
BinBench: a benchmark for x64 portable
operating system interface binary function
representations
Francesca Console, Giuseppe D’Aquanno, Giuseppe Antonio Di Luna
and Leonardo Querzoni

Department of Computer, Control and Management Engineering, University of Roma
“La Sapienza”, Rome, Italy

ABSTRACT
In this article we propose the first multi-task benchmark for evaluating the
performances of machine learning models that work on low level assembly functions.
While the use of multi-task benchmark is a standard in the natural language
processing (NLP) field, such practice is unknown in the field of assembly language
processing. However, in the latest years there has been a strong push in the use of
deep neural networks architectures borrowed from NLP to solve problems on
assembly code. A first advantage of having a standard benchmark is the one of
making different works comparable without effort of reproducing third part
solutions. The second advantage is the one of being able to test the generality of a
machine learning model on several tasks. For these reasons, we propose BinBench, a
benchmark for binary function models. The benchmark includes various binary
analysis tasks, as well as a dataset of binary functions on which tasks should be solved.
The dataset is publicly available and it has been evaluated using baseline models.

Subjects Data Mining and Machine Learning, Security and Privacy, Neural Networks
Keywords Benchmark, Neural networks, Binary functions representation, Dataset, Assembly
language, Binary functions, Binary similarity, Compiler provenance

BACKGROUND
Introduction
Deep neural networks (DNNs) are the tool of choice for solving problems in several fields,
to name a few: natural language processing, image processing, audio classification. This is
due to their ability to solve complex problems using a purely data driven approach.
Following this trend the research community of binary code analysis is successfully
applying DNNs to the solution of several challenging tasks that range from binary
similarity to the reconstruction of stripped symbols. As hinted by the naturalness
hypothesis of Allamanis et al. (2018), the code, also in its binary form, is a mean of
communication between humans and machine. An empirical confirmation of this
hypothesis is the fact that many articles using DNNs on the binary domain are using
architectures that are borrowed, often with minimal modifications, from the NLP
community (examples are the self-attentive RNN used in Massarelli et al. (2019b),
word2vec used in Chua et al. (2017)), the transformer based architecture used in Li, Yu &
Yin (2021). Unsurprisingly, also in this field, DNNs are showing state of the art
performance.

How to cite this article Console F, D’Aquanno G, Di Luna GA, Querzoni L. 2023. BinBench: a benchmark for x64 portable operating
system interface binary function representations. PeerJ Comput. Sci. 9:e1286 DOI 10.7717/peerj-cs.1286

Submitted 12 April 2022
Accepted 17 February 2023
Published 1 June 2023

Corresponding author
Francesca Console,
fconsole@diag.uniroma1.it

Academic editor
Aswani Kumar Cherukuri

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.1286

Copyright
2023 Console et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1286
mailto:fconsole@�diag.�uniroma1.�it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1286
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

A defining aspect of DNNs is that they learn an inner representation of the objects they
are analysing, that is then used to solve the task at hand. In this regard, the NLP
community has built sophisticated architectures, such as BERT (Devlin et al., 2019), GPT-2
(Hegde & Patil, 2020) and GPT-3 (Brown et al., 2020), these DNNs are able to learn
complex representations of the sentences they are analysing and are able to use these to
solve a panoply of tasks, acting as universal unsupervised task solvers (Young et al., 2018;
Radford et al., 2019). For their generality, these architectures have to be tested on several
different tasks. A key achievement in the NLP community has been the adoption of a set of
standard datasets (e.g., SQUAD (Rajpurkar et al., 2016), GLUE (Wang et al., 2018),
GLUECoS (Khanuja et al., 2020), and KILT (Petroni et al., 2021)) that are used to evaluate
the performance of new architectures on several different tasks. As an example, the GLUE
benchmark contains various tasks associated to different datasets, such as Corpus of
Linguistic Acceptability (CoLA), Stanford Sentiment Treebank (SST-2) and Quora
Question Pairs (QQP). In detail, CoLA asks to understand whether samples are
grammatical English sentences. The task of SST-2, instead, consists in predicting the
sentiment of each analyzed sentence. Finally, QQP asks to understand whether two given
questions are semantically equivalent. These multi-task benchmarks are designed to
evaluate the generality of any newly proposed architecture.

The binary analysis community working with and on DNNs is still lacking the adoption
of a common multi-task benchmark that could be used to test deep architectures on binary
analysis tasks. As we will discuss, the availibility of a widely-recognized benchmark for
DNN-based binary analysis is a crucial aspect that has been mainly neglected so far. All the
articles present in the literature are using their own datasets (seeMassarelli et al., 2019b; Xu
et al., 2017; Ding, Fung & Charland, 2019; Artuso et al., 2021; Massarelli et al., 2019a),
specifically created to solve the single problem at hand.

This raises two concerns. The first issue is that results between works are not
comparable. Performances could, and often do, change drastically when using different
datasets. This makes hard or impossible to decide which architecture to pick for a certain
problem. The only way to get comparable results is to run different candidate solutions on
the same dataset. Unfortunately, this is far from trivial: when datasets and prototype
solutions are not publicly released, it requires a consistent effort to replicate data needed
for a fair comparison.

The second issue is more subtle, state of the art solutions in NLP are general neural
networks pipeline (e.g., the transformers) that during training learn a general
representation of natural language. Such architectures, usually after a fine tuning step, can
be used to solve several different tasks. The current trend in the binary analysis community
is to design an ad-hoc DNN architecture for each single problem. However, a worthwhile
effort is the of creating an efficient DNN architecture that can learn and use a
representation of a binary function, and then use this representation to solve several
different tasks.

To test such a system, a multi-task benchmark is needed, to assess the performance of a
candidate architecture trained to learn a binary code representation on several tasks
focused on different facets of the binary analysis problem: from syntax-related tasks (e.g.,

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 2/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

understanding which compiler has generated a binary code snippet), to semantic-related
ones (e.g., identifying what a function is doing).

In this article we propose a multi-task benchmark for testing the generality of DNN
architectures. We hope this work will be the first step towards the creation of several
benchmarks for the unified testing and evaluation of neural models for binary analysis, and
that this initiative could foster the creation of general multi-tasks architectures that are the
equivalent of BERT for our domain.

Contributions
Our main contribution is the release of BinBench, a benchmark comprising a dataset and
several binary analysis tasks. The dataset contains both binary data and a representation of
each function in a json format. This latter representation includes key information about
each function (assembly instructions, bytecode, arguments, etc). This design choice has
been made so that researchers can use the dataset without the need to resort to a
disassembler or other similar tools.

BinBench contains the following tasks:

� Binary Similarity. Check whether two binary functions are generated from the same
source code.

� Function Search. Given a certain binary function, find its K top similar functions in a
database.

� Compiler Provenance. Identify the compiler family used for generating a certain binary
function.

� Function Naming. Given a binary function, assign to it a name that matches its
semantics and role.

� Signature Recovery. Predict the parameters of a given binary function.

BinBench is split in two parts: a blind and a non-blind one. The non blind part contains
for each task the labels that a perfect solution is expected to predict. This part can be used
to train, validate and test a model. The blind part contains only data without labels. This
part must be used for competitive comparison of different models. The blind dataset is
composed by binary code taken from several different opensource packages, selected to
cover different behaviours of a software system (e.g., it contains networking applications,
databases applications, archive management applications, and so on).

The researcher has to use its model to predict a set of labels for the blind dataset, and
then submit them to a challenge on EvalAI that will return a performance score without
revealing the actual labels (this avoid accidental or intentional overfitting of a model).
EvalAI keeps a leaderboard of the best solutions. Its functioning is further explained in the
dedicated section.

Finally, for each task we provide a baseline result obtained by running state-of-the-art
solutions. The baseline value can be used by researchers as a starting point to check how
well their DNNs work against other systems.

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 3/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

RELATED WORK
Benchmarks
Deep neural networks have shown state of the art performances in a variety of tasks. One of
the fields where these methods shine is the one of natural language processing. It is usual in
the NLP community to benchmarks that evaluate the overall quality of model
representations. For generality purposes, these benchmarks include multiple tasks on
which the architectures can be tested. The tasks are heterogeneous so that they will test
different capabilities of a model (DeYoung et al., 2019; Khanuja et al., 2020).

A recent trend in the field of binary analysis with machine learning technique is the one
of using techniques borrowed from the NLP area (Massarelli et al., 2019b; Xu et al., 2017;
Artuso et al., 2021; Liu et al., 2018;Massarelli et al., 2019a; Rosenblum, Miller & Zhu, 2011;
Ding, Fung & Charland, 2019; Chua et al., 2017; He et al., 2018; David, Alon & Yahav,
2020). Surprisingly, in the case of binary analysis community, there is no multi-task
benchmark that is commonly adopted. An attempt in this sense is done by BinKit (Kim
et al., 2020), a benchmark evaluating only the task of binary similarity. Therefore, to the
best of our knowledge there is no multi-task benchmark targeting the binary analysis
community. Below we detail related work for each task of our benchmark. Furthermore, a
comparison of BinBench with relevant datasets is deferred to Discussion section.

Binary similarity and function search
Binary similarity and function search are related. The first task asks to find whether two
functions are similar, accordingly to some definition of similarity, and, usually, to return a
similarity score. The latter, instead, asks, given a certain query function, to find the Kmost
similar functions to the query from a certain database. To solve this problem, we may use a
binary similarity systems that computes the pairwise similarity between the query and the
functions present in the databases, returning the K most similar. For such a reason
function search is usually an evaluating tasks of articles proposing binary similarity
solutions, and the literature of the two problems is essentially the same.

Several works have studied the problem of binary similarity (Dullien & Rolles, 2005;
Khoo, Mycroft & Anderson, 2013; Alrabaee et al., 2015; David, Partush & Yahav, 2016;
David, Partush & Yahav, 2017; David & Yahav, 2014; Lakhotia, Preda & Giacobazzi,
2013). We will focus on the works that use deep neural networks and machine learning
techniques, or that release their datasets.

Kim et al. (2020) proposed a public dataset for the binary similarity task. The article uses
an approach based on manually selected numeric features. The binary similarity between
two functions is computed as an average of the relative differences between selected
features. Another public dataset is the one of a from Diff (Liu et al., 2018). In this case the
article uses manual features, namely the intra-function (raw bytes), the inter-function
(function calls) and the inter-module (library imports). The dataset used is a collection of
cross-version binaries from the x86 Linux platform. A different approach is proposed in
SAFE (Massarelli et al., 2019b), which solves the binary similarity task with a self-attentive
neural network. The model maps assembly instructions into vectors, usingWord2vec from

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 4/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

Mikolov et al. (2013). Then, a self-attentive neural network maps a sequence of instructions
into the final embedding of the function. The model has been used to solve several tasks,
such as binary similarity, function search, vulnerability search, semantic classification and
APT classification. Another article that uses neural networks to transform functions in
vectors is Asm2Vec (Ding, Fung & Charland, 2019). They use the PV-DM model on a set
of random walks performed on the control flow graph (CFG) of a function. In detail, a
CFG is directed graph, showing all possible paths of execution for a function. Nodes
represent basic instruction blocks, that are sets of consecutive instructions ending with
jump or return statement. Each edge, instead, represent a jump from the current
instruction block to its successor.

The problem of the binary similarity has also been studied in Gemini (Xu et al., 2017).
In this case, each binary function is transformed into an attributed control flow graph
(ACFG), that is a CFG with manually annotated features. A graph neural network (Ribeiro,
Saverese & Figueiredo, 2017) is used to map the ACFG into a vector. The similarity
between functions is computed as the distance between their vectors.

Function naming
A recent series of articles is studying the problem of function naming (Patrick-Evans,
Cavallaro & Kinder, 2020; Patrick-Evans, Dannehl & Kinder, 2021; Gao et al., 2021). The
majority of which are using deep neural networks. For example, Artuso et al. (2021)
compares the performance of a Seq2Seq (Bahdanau, Cho & Bengio, 2015) architecture and
a transformer (Vaswani et al., 2017). The analysis is carried out on a large set of stripped
binaries, built from scratch and publicly available. The function naming problem has also
been studied in NERO (David, Alon & Yahav, 2020). In this case each call in the CFG is
converted to a symbolic call site structure, which includes information regarding the
function call and its arguments. From these call site and the CFG an augmented call site
graph is created, this graph has the call sites as nodes. The edges of the graph represent
potential execution paths of the procedure. Using this representation several neural
architectures are tested and compared. A different approach is proposed by Debin
(He et al., 2018), which predicts debug information from stripped binaries. The assembly
code is first translated in BAP-IR. This is an intermediate representation, showing code
semantics in an architecture independent way. Therefore, Debin builds a graph
representing dependencies among code elements of BAP-IR. Then a conditional random
field model is run on top of this graph to predict the missing debug information.

Signature recovery
Less attention has been devoted to the signature recovery task. The reference article in this
case is Chua et al. (2017), that solves signature recovery through neural networks. The
model constructs an embedding vector for each instruction through the skip-gram model.
To recover the function signatures, RNNs are trained on the resulting instruction vectors
to predict types and number of arguments for the functions.

A more general problem is the one of generating an high level representation from
binary code, decompilation process. Many works have tackled this problem, with and

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 5/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

without neural networks, Katz, Ruchti & Schulte (2018), Katz et al. (2019), Fu et al. (2019).
However, our task focuses on just retrieving the signature of the function. A related
problem is the one of finding low level patterns in binaries (Escalada, Ortin & Scully, 2017;
Escalada, Scully & Ortin, 2021) as these can be used to aid the recovery of input and return
types of a function.

Compiler provenance
The task of compiler provenance has been studied in several articles. For example,
Rosenblum, Miller & Zhu (2010) represents a binary program as sequence of instructions
(idioms). This kind of representation removes details such as memory offsets and literals.
In Rosenblum, Miller & Zhu (2011), instead, the task of compiler provenance is evaluated
as a classification problem. This approach automatically selects features from idioms and
subgraphs of the CFG (graphlets). Therefore, each function is associated to a binary vector,
representing the presence of each feature. The model is implemented using an SVM
classifier. The approach of Rahimian et al. (2015), instead, extracts a set of syntactic
features and compiler tags from known compiled code. Therefore, it uses ACFGs to extract
semantics features from binaries. The solution allows to identify the compiler provenance
and the optimization level. In Chen et al. (2019), the task of compiler provenance is solved
through neural networks. First, the architecture represents an input binary as a list of
functions. Therefore, each function is converted into vector and the word embedding is
applied to the instructions. Finally, the model retrieves compiler information using
recurrent neural networks.

In Massarelli et al. (2019a), features are automatically extracted from the CFG. The
model associates each graph vertex to a vector representation. Therefore, the graph
embedding results from the aggregation of the vertex vectors. The approach evaluates two
tasks, namely binary similarity and compiler provenance.

TASKS
For BinBench we selected the following tasks: binary similarity, function search, compiler
provenance, function naming and signature recovery. These widely different tasks are
meant to capture distinct aspects of a binary function, and thus to assess the generality of
the architecture under test. All these tasks already appeared in the literature (see the related
work section for an in depth discussion). We decided to use known tasks for several
reasons: we want tasks that have real-world relevance and thus could be used to assess the
practical usability of a DNN architecture; we preferred well known tasks as they have
already been accepted by the community, and this could improve the acceptance of our
benchmark; furthermore, by using known tasks we can readily find solutions that can be
used to create baseline scores for the benchmark. Roughly, we can divide our tasks in two
sets: semantic tasks and syntactic tasks. Semantic tasks require the network to abstract
from the syntactical representation of the code and to learn semantic aspects of the
binaries; in this category there are the binary similarity and function search tasks where
functions compiled from the same source code are recognised and the function naming
task, which requires enough understanding to give a meaningful name to a snippet of

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 6/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

binary code. The syntactic tasks, in a dual way, require to focus on the syntactic aspect of
binary; in this category we have the compiler provenance task, which recognises the
compiler used to generate a certain binary, and the signature recovery task, that requires to
understand how many and which kind of arguments a function is taking. In the following
we detail each task.

Binary similarity
In this task the network has to understand if two binary functions are based on the same
source code or not. The binary similarity is far from trivial, as, it is well known (Xu et al.,
2017) that different compilers and optimisation levels are able to generate markedly
different binary code. This problem has been extensively investigated in the last years (Haq
& Caballero, 2021). We decided to use the formalisation first used in Ding, Fung &
Charland (2019) and then also inMassarelli et al. (2019b), where the problem is expressed
over pairs of functions. This task has a practical importance in several applications: clone
search, copyright infringement dispute, etc. It is a semantic task as it requires the network
to abstract from the syntactic difference created by the compiler.

Formal definition
Two binary functions f1; f2 are similar, f1 � f2, if they are the results of compiling the same
original source code s with different compilers. Essentially, a compiler c is a deterministic
transformation that maps a source code s to a corresponding binary function f s. We
considered as a compiler the specific software, e.g., gcc-5.4.0, together with the parameters
that influence the compiling process, e.g., the optimization flags −O½0;…; 3�. In this task
we provide a set of unlabelled binary function pairs p1; . . . ; pn, the tested architecture has
to classify each pair as similar (label þ1) or dissimilar (label �1). Examples of binary
similarity are showed in Fig. 1.

Metrics
We evaluate the quality of the solution using the Area Under the Curve (AUC) considering
the classification task as explained above. The AUC, as the name suggests, is the area under
the receiver operator characteristic (ROC) curve, which represents the relation between
true positive rate (TPR) and false positive rate (FPR). Therefore, the AUC shows the
overall classification capabilities of an observed model (James et al., 2013).

Function search
The function search task similar to the binary similarity one. Also in this case the goal is to
find functions that are similar. The main difference is that the previous task is a
classification task where pairs of functions are labelled as similar or not; conversely, the
function search is a retrieval task. In this case a function, used as query, has to be looked up
on a database of other functions. The query has to return the K ¼ 20 most similar
functions. The value assigned to K has been chosen with respect to S, the average number
of similar functions available in the complete dataset, which is slightly greater than K. This
task models a real use case of the binary similarity search where a certain sensitive

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 7/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

function, that could represent a piece of a malware or part of copyrighted software, has to
be searched on a database.

Formal definition

We have a database DB, that can be seen as a set of n different binary functions and a set of
queries Q : ff1; f2; . . . ; fqg. In the function search task for each function fi 2 Q, the
networks has to return a set Aj � DB of size K. The functions in Aj have to be similar to
function fi.

Metrics
The quality of the solution is determined using precision, recall, F1 score and normalized
discounted cumulative gain (nDCG). The evaluation is computed on the K ¼ 20 most
similar functions proposed in the solution. In detail, the precision represents the fraction of
correctly classified samples over the total retrieved samples. Therefore, given the true
positives (TP) and the false positives (FP), the precision is computed as follows.

Precision ¼ TP
TP þ FP

The recall, instead, measures the number of correctly retrieved instances over the total
number of instances of the correct answer.

Recall ¼ TP
TP þ FN

Figure 1 Examples of binary similarity. (A) Similar binary functions are generated by compiling the same source code. (B) Dissimilar binary
functions are obtained from the compilation of different source code. Full-size DOI: 10.7717/peerj-cs.1286/fig-1

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 8/24

http://dx.doi.org/10.7717/peerj-cs.1286/fig-1
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

where FN represents the false negatives (FN). The F1 Score shows the overall precision of a
model and it is computed as the harmonic mean of precision and recall.

F1� Score ¼ 2 � Precision � Recall
Precisionþ Recall

Finally, the nDCG is the measure of the ranking quality for retrieval tasks. Given a
binary function (query), our goal is to retrieve its Kmost similar functions from a database.
The returned solution should have the similar functions in first positions. As an example,
consider the optimal query answering soptimal ¼ ðf1; f2; f3Þ, where each fi ði¼1;…;3Þ is similar
to the query fq. Now suppose to have two models m1;m2 that return the following
solutions: sm1 ¼ ðf4; f1; f2Þ and sm2 ¼ ðf1; f4; f2Þ, where f4 is not similar to fq. Both solutions
include the same set of functions, but sm2 is better that sm1 . This because m1 places the a
non similar function at the beginning of the list. Formally, the nDCG is defined as

nDCGðR~f Þ ¼
Pk

k¼1
Similarðri;~f Þ
logð1þiÞ

IdealDCGk

where:

– f is the query function.

– R~f : ðr1; r2;…; rkÞ are the top-k similar functions.

– Similarðri; f Þ is equal to 1 if ri is similar to f , 0 otherwise.

– IdealDCGk is the discounted cumulative gain of the optimal query answering.

The nDCG has a value between 0 and 1, and it depends on the order given to the
returned similar functions. Therefore, the nDCG is greater when similar functions are the
first elements of the solution. Consider the example discussed above. The optimal query
answering is soptimal ¼ ð1; 1; 1Þ, while two model solutions are sm1 ¼ ð0; 1; 1Þ,
sm2 ¼ ð1; 0; 1Þ. Each element in the solutions is 1 if the returned function is similar to the
query, and 0 otherwise. Therefore, sm2 is a better solution than sm1 , and nDCGsm2

is greater
than nDCGsm1

.

Compiler provenance
In the compiler provenance task, given a binary function the goal is to classify it
accordingly to the compiler and/or optimization level that generated it. This problem was
proposed for the first time in Rosenblum, Miller & Zhu (2010), and it has then been studied
in several articles (Rosenblum, Miller & Zhu, 2011; Rahimian et al., 2015; Chen et al., 2019;
Massarelli et al., 2019a). Knowing the compiler that has generated a certain binary is
needed to use specific library detection toolkits (such as IDA FLIRT; https://hex-rays.com/
products/ida/tech/flirt/in_depth/); another example is Caliskan et al. (2018) where this
information is necessary to understand who is the writer behind a certain snippet of binary
code. This is a syntactic task as a good solution has to learn the syntactic structure
generated by a certain compiler without considering the semantic of the code.

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 9/24

https://hex-rays.com/products/ida/tech/flirt/in_depth/
https://hex-rays.com/products/ida/tech/flirt/in_depth/
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

Formal definition
We have a set C : fc1; c2; . . .g of possible compilers, these compilers are divided in families
F1; . . . ; Fm a family is a specific compiler without considering the version and optimization
level (e.g., the clang family contains all the versions of clang). In the compiler provenance
task we are given a set of functions f1; . . . ; fn and we have to label each of them with the
correct family; i.e., given fj compiled with compiler cj we have to output the family F such
that cj 2 F.

Metrics
We evaluate the compiler provenance task using four metrics: accuracy, precision, recall,
and F1 score. In detail, the accuracy of the model is computed as follows.

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

where TN represents the true negatives.

Function naming
In this task the purpose is to predict an appropriate name for a binary function. This
problem was introduced in He et al. (2018) and it has been then studied in David, Alon &
Yahav (2020), Artuso et al. (2021). This naming task has a practical importance, it could
helps an analysts that is reversing an unknown binary by identifying key functionalities; as
example, encryption or networking functions. Function naming is a semantic task as it
requires the network to learn the semantic of a function translating it into a description in
natural language that constitutes a name. A key problem is the evaluation of function
naming solutions as different programmers could use widely different naming
conventions. An approach proposed in the literature is to split names in substrings
(Patrick-Evans, Dannehl & Kinder, 2021), more details in the metrics section.

Formal definition
Given a vocabulary V and a set of functions f1; f2; . . . ; fn in the function naming problem
we have to assign to each function fj a string sj composed by words in the vocabulary V.
The string sj has to be “meaningful”, it has to capture the semantic of the function and its
role inside the software (Artuso et al., 2021).

Metrics
To measure the quality of the solution for the function naming task, we consider the
following metrics: precision, recall and F1-score and BLEU.

To be evaluated, each function name is represented as a list of tokens. In detail, function
names are first split on underscores, and then, English word segmentation (https://
grantjenks.com/docs/wordsegment/) is applied. This tool split strings into ”meaningful”
English words. For example, we consider the following function names: setValue,
set_value, and setvalue. Even if they have different naming convention, they are
composed by the same English words. Therefore, splitting these function names generates
the same output: [00set00, 00value00].

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 10/24

https://grantjenks.com/docs/wordsegment/
https://grantjenks.com/docs/wordsegment/
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

For the labeled dataset, we provide two different labels: the original name, and the one
split with our technique. We believe that having both labels can be helpful to train models.
For the blind dataset, the user has to provide a name composed by the tokens of the
vocabolary (https://github.com/grantjenks/python-wordsegment/tree/master/
wordsegment) used in the split procedure. This list of tokens will be compared with the list
of correct labels obtained by applying the split procedure to the original function name.

In detail, for each function name we consider:

� Two list of tokens: correct labels l and predicted labels p,

� A function xa, such that xa ¼ 1 if pa 2 l and 0 otherwise ð80, a � jpjÞ
� The score of a prediction scorep ¼

Pjpj
k¼1 xa

Therefore, individual metrics are computed as:

Precision ¼scorep=jpj
Recall ¼scorep=jlj

F1� Score ¼2 � ðPrecision � RecallÞ=ðPrecisionþ RecallÞ

Finally, we individually evaluate each prediction with BLEU (Papineni et al., 2002),
which measures the quality of machine translations. It is language independent and it
returns a value between 0 and 1. In detail, BLEU score is defined as follows.

Given the length of the prediction c, and the effective length r, the brevity penalty (BP) is

BP ¼ 1 ðif c . rÞ
eð1�r=cÞ ðif c , ¼ rÞ

�
(1)

Therefore, BLEU score is defined as

BLEU ¼ BP 	 exp
XN
n¼1

wnlogpn

 !

where N is the maximum n-gram length, pn is the modified precision score, and wn

represents corresponding weights.
The returned metrics represent performances over all the predictions. They are

computed as average of each individual measure.

Signature recovery
Given a binary function the task consists in predicting its parameters, that is the number
arguments it takes and the type of each one. The signature recovery was introduced in
Chua et al. (2017), and it has been solved, as a subproblem, also in He et al. (2018). As
noted by Chua et al. (2017), the signature recovery task is useful for control-flow hardening
(Zhang & Sekar, 2015) and taint-tracking (Saxena, Sekar & Puranik, 2008). This is a
syntactic task, the network has to learn how the compiler handles the parameters in the
prologue of a function. For this task, we have selected the data types used by Chua et al.
(2017). We have also included void, that should be intended as absence of parameters.

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 11/24

https://github.com/grantjenks/python-wordsegment/tree/master/wordsegment
https://github.com/grantjenks/python-wordsegment/tree/master/wordsegment
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

Formal definition
We have a set of types T : {pointer, enum, struct, char, int, foat, union, void}
and a set of functions f1; f2; . . . ; fn. In the signature recovery task given as input a function
fj the network has to output a multiset Pj with elements in T; this multiset represents the

parameters that the function takes with their type. The prediction is a multiset to model
functions having multiple parameters of the same type; e.g., if function sum takes two
integers the correct prediction is {int,int}.

To prevent misinterpretation of data types by the decompiler, we have chosen a subset
of all the data types available, while excluding the others. This is a representative subset, as
it is composed by the most various data types.

In detail, we have included int, because it can be used to represent both integers and
boolean values (as 0 and 1). We have inserted pointer, which is used to perform memory
accesses. We have also selected char, float and void data types to represent, respectively,
non numeric symbols, floating numbers and absence of parameters. Finally, to represent
complex data types, we have included enum, struct and union.

Metrics
The solutions proposed for the signature recovery task are evaluated using the accuracy,
the precision, and the recall. The metrics are computed using the micro averaging method,
which allows to properly evaluate a multiclass classification problem in unbalanced
datasets. This method, however, produces metrics with same values (Herrera et al., 2016).

DATA SOURCE
We select 131 packages from the core repository of Arch Linux (https://archlinux.org/
packages/), which is a Linux distribution optimized for x86-64 architectures. We build
each package using the PKGBUILD shell script used by the Arch Linux package manager.
These files are needed to compile software packages with makepkg, a compile script
included in the Arch Linux package manager.

We choose two compilers that are commonly used for research purposes, namely GCC
and Clang. To balance the total number of resulting binaries, five different versions for
each compiler have been considered. The selected compilers are the following: gcc versions
6, 7, 8, 9, 10, and, clang versions 4, 6, 8, 10, 11.

During compilation we keep debug symbols (−g) and we compile the packages with four
different optimization levels: −O0, −O1, −O2, −O3. We transform the binary function in
textual data formatted using JSON. In our training split, we provide both JSON and
corresponding binaries. These compiled files can be helpful for custom training. It should
be noted, however, that provided binaries are not stripped. Therefore, it is recommended
to strip files before using them as model input as they could contain debug information
that could unintendedly misguide a model that does not want to use such additional
information.

We discard a package if the compile process fails, or when the binaries produced by
different optimization levels are equal; this last case is to avoid the introduction of
duplicated functions in the dataset. Duplicate removal is performed in order to prevent

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 12/24

https://archlinux.org/packages/
https://archlinux.org/packages/
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

biases during evaluation, as done also in David, Alon & Yahav (2020), Massarelli et al.
(2019b), Chua et al. (2017).

DATASET
To compile the selected packages, we set up docker containers of Arch Linux and use
parallel processing. The compilation process generates 1,127,479 binaries in total. Arch
linux is a from scratch distribution that can be configured to compile packages with our
compiler and optimization level of choice taking care of packet dependencies with the
packet manager. From each compiled file, we extract a set of functions to be included in
BinBench. The disassembled assembly and CFGs are retrieved using Ghidra (https://
github.com/NationalSecurityAgency/ghidra), we remark that we do not use a symbolic or
dynamic approach, therefore we do not predict the target of indirect jumps and calls. This
choice is also done in Xu et al. (2017), Ding, Fung & Charland (2019), Massarelli et al.
(2019b). We use Pyelftools APIs to obtain the function signatures information (https://
github.com/eliben/pyelftools). The textual data are are stored in individual JSON files, one
for each binary function. The total number of source code functions is roughly 132,000,
this gives 4,408,191 different binary functions. The average number of similar functions is
S ¼ 26.

We split the binary functions in two sets, namely labeled dataset and blind dataset. The
former is intended for the training process, while the latter is meant for testing. The blind
split contains manually selected open source packages. The packages have been selected so
that they include applications of different kind that can cover the majority of behaviours in
software systems. For example, we have included packages for network communication
(e.g., OpenSSL), database management (e.g., SQLite), shell scripting (e.g., Bash) and archive
management (e.g., Tar).

The labeled dataset has two components. The first is the JSON component, a set of
binary functions in JSON format. The second is the binary component, which includes
compiled files from which the functions are extracted.

In detail, each JSON file in the labeled dataset represents a function with the following
fields:

� asm: instructions composing the function, represented in assembly and bytecode
formats. Each instruction block is linked to its offset,

� called: callee functions,

� callers: caller functions,

� cfg: CFG of the function. It is a directed graph. It is represented as a list of edges, defined
as pair source and destination blocks and list of blocks composing the graph (for each
block it is possible to retrieve the list of assembly instructions and the bytecode).

� compiler: compiler version used to produce the binary,

� name: the function name retrieved using the debug information,

� opt_level: optimization level used during the compilation,

� origin_file: name of the binary file from which the function has been extracted,

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 13/24

https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

� package: name of the package of the origin_file,

� parameters: list of parameters for the function. Each parameter is represented with its
name and type. Types can be one of the following: pointer, float, char, int, enum, struct,
union, void (the function takes no parameters).

� return_type: the return type of the function.

The two components of labeled dataset are specularly organized in folders and stored
separately. In particular, packages are represented as parent folders, named with the
package’s name. Furthermore, each package contains several subfolders, one for every
compiler version. In turns, each compiler folder contains a set of subfolders, one for each
optimization level. The optimization level folders are used to store the actual dataset files.
In detail, the JSON component stores functions in JSON format, named with
corresponding function names. The binary component, instead, stores binary files, named
with names of the compiled files. Figure 2 shows the structure a package folder in the
labeled dataset.

The blind dataset is the one used for EvalAI (explained in detail in the dedicated
section). This dataset only includes binary functions represented in JSON format. In this
case, function names are hidden. For this reason, each JSON function is named with a
unique ID instead of using its name. Furthermore, we have removed duplicate functions of
the blind dataset. Two functions are duplicated if they contains the same sequence of
instructions without considering memory offsets and immediate values. Any function that
is equal to another one is considered as a duplicate and removed. Finally, we stored
resulting JSON files in a single folder.

Figure 2 Folder structure of a package in the labeled dataset. (A) Folder in the JSON component. (B) Folder in the binary component.
Full-size DOI: 10.7717/peerj-cs.1286/fig-2

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 14/24

http://dx.doi.org/10.7717/peerj-cs.1286/fig-2
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

In the the blind dataset, each JSON file includes only a subset of the fields given in the
training set. In detail, a function in the blind dataset is represented by: asm, called, callers,
cfg.

For each task we have selected a set of datapoints, that are the predictions to be
computed by the model. In detail, a datapoint is a couple containing an entry in the dataset
and the label to be predicted on that entry (which depends on the specific task). The
datapoints are stored in individual JSONL files, one for each task in both datasets. In the
labeled dataset, JSONL files contain solutions for the predictions (i.e., label fields of the
datapoints are filled). In the blind dataset, instead, JSONL files do not contain any solution
(i.e., label in the datapoints are empty). These labels are the one that should be predicted
for solving EvalAI tasks. Therefore, they have to be filled by the model itself and sent back
to the benchmark.

The Table 1 shows the datapoints that have to be evaluated for each task. The Table 2,
instead, shows the number of datapoints of Function Search task. In this case, the
datapoints are splitted in two sets. The first one contains the queries, that are the functions
for which the model has to find their K similars. The second set is the database, in which
the K similar functions have to be found.

We point out that these datapoints are using a subset of the functions included in the
whole dataset. Each function in BinBench can be used to train/test an architecture on all
the proposed tasks.

EVALAI
To host our benchmark, we choose EvalAI (https://eval.ai/). This is an open-source
platform for performance testing of machine learning algorithms. In EvalAI, each user can
upload his own challenge and share it with the community. Furthermore, each challenge
can be divided in multiple phases. Thanks to this functionality, we are able to host our
benchmark. Therefore, we create the BinBench challenge, where each task is an EvalAI
phase.

Table 1 Tasks and datapoints contained in each dataset split.

Task name Labeled dataset Blind dataset

Binary similarity 732,376 243,044

Compiler provenance 89,744 9,600

Function naming 120,640 9,600

Signature recovery 120,259 9,086

Table 2 Number of datapoints for the function search task.

Dataset Query Database

Labeled 30,000 600,000

Blind 10,000 200,000

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 15/24

https://eval.ai/
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

For each task, we create two versions of the datapoint file, both in JSONL format and
containing the same datapoints. The first one is intended for the partecipants and therefore
it contains the unlabeled datapoints. The predicted labels are inserted in this file and then
sent back to BinBench to be evaluated. The second file contains the labeled version of the
datapoints. It is used as ground truth to evaluate partecipant solutions. Each entry for the
challenge is uploaded on BinBench and then compared with the correct solution.
Depending on the task being solved, different metrics will be returned. This evaluation
allows to check the performances of a model.

BASELINES
To generalize our analysis, we want to evaluate our benchmark with various architectures,
trained on different datasets. Therefore, whenever possible we use existing pretrained
models as baselines.

Binary similarity baseline
For binary similarity and function search, we use the pretrained model of SAFE (https://
github.com/gadiluna/SAFE), implemented with Tensorflow and Python. SAFE computes
an embedding in two phases. First, it embeds each assembly instruction using word2vec
model (Mikolov et al., 2013). Therefore, it computes the final embedding using a Self-
Attentive Neural Network. In detail, this network is a bi-directional RNN that produces a
summary vector for each input instruction, and then it computes the function embedding
as a weighted sum of all summary vectors. We embed each binary function using SAFE.
Therefore, we compute the cosine similarity between requested couples. We consider a
predefined threshold T ¼ 0:6 to convert each cosine similarity into a label. In detail, a
couple has been marked as similar (label +1), when the cosine similarity is greater than T,
and dissimilar (label −1) otherwise. This baseline achieves an AUC = 0.91 on the binary
similarity task.

Function search baseline
To solve function search task, we use the SAFE pretrained model described previously. In
detail, we first embed every binary function of the query list and the database. Therefore,
we compute binary similarity measure between each embedded query, and each embedded
database function. Finally, we analyze the resulting similarities. For each query, we retrieve
the K most similar database functions (which have greater value of the computed
measure). The outcomes are ordered with respect to the grade of similarity (i.e., the first
function is the most similar to q, the second is the second most similar and so on). This
ordering is respected for each function in the query list.

The results for the function search task are reported in Table 3.

Table 3 Results for the function search task.

Precision Recall F1 score nDCG score

0.26 0.26 0.26 0.36

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 16/24

https://github.com/gadiluna/SAFE
https://github.com/gadiluna/SAFE
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

Compiler provenance baseline
For compiler provenance, we use a pretrained model (https://github.com/lucamassarelli/
Unsupervised-Features-Learning-For-Binary-Similarity) of the graph embedding neural
network described inMassarelli et al. (2019a). The model embeds a CFG graph through two
components. The first one is the Vertex Feature Extraction, that maps each vertex of the
CFG into a feature vector. The second component, the Structure2Vec network, uses deep
neural networks to produce the final graph embedding. This component creates a vector for
every graph vertex. In the training phase, those vectors are dynamically updated using an
approach based on rounds. Vector updates take into account graph topology and previously
extracted features. Therefore, the graph embedding is computed as the aggregation of
updated vectors. The model is implemented using Tensorflow and Python. To solve our
task, we have first trained the model on its own dataset, and then we have used it to infer
requested datapoints. In detail, the dataset used for the training is the restricted compiler
dataset (https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-Binary-
Similarity), which includes several open-source projects compiled. The packages are
compiled for AMD64 using three different compilers (gcc 3.4, gcc 5.0 and clang 3.9) and
four optimization levels. Therefore, code has been disassembled using radare2 (https://rada.
re/). The results are showed in Table 4.

Function naming baseline
We use pre-trained transformer of in nomine function (https://github.com/gadiluna/in_
nomine_function) to solve function naming. In detail, to retrieve names, the solution
represents binary functions as list of normalized instructions. Furthermore, each function
name is transformed into tokens. To solve the task, two architectures are used, namely
Seq2Seq and Transformer. They are trained over a big dataset for a maximum of 30 epochs
with early stopping mechanism, Adam optimizer and batch size of 512. The model has
been implemented using OpenNMT-py. We evaluate our dataset with the pre-trained
Transformer. However, the obtain performances are lower with respect to the other tasks.
This may be caused from the fact that our dataset includes tokens on which the model was
not trained. Results are reported in Table 5

Signature recovery baseline
To solve signature recovery task, we have trained a Transformer from scratch through
OpenNMT-TF (https://github.com/OpenNMT/OpenNMT-tf). We have used the default
configuration of the architecture, and trained it over a portion of our training dataset. In
detail, the training set were composed by 115,000 randomly picked binaries, where 15,000
were used for the evaluation phase. During the training, we have used a batch size of 200,

Table 4 Results for the compiler provenance task.

Accuracy Precision Recall F1 score

0.81 0.78 0.88 0.82

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 17/24

https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-Binary-Similarity
https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-Binary-Similarity
https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-Binary-Similarity
https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-Binary-Similarity
https://rada.re/
https://rada.re/
https://github.com/gadiluna/in_nomine_function
https://github.com/gadiluna/in_nomine_function
https://github.com/OpenNMT/OpenNMT-tf
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

adam optimizer. We have evaluated our model every 100 steps stopping on the highest
result on the validation dataset. The highest performances has been observed from the
model that was trained in 3,850 steps. We remark the fact that metrics are computed using
the micro averaging method. The results are showed in Table 6.

DISCUSSION
Comparison with other datasets
We compare BinBench with the available literature. For a fair comparison, we have
reported the number of functions for each of the tasks included in BinBench, excluding the
dataset parts used for other tasks. In Table 7 we report the results of our comparison, that
we discuss below.

� Binkit Kim et al. (2020) proposes a dataset for the binary similarity task. The dataset is
obtained by compiling 51 GNU packages using nine different compilers and five

Table 5 Results for the function naming task.

Precision Recall F1 score BLEU

0.07 0.04 0.05 0.03

Table 6 Results for the compiler provenance task.

Accuracy Precision Recall

0.53 0.53 0.53

Table 7 Comparison with datasets available in literature.

Dataset Number of functions Evaluated task Open source

BinKit Kim et al. (2020) 75,230,573 ① Yes

In nomine function Artuso et al. (2021) 8,861,407 ④ Yes

a Diff Liu et al. (2018) 4,979,586 ① Yes

BinBench 4,408,191 ①, ②, ③, ④, ⑤ Yes

SAFE Massarelli et al. (2019b) 548,133 ①, 581,640 ②, 1,587,648 ③ ①, ②, ③ Yes

Graph embedding NNs Massarelli et al. (2019a) 95,535 ①, 2,040,246 ③ ①, ③ Yes

Toolchain provenance Rosenblum, Miller & Zhu (2011) 955,000 ③ No

Asm2Vec Ding, Fung & Charland (2019) 139,936 ② No

Gemini Xu et al. (2017) 129,365 ① No

Eklavya Chua et al. (2017) 119,352 ⑤ Yes

NERO David, Alon & Yahav (2020) 67,246 ④ Yes

Debin He et al. (2018) 238 ④ No

Note:
Evaluated tasks: ①, binary similarity; ②, function search; ③, compiler provenance; ④, function naming; ⑤, signature recovery.

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 18/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

optimization levels. The dataset is divided in subsets, one for each different compilation
options.

� In Nomine Function Artuso et al. (2021) uses AMD64 packages retrieved fromUbuntu
19.04 repository. Duplicates functions were removed as well as functions for which
symbolic names cannot be retrieved. The dataset is built for the function naming
problem.

� a Diff Liu et al. (2018) uses a dataset composed by two different collections of source
codes. For each of the projects included in the dataset, different versions have been
retrieved. The first collection is composed by 31 projects, compiled using GCC v5.4. The
second collection is composed by the binaries of 895 packages from Debian repository.

� SAFEMassarelli et al. (2019b) Proposes two datasets for the binary similarity task (one
for AMD64 and another for ARM) and one dataset for the function search task. The first
training set is obtained by nine projects for AMD64, compiled with three compilers and
four optimization levels. The second dataset is composed by two versions of Openssl,
compiled for ARM with GCC v5.4 and four optimization levels. For the task of function
search, the dataset is composed by packages of AMD64, compiled with 10 compilers and
four optimization levels.

� Graph Embedding NNs Massarelli et al. (2019a) proposes two datasets for compiler
provenance. The first is composed by open-source projects, compiled with three
different compilers and four optimization levels, while the second is constituted by
several projects, compiled with 11 compilers.

� Toolchain Provenance Rosenblum, Miller & Zhu (2011) solves the task of compiler
provenance on a dataset composed by eight open-source packages, compiled with nine
versions of three compilers, using two optimization options. The dataset is not released.

� Asm2Vec Ding, Fung & Charland (2019) proposes two different datasets for the
function search task. The first one is composed by binaries of 10 libraries, generated with
GCC v5.4 and four optimization levels. The second dataset is composed by a subset of
the previous one, composed by four libraries. It is built using Clang and four obfuscation
options of Obfuscator-LLVM. The dataset is not distributed.

� Gemini Xu et al. (2017) solves the binary similarity task. It uses a training dataset,
obtained by compiling two versions of OpenSSL, using GCC v5.4 in four optimization
levels. The dataset is not released.

� Eklavya Chua et al. (2017) solves the signature recovery task on a dataset composed by
Linux packages, compiled with two compilers and debugging symbols.

� NERO David, Alon & Yahav (2020) uses a dataset for the function naming task. The
dataset is built using packages from GNU repository.

� Debin He et al. (2018) uses a dataset composed by Linux packages, that is not being
released. The packages compiled in multiple optimization levels and different compilers.

We want to point out that BinBench is the only dataset built for the evaluation on all the
considered tasks. Furthermore, it provides both binaries and JSON representations of the

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 19/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

evaluated functions. Table 7 shows the number of functions included in each dataset.
Moreover, it shows whether or not a dataset is available for downloading.

CONCLUSIONS
We proposed BinBench a multi-task dataset for comparing deep neural networks solutions
for binary functions representation. The dataset has been designed to include several
different tasks to evaluate the expressiveness of a certain model. We released our dataset to
the public and we evaluated it using baselines for each task we proposed.

ACKNOWLEDGEMENTS
We want to thank Fabio Petroni for useful discussions in the first phase of this work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Francesca Console is supported by TIM S.p.A. through the PhD scholarship. This work
was supported by project SERICS (PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union—Next Generation EU. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
TIM S.p.A. through the PhD Scholarship.
SERICS: PE00000014.
European Union—Next Generation EU.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Francesca Console conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Giuseppe D’Aquanno conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.

� Giuseppe Antonio Di Luna conceived and designed the experiments, authored or
reviewed drafts of the article, and approved the final draft.

� Leonardo Querzoni conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 20/24

http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

The code used for creating the dataset is available at GitHub and Zenodo: https://github.
com/fr4nc3sc4/BinBench_;

fr4nc3sc4. (2022). fr4nc3sc4/BinBench_: v1.0 (v1.0). Zenodo. https://doi.org/10.5281/
zenodo.7296593.

The dataset is available at FigShare: Console, Francesca; Querzoni, Leonardo; Di Luna,
Giuseppe; D’Aquanno, Giuseppe (2023): BinBench: Dataset for Binary Function
Representations. figshare. Dataset. https://doi.org/10.6084/m9.figshare.21546111.v2.

REFERENCES
Allamanis M, Barr ET, Devanbu P, Sutton C. 2018. A survey of machine learning for big code and

naturalness. ACM Computing Surveys 51(4):1–37 DOI 10.1145/3212695.

Alrabaee S, Shirani P, Wang L, Debbabi M. 2015. SIGMA: a semantic integrated graph matching
approach for identifying reused functions in binary code. Digital Investigation 12(1):S61–S71
DOI 10.1016/j.diin.2015.01.011.

Artuso F, Luna GAD, Massarelli L, Querzoni L. 2021. In nomine function: naming functions in
stripped binaries with neural networks. ArXiv DOI 10.48550/arXiv.1912.07946.

Bahdanau D, Cho K, Bengio Y. 2015. Neural machine translation by jointly learning to align and
translate. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7–9, 2015, Conference Track Proceedings.

Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P,
Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A,
Ziegler D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J,
Berner C, McCandlish S, Radford A, Sutskever I, Amodei D. 2020. Language models are few-
shot learners. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, eds. Advances in
Neural Information Processing Systems. Vol. 33. Red Hook: Curran Associates, Inc, 1877–1901.

Caliskan A, Yamaguchi F, Dauber E, Harang RE, Rieck K, Greenstadt R, Narayanan A. 2018.
When coding style survives compilation: de-anonymizing programmers from executable
binaries. In: 25th Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18–21, 2018. Reston: The Internet Society.

Chen Y, Shi Z, Li H, Zhao W, Liu Y, Qiao Y. 2019. HIMALIA: recovering compiler optimization
levels from binaries by deep learning. Proceedings of the 2018 Intelligent Systems Conference
(IntelliSys) 1:35–47 DOI 10.1007/978-3-030-01054-6.

Chua ZL, Shen S, Saxena P, Liang Z. 2017. Neural nets can learn function type signatures from
binaries. In: Proceedings of the 26th USENIX Conference on Security Symposium, SEC’17.
Berkeley: USENIX Association, 99–116.

David Y, Alon U, Yahav E. 2020. Neural reverse engineering of stripped binaries using augmented
control flow graphs. Proceedings of the ACM on Programming Languages 4(OOPSLA):1–28
DOI 10.1145/3428293.

David Y, Partush N, Yahav E. 2016. Statistical similarity of binaries. ACM SIGPLAN Notices
51(6):266–280 DOI 10.1145/2980983.2908126.

David Y, Partush N, Yahav E. 2017. Similarity of binaries through re-optimization. In: Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017. New York, NY, USA: Association for Computing Machinery, 79–94.

David Y, Yahav E. 2014. Tracelet-based code search in executables. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation. New York:
ACM.

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 21/24

https://github.com/fr4nc3sc4/BinBench_
https://github.com/fr4nc3sc4/BinBench_
https://doi.org/10.5281/zenodo.7296593
https://doi.org/10.5281/zenodo.7296593
https://doi.org/10.6084/m9.figshare.21546111.v2
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1016/j.diin.2015.01.011
http://dx.doi.org/10.48550/arXiv.1912.07946
http://dx.doi.org/10.1007/978-3-030-01054-6
http://dx.doi.org/10.1145/3428293
http://dx.doi.org/10.1145/2980983.2908126
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

Devlin J, Chang M, Lee K, Toutanova K. 2019. BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1 (Long and
Short Papers). Minneapolis, MN, USA: Association for Computational Linguistics, 4171–4186.

DeYoung J, Jain S, Rajani NF, Lehman E, Xiong C, Socher R, Wallace BC. 2019. ERASER: a
benchmark to evaluate rationalized NLP models. CoRR DOI 10.48550/arXiv.1911.03429.

Ding SH, Fung BC, Charland P. 2019. Asm2Vec: boosting static representation robustness for
binary clone search against code obfuscation and compiler optimization. In: 2019 IEEE
Symposium on Security and Privacy (SP). Piscataway: IEEE, 472–489.

Dullien T, Rolles R. 2005. Graph-based comparison of executable objects (English version). SSTIC
5:1–13.

Escalada J, Ortin F, Scully T. 2017. An efficient platform for the automatic extraction of patterns
in native code. Scientific Programming 2017(6):1–16 DOI 10.1155/2017/3273891.

Escalada J, Scully T, Ortin F. 2021. Improving type information inferred by decompilers with
supervised machine learning. CoRR DOI 10.48550/arXiv.2101.08116.

Fu C, Chen H, Liu H, Chen X, Tian Y, Koushanfar F, Zhao J. 2019. Coda: an end-to-end neural
program decompiler. In: Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019,
Vancouver, BC, Canada. 3703–3714.

Gao H, Cheng S, Xue Y, Zhang W. 2021. A lightweight framework for function name
reassignment based on large-scale stripped binaries. In: Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2021. New York, NY, USA:
Association for Computing Machinery, 607–619.

Haq I, Caballero J. 2021. A survey of binary code similarity. ACM Computing Surveys (CSUR)
54:1–38 DOI 10.1145/3446371.

He J, Ivanov P, Tsankov P, Raychev V, Vechev M. 2018. Debin: predicting debug information in
stripped binaries. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18. New York, NY, USA: Association for Computing
Machinery, 1667–1680.

Hegde CV, Patil S. 2020. Unsupervised paraphrase generation using pre-trained language models.
CoRR DOI 10.48550/arXiv.2006.05477.

Herrera F, Charte F, Rivera Rivas A, Del Jesus MJ. 2016.Multilabel classification. Cham: Springer
DOI 10.1007/978-3-319-41111-8.

James G, Witten D, Hastie T, Tibshirani R. 2013. An introduction to statistical learning. Vol. 112.
Cham: Springer.

Katz O, Olshaker Y, Goldberg Y, Yahav E. 2019. Towards neural decompilation. CoRR
DOI 10.48550/arXiv.1905.08325.

Katz DS, Ruchti J, Schulte E. 2018. Using recurrent neural networks for decompilation. In: 2018
IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER).
Piscataway: IEEE, 346–356.

Khanuja S, Dandapat S, Srinivasan A, Sitaram S, Choudhury M. 2020. GLUECoS: an evaluation
benchmark for code-switched NLP. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Computational Linguistics,
3575–3585.

Khoo WM, Mycroft A, Anderson R. 2013. Rendezvous: a search engine for binary code. In: 2013
10th Working Conference on Mining Software Repositories (MSR). Piscataway: IEEE, 329–338.

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 22/24

http://dx.doi.org/10.48550/arXiv.1911.03429
http://dx.doi.org/10.1155/2017/3273891
http://dx.doi.org/10.48550/arXiv.2101.08116
http://dx.doi.org/10.1145/3446371
http://dx.doi.org/10.48550/arXiv.2006.05477
http://dx.doi.org/10.1007/978-3-319-41111-8
http://dx.doi.org/10.48550/arXiv.1905.08325
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

Kim D, Kim E, Cha SK, Son S, Kim Y. 2020. Revisiting binary code similarity analysis using
interpretable feature engineering and lessons learned. ArXiv preprint.
DOI 10.48550/arXiv.2011.10749.

Lakhotia A, Preda MD, Giacobazzi R. 2013. Fast location of similar code fragments using
semantic ‘juice’. In: Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop, PPREW ’13. New York, NY, USA: Association for Computing
Machinery.

Li X, Yu Q, Yin H. 2021. PalmTree: learning an assembly language model for instruction
embedding. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. New York: ACM.

Liu B, Huo W, Zhang C, Li W, Li F, Piao A, Zou W. 2018. α Diff: cross-version binary code
similarity detection with DNN. New York, NY, USA: Association for Computing Machinery,
667–678.

Massarelli L, Di Luna GA, Petroni F, Querzoni L, Baldoni R. 2019a. Investigating graph
embedding neural networks with unsupervised features extraction for binary analysis. In:
Proceedings of the 2nd Workshop on Binary Analysis Research (BAR).

Massarelli L, Luna GAD, Petroni F, Baldoni R, Querzoni L. 2019b. SAFE: self-attentive function
embeddings for binary similarity. In: Perdisci R, Maurice C, Giacinto G, Almgren M, eds.
Detection of Intrusions and Malware, and Vulnerability Assessment—16th International
Conference, DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings, volume 11543 of
Lecture Notes in Computer Science. Cham: Springer, 309–329.

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. 2013. Distributed representations of words
and phrases and their compositionality. In: Proceedings of the 26th International Conference on
Neural Information Processing Systems—Volume 2, NIPS’13. Red Hook, NY, USA: Curran
Associates Inc, 3111–3119.

Papineni K, Roukos S, Ward T, Zhu W-J. 2002. BLEU: a method for automatic evaluation of
machine translation. In: Proceedings of the 40th annual meeting of the Association for
Computational Linguistics. Minneapolis: Association for Computational Linguistics, 311–318.

Patrick-Evans J, Cavallaro L, Kinder J. 2020. Probabilistic naming of functions in stripped
binaries. In: Annual Computer Security Applications Conference, ACSAC ’20. New York, NY,
USA: Association for Computing Machinery, 373–385.

Patrick-Evans J, Dannehl M, Kinder J. 2021. XFL: extreme function labeling. CoRR
DOI 10.48550/arXiv.2107.13404.

Petroni F, Piktus A, Fan A, Lewis P, Yazdani M, De Cao N, Thorne J, Jernite Y, Karpukhin V,
Maillard J, Plachouras V, Rocktäschel T, Riedel S. 2021. KILT: a benchmark for knowledge
intensive language tasks. In: Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. Online:
Association for Computational Linguistics, 2523–2544.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. 2019. Language models are
unsupervised multitask learners. OpenAI Blog 1(8):9.

Rahimian A, Shirani P, Alrabaee S, Wang L, Debbabi M. 2015. BinComp: a stratified approach to
compiler provenance attribution. Digital Investigation 14(Supplement 1):S146–S155
DOI 10.1016/j.diin.2015.05.015.

Rajpurkar P, Zhang J, Lopyrev K, Liang P. 2016. SQuAD: 100,000+ questions for machine
comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Austin, Texas: Association for Computational Linguistics, 2383–2392.

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 23/24

http://dx.doi.org/10.48550/arXiv.2011.10749
http://dx.doi.org/10.48550/arXiv.2107.13404
http://dx.doi.org/10.1016/j.diin.2015.05.015
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

Ribeiro LF, Saverese PH, Figueiredo DR. 2017. Struc2vec: learning node representations from
structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17. New York, NY, USA: Association for
Computing Machinery, 385–394.

Rosenblum NE, Miller BP, Zhu X. 2010. Extracting compiler provenance from program binaries.
In: Proceedings of the 9th ACM SIGPLAN-SIGSOFTWorkshop on Program Analysis for Software
Tools and Engineering, PASTE ’10. New York, NY, USA: Association for Computing Machinery,
21–28.

Rosenblum N, Miller BP, Zhu X. 2011. Recovering the toolchain provenance of binary code. In:
Proceedings of the 2011 International Symposium on Software Testing and Analysis, ISSTA ’11.
New York, NY, USA: Association for Computing Machinery, 100–110.

Saxena P, Sekar R, Puranik V. 2008. Efficient fine-grained binary instrumentation with
applications to taint-tracking. In: Proceedings of the 6th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. New York: ACM, 74–83.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Lu, Polosukhin I.
2017. Attention is all you need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R,
Vishwanathan S, Garnett R, eds. Advances in Neural Information Processing Systems. Vol. 30.
Red Hook: Curran Associates, Inc.

Wang A, Singh A, Michael J, Hill F, Levy O, Bowman S. 2018. GLUE: a multi-task benchmark
and analysis platform for natural language understanding. In: Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels,
Belgium: Association for Computational Linguistics, 353–355.

Xu X, Liu C, Feng Q, Yin H, Song L, Song D. 2017. Neural network-based graph embedding for
cross-platform binary code similarity detection. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. New York: ACM.

Young T, Hazarika D, Poria S, Cambria E. 2018. Recent trends in deep learning based natural
language processing [review article]. IEEE Computational Intelligence Magazine 13(3):55–75
DOI 10.1109/MCI.2018.2840738.

Zhang M, Sekar R. 2015. Control flow and code integrity for COTS binaries: an effective defense
against real-world ROP attacks. In: Proceedings of the 31st Annual Computer Security
Applications Conference, ACSAC 2015. New York, NY, USA: Association for Computing
Machinery, 91–100.

Console et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1286 24/24

http://dx.doi.org/10.1109/MCI.2018.2840738
http://dx.doi.org/10.7717/peerj-cs.1286
https://peerj.com/computer-science/

	BinBench: a benchmark for x64 portable operating system interface binary function representations
	Background
	Related work
	Tasks
	Data source
	Dataset
	Evalai
	Baselines
	Discussion
	Conclusions
	flink10
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

