected layer. Sum the two 

199 processed results, and take the sigmoid operation to obtain the weights of each channel of the 

200 input features. The weights are multiplied by the original input features to get the output of CAM. 

201 The spatial attention module (SAM) takes the maximum and average value on each channel of 

202 each feature point. The two results are stacked. Adjust the number of channels using a 

203 convolution operation. Determine the weights of each feature point of the input features using 

204 the sigmoid function. Obtain the output by multiplying the weights by the original input features.

205 In this study, the above attention mechanisms are applied to YOLOV4-tiny. As shown in 

206 Fig. 6, we added attention mechanisms on the two feature layers extracted from the backbone 

207 network and attention mechanisms on the up-sampled results in FPN.

208 Transfer learning

209 Training a network from scratch requires an enormous amount of labeled data. Manual labeling 

210 of data sets is time-consuming and labor-intensive, which introduces the possibility of human 

211 error. Small data sets combined with transfer learning techniques can quickly produce a desirable 

212 model (Pratondo & Bramantoro, 2022). The ImageNet contains more than 14 million images 

213 covering more than 20,000 categories, of which more than one million images have explicit 

214 annotations and corresponding labels at objects� locations in the image (Russakovsky et al., 

215 2015). The pre-trained models on ImageNet can learn fundamental features such as textures and 

216 lines, which are general in object detection. All models use the pre-trained weights on the 

217 ImageNet as the initial weights in this study.

218 Experimental setup and evaluation indicators

219 For the fairness of model comparison, we used the same data sets as our previous work (Li et al., 

220 2021), with a ratio of 60%:20%:20% for the training, validation, and test sets. All models were 

221 trained with the help of the high-performance computing center of the University of Shanghai for 

222 Science and Technology. Mosaic data augmentation was used in the training process in which 

223 four randomly stitched images were input to the network for training to increase the background 

224 diversity (Bin et al., 2022). In order to compare with other lightweight methods, we replaced the 

225 backbone of YOLOv4 with MobileNetv1, MobileNetv2, and MobileNetv3 to obtain three 

226 network architectures. We used the Pytorch framework for model building and training. The 

227 initial value of the learning rate was set to 0.001 and the decay rate was set to 0.01. The batch 

228 size was set to 16, which indicated the number of images input to the model for training every 

229 time. SGD was utilized as the optimizer for model training. When training, the weights of the 

230 backbone were frozen first for 50 epochs, and all weights were trained after 50 epochs, which 

231 increased the convergence speed and training performance of models.

232 Recall and precision can be used to measure performance but are not fully representative of 

233 detector quality. Many sets of recall and precision values are obtained by taking different 
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234 thresholds. Plot a P-R curve (Naing et al., 2022). AP characterized the area enclosed by the P-R 

235 curve and the coordinate axes. The sum of the AP values of all classes was then divided using 

236 the total number of classes to get mAP, which is the crucial evaluation metric of detectors for 

237 multiple category detection. Our research is application oriented. In addition to the mAP 

238 indicators, we also focused on the model size. The smaller model and the higher mAP were more 

239 desirable for our embedded applications.

240 Results

241 After the training was completed, models were selected based on the results of the validation sets 

242 and the performance was tested using the test sets. The mAPs and weight file information of 

243 models are exhibited in Table 3.

244 In our previous work, the mAP of YOLOv4 reached 78%, as shown in Table 4. Also, it had 

245 a weight file of 244 MB. After the light-weighting process, the mAP of YOLOv4-tiny was 67.3% 

246 of YOLOv4, but the weight file was reduced to 9.2% of YOLOv4. Based on YOLOv4-tiny, we 

247 added attention mechanisms as shown in Fig. 6. As can be seen in Table 3, mAP is reduced by 

248 0.9% after adding the SE. There was a 1.1% improvement in mAP after adding the ECA. The 

249 mAP increased by nearly 5% with the addition of CBAM. After adding ECA, the weight file 

250 hardly increased. After adding SE, the weight file increased by 0.2 M. After adding CBAM, the 

251 weight file increased by 0.4 M. MobileNetv1_YOLOv4, MobileNetv2_YOLOv4, and 

252 MobileNetv3_YOLOv4 represent the model obtained using MobileNetv1, MobileNetv2, and 

253 MobileNetv3 as the backbone of YOLOv4. Table 3 shows that the maximum weight file of 

254 YOLOv4-tiny series (including YOLOv4-tiny and three improved YOLOv4-tiny based on 

255 attention mechanism) was 22.8MB, and the minimum weight file of MobileNetvX_ YOLOv4 

256 (X=1,2,3) was 46.5MB. Also, the maximum mAP of YOLOv4-tiny series was 57.2%, and the 

257 minimum mAP of MobileNetvX_ YOLOv4 (X=1,2,3) was 60.2%. Overall, the mAP of 

258 MobileNetvX_ YOLOv4 (X=1,2,3) was higher than that of YOLOv4-tiny series, but the weight 

259 file of MobileNetvX_ YOLOv4 (X=1,2,3) was bigger than that of the YOLOv4-tiny series. The 

260 AP values for the six categories are shown in Table 5. CBAM_YOLOv4-tiny achieved the 

261 highest AP values for the face and foot, MobileNetv3_ YOLOv4 achieved the highest AP values 

262 for the hand and lower limb, MobileNetv2_ YOLOv4 achieved the highest AP values for the 

263 upper limb, and MobileNetv1_ YOLOv4 achieved the highest AP value for the trunk. P-R curves 

264 are shown in Fig. 7.

265 In embedded applications, we believe that model quality was not only related to mAP, but 

266 also to model size. We hoped to achieve a better balance between model size and mAP. The size 

267 of the weight file could reflect the model size to some extent. Based on the above analysis, a 

268 comprehensive indicator W was established to describe the balance, as shown in Eq. (8), where 

269 A=U(i)-U(0) and B=V(i)-V(0). U(0) represents the weight file size of the original YOLOv4-tiny, 

270 U(i) represents the weight file size of the other model, V(0) represents the mAP of the original 

271 YOLOv4-tiny, and V(i) represents the mAP of the other model. The smaller the A is, the smaller 

272 the model is. The larger the B is, the better mAP the model has. Intuitively, establishing W=B/A 

273 can ensure that the larger the W is, the better the balance between mAP and model size. 
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274 Considering that A≥0 (U(i)≥U(0) seen from Table 3) and y=ex is a monotonically increasing 

275 function, we finally used eA instead of A, which can avoid the situation where the denominator 

276 equals 0 and can ensure that W decreases with the increase of A. Based on the above information, 

277 W can depict the balance between mAP and model size. After calculation, A, B, and W are 

278 indicated in Table 6. W of CBAM_YOLOv4-tiny is highest and CBAM_YOLOv4-tiny achieved 

279 the best balance.

280
(8)

 0
A

B
W A

e
 

281 Discussion

282 To perform the bathing tasks, we needed to recognize the area that needed to be bathed in the 

283 bathing scenario and send the recognition information to the bathing robot arm for bathing 

284 behavior planning, as shown in Fig. 8. By combining the skin detection results of 2D images 

285 with the depth information obtained from the depth camera, we could model the localization of 

286 targets in 3D space. In order to facilitate the robot to implement distinct bathing patterns for 

287 areas of the body, we needed to identify the skin located at diverse parts of the body. Therefore, 

288 we built small data sets in the bathing scenarios to be used as learning samples for object 

289 detection models. The manual annotation was performed with the labelImg tool to classify skin 

290 regions into six categories according to different parts.

291 Among the object detection algorithms, one-stage detection algorithms are faster than two-

292 stage and are suitable for application in our scenario where real-time performance is required. In 

293 our previous work, we explored the effectiveness of object detection models for skin detection 

294 with multiple classifications and found the best YOLOv4 model from five models. For easy 

295 deployment, we used lightweight YOLOv4-tiny and imposed three kinds of attention 

296 mechanisms on YOLOv4-tiny. We found that both CBAM and ECA improved the detection 

297 effect, yet SE made the detection effect worse instead, which implies that we need to carefully 

298 choose the attention mechanism during practice. We also used another lightweight method that 

299 replaced the backbone of YOLOv4 with MobileNetv1, MobileNetv2, and MobileNetv3. They 

300 obtained a higher mAP than YOLOv4-tiny series and were accompanied by a larger weight file.

301 Compared with Salah�s work, our data sets included images with six types of labels for 

302 network training instead of skin and non-skin patches. We were not only able to discern between 

303 skin and non-skin patches, but also the body part. To the best of our knowledge, this is the first 

304 time a study on skin detection that has been able to identify different body parts. The innovation 

305 of this paper is in the use of CNN-based object detection algorithms to complete regional skin 

306 detection for bathing tasks with embedded applications.

307 When developing assistive robots, visual information is frequently used, especially since 

308 there is are a number of image processing algorithms. Our application scenarios are special and, 

309 fortunately, we also considered privacy protection. Mitigating damage to privacy mainly starts 

310 when: (1) the data are not stored locally and the whole system does not display RGB information 

311 (our hardware computing platform uses jetson TX2, which has limited storage space and does 

312 not support the storage of visual data in the bath scene); (2) the whole system is not connected to 
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313 the network, ensuring that the data do not have the risk of transmission; (3) the data are 

314 processed on TX2 rather than transmitted to the cloud for processing. In fact, we hoped to find 

315 the two-dimensional pixel coordinate information with the help of a mature algorithm using 

316 RGB and combine the depth information of the depth camera to model object regions in three-

317 dimensional space. In addition, we mainly applied the bathing robot to semi-disabled elderly 

318 people who generally hope to complete bathing independently of nursing staff. The bathing robot 

319 can provide the elderly with the opportunity to take care of themselves while bathing. Compared 

320 with relying on nursing staff to complete bathing tasks, using the bathing robot can maintain the 

321 dignity of the elderly to the greatest extent.

322 There has been little research on object detection-based skin detection combined with 

323 robotic arms for bathing tasks. Our study explored the YOLOv4-tiny and which attention 

324 mechanism works best on YOLOv4-tiny. However, the YOLOv4-tiny showed a reduction in 

325 mAP compared with the YOLOv4, creating some challenges for high detection accuracy (Zhao 

326 et al., 2022b). The relatively small number of trunks in the data sets resulted in the poor detection 

327 of trunks. The foot occupies a small area in the whole-body range. Foot features tend to 

328 disappear with repeated down-sampling operations, resulting in poor detection of the foot.

329 Conclusion

330 When using robots for autonomous bathing tasks, skin detection needs to be accomplished first. 

331 To facilitate the embedded deployment, we used YOLOv4-tiny, a lightweight model of 

332 YOLOv4, for skin detection based on our previous work. Three kinds of attention mechanisms 

333 were overlaid in the YOLOv4-tiny, and we used the test sets to test the performance of models. 

334 Compared to the original YOLOv4-tiny, the YOLOv4-tiny combined with the CBAM or ECA 

335 attention modules showed a certain increase in mAP, while the addition of SE produced some 

336 degree of decrease. It is feasible to use attention mechanisms for performance improvement of 

337 YOLOv4-tiny, but not every attention mechanism is suitable. Compared with the lightweight 

338 method of using MobileNetv1/MobileNetv2/MobileNetv3 as the backbone of YOLOv4, the 

339 method of using YOLOv4-tiny and CBAM achieves a better balance between model size and 

340 detection effect. In future work, we will improve the detection for trunk and foot by expanding 

341 the trunk and foot samples in the self-built data sets, and aim to guarantee deployment 

342 performance while achieving high detection accuracy. Then, we will convert the best model into 

343 an open neural network exchange model for easy deployment.
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Figure 1
The structure of YOLOv4-tiny
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Figure 2
The structure of Resblock_body
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Figure 3
The specific implementation of SE
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Figure 4
The specific implementation of ECA
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Figure 5
The specific implementation of CBAM
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Figure 6
Improved YOLOv4-tiny based on attention mechanisms
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Figure 7
P-R curves

PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77902:1:1:NEW 13 Jan 2023)

Manuscript to be reviewedComputer Science



PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77902:1:1:NEW 13 Jan 2023)

Manuscript to be reviewedComputer Science



Figure 8
The perception process in the bathing tasks: achieving the three-dimensional
positioning of the target
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Table 1(on next page)

The number of pictures for different factors
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1

Skin position Occlusion Illumination Blur degree
Water 

mist

Number of 

regional 

categories

Skin color

Middle 589 Yes 687 Sufficient 708 Blur 424 Yes 323 All 289 Fair 277

Border 411 No 313 Insufficient 292 Clear 576 No 677 Some 711 Medium 421

- - - - - - - - - - - - Dark 302
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Table 2(on next page)

Summary of IOU, GIOU, DIOU, and CIOU
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Features Shortcomings

IOU
Representing the ratio of intersection and 

union of the GT box and the prediction box

When the prediction box and the GT box 

do not intersect, the loss function is not 

differentiable, leading losses cannot 

propagate

GIOU scale invariant
Slow convergence speed and low 

positioning accuracy

DIOU
Overlapping area and center point distance 

are taken into account
Widely used in post-processing

CIOU
The consistency of aspect ratio is considered 

on the basis of DIOU
Widely used in post-processing

1
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Table 3(on next page)

Model information
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M���� Attention mAP Weight file(MB)

YOLOv4-tiny - 52.5% 22.4

SE_YOLOv4-tiny SE 51.6% 22.6

CBAM_YOLOv4-tiny CBAM 57.2% 22.8

ECA_YOLOv4-tiny ECA 53.6% 22.4

MobileNetv1_YOLOv4 - 60.5% 51.1

MobileNetv2_YOLOv4 - 60.2% 46.5

MobileNetv3_YOLOv4 - 61.8% 53.7

1
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Table 4(on next page)

Model comparison results in previous work
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1

Models Backbone mAP

Faster R-CNN  ResNet50 0.72

Faster R-CNN  MobileNetv2 0.55

YOLOv3 DarkNet53 0.70

YOLOv4 CSPDarkNet53 0.78

CenterNet Hourglass 0.66

2
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Table 5(on next page)

AP values for the six categories
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1

FaceF���� HandF���� UpperlimbF���� LoL�	
���F���� T	
��F���� FootF����

YOLOv4-tinY 0.0� 0.6� 0.57 0.54 0.21 0.1�

SE_YOLOv4-tiny 0.0� 0.67 0.55 0.55 0.17 0.21

CBAM_YOLOv4-tiny 0.�� 0.72 0.58 0.56 0.30 0.��

ECA_YOLOv4-tiny 0.0� 0.70 0.60 0.51 0.21 0.23

MobileNetv1_ YOLOv4 0.0� 0.70 0.70 0.64 0.41 0.22

MobileNetv2_ YOLOv4 0.0� 0.71 0.73 0.67 0.40 0.14

MobileNetv3_ YOLOv4 0.0� 0.76 0.60 0.69 0.34 0.26

2
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Table 6(on next page)

A, B, and W of all models
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Models A B W

SE_YOLOv4-tiny 0.2 -0.- -0.74

CBAM_YOLOv4-tiny 0.4 4.7 3.13

ECA_YOLOv4-tiny 0 1.1 1.1

MobileNetv1_YOLOv4 28.7 8 2.75

MobileNetv2_YOLOv4 24.1 7.7 2.63

MobileNetv3_YOLOv4 31.3 -9� 2.37

1
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