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ABSTRACT
Short utterance speaker verification (SV) in the actual application is the task of accepting
or rejecting the identity claim of a speaker based on a few enrollment utterances.
Traditional methods have used deep neural networks to extract speaker representations
for verification. Recently, severalmeta-learning approaches have learned a deepdistance
metric to distinguish speakers within meta-tasks. Among them, a prototypical network
learns a metric space that may be used to compute the distance to the prototype center
of speakers, in order to classify speaker identity. We use emphasized channel attention,
propagation and aggregation in TDNN (ECAPA-TDNN) to implement the necessary
function for the prototypical network, which is a nonlinear mapping from the input
space to the metric space for either few-shot SV task. In addition, optimizing only for
speakers in given meta-tasks cannot be sufficient to learn distinctive speaker features.
Thus, we used an episodic training strategy, inwhich the classes of the support and query
sets correspond to the classes of the entire training set, further improving the model
performance. The proposed model outperforms comparison models on the VoxCeleb1
dataset and has a wide range of practical applications.

Subjects Artificial Intelligence, Natural Language and Speech
Keywords Speaker verification, Meta-learning, Support set, Prototypical network, Global
classification, Episodic training strategy

INTRODUCTION
With the widespread application of information technology, there are more and more
scenarios that require user identity verification, such as online payments and application
logins. In biometric verification methods, speaker verification (SV) (Sarkar & Tan, 2021)
technology has incomparable advantages of convenience and non-contact over other
verification methods, such as fingerprint recognition. The goal of SV is to verify whether a
speaker given test sample is the enrolled speaker given a few utterances for each speaker.
However, existing SV methods need to use long speech of more than 15 s or tens of
utterances to perform more accurately, which limits the wide application of the SV
method. Therefore, researching for short utterances within 10 s, or even short utterances of
2 to 5 s, is of great significance to SV technology (Das & Prasanna, 2018; Poddar, Sahidullah
& Saha, 2018; Liu et al., 2022).

Conventional SV methods such as i-vector (Lei et al., 2014;Dehak et al., 2010), Gaussian
mixture model (Reynolds, Quatieri & Dunn, 2000) generally adopted a shallow model
to directly model probability of the data distribution. At present, most SV methods
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adopt deep learning, with a few using meta-learning. Researchers have proposed various
neural network architectures to extract important speaker information. The widely used
architectures include the time delay neural network (TDNN) (Liu et al., 2022;Desplanques,
Thienpondt & Demuynck, 2020; Garcia-Romero et al., 2020), ResNet (Chung, Nagrani &
Zisserman, 2018; Cai, Chen & Li, 2018; Xie et al., 2019), Transformer (Han, Chen & Qian,
2022; Zhang et al., 2022; Wang et al., 2022; Ranaldi & Pucci, 2023) and long short-term
memory (LSTM) networks (Wan et al., 2018). Most of the existing literatures are based on
the above network structures improvement or hybrid networks (Bai & Zhang, 2021; Ohi
et al., 2021). In addition, researchers have proposed aggregation strategies based on the
network architecture that aggregate frame-level features into utterance-level embeddings,
such as attention statistical pooling (ASP) (Okabe, Koshinaka & Shinoda, 2018), self-
attention pooling (SAP) (Kwon et al., 2021), and temporal average pooling (Chung, Nagrani
& Zisserman, 2018), multi-head attention pooling (India, Safari & Hernando, 2021), and
multi-resolution multi-head attention pooling (Wang et al., 2020) to represent speaker
embeddings. The attention mechanism is used not only in the pooling layers, but also
in constructing channel-wise attention module (Thienpondt, Desplanques & Demuynck,
2021), frequency-temporal convolution attention (Yadav & Rai, 2020) or frequency-
channel attention module (Liu et al., 2022) to extract fine-grained speaker embeddings.
In addition to building neural network architectures, researchers have designed a series of
objective functions to help the network to learn features more effectively.

One of the most popular meta-learning methods is prototypical networks (Ko, Chen
& Li, 2020), which learns an embedded network that transforms original input into
metric space representation. In the metric space, classification is performed by calculating
the distance from the prototype center of each class to be tested (the classification loss
function in this process is called prototypical network loss). Kumar et al. (2020) have
used prototypical network (PN) as a generalized learning method for speaker embedding.
Ko, Chen & Li (2020) have used PN for the first time for SV tasks. When the number
of samples for each speaker is limited, the performance of PN is better than traditional
methods. Kye et al. (2020) used PN and global classification over the whole samples that
achieved significant performance for speaker recognition with imbalance length pairs.

The existing short utterance SV methods based on deep learning depend on large-scale
datasets with thousands of speakers or tens of thousands of utterances (Xie et al., 2019;
Nagrani et al., 2017). In addition, the number of speakers in task is usually large, while the
classification objective of deep learning represents a single task, limiting the diversity of
training tasks. Unlike deep learning methods, meta-learning aims to enhance the learning
algorithm itself by considering the experience of multiple tasks. By training different meta-
tasks, meta-learning achieves fast generalization ability (Kumar et al., 2020). However,
optimizing only for classes in given meta-tasks may not be sufficient to distinguish
speakers. Thus, we perform a process called global classification (GC) in an episodic
manner, using the classes of the support set and the query set that correspond to the classes
of the entire training set. Kye et al. (2020) used global classification to solve the problem
that speaker recognition models perform poorly in real-world scenarios when the length of
the enrollment utterance and the test utterance is imbalanced. Their model was trained to
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match long-short utterance and achieved significant performance gains. We used PN and
global classification with episodic training for few-shot short utterance speaker verification
(SV). It is worth noting that a good embedding model can adjust the distance between
class prototypes, making it easier to classify prototypes. ECAPA-TDNN has good feature
extraction capabilities for either SV task with channel and context-dependent attention
mechanisms, Squeeze Excitation (SE), multi-layer feature aggregation, and residual blocks.
Therefore, it is used to learn meta-task embeddings for few-shot short utterances SV. The
distance between a query and its prototype is closer than the distance between the unknown
speaker and the prototype in the metric space.

In summary, our main contributions are as follows:
(1) We formulate a meta-learning approach with episodic training for few-shot short

utterance SV. Meta-learning considers the experience of many meta-tasks, which helps
distinguish speakers.

(2) ECAPA-TDNN is used to implement a nonlinear mapping of the original input to
the embedding space on the meta-tasks, making the class prototypes far apart from each
other in the embedding space, while each query sample clusters toward the same class
prototype group. We call ECAPA-TDNN-inspired Prototypical network as ETP.

(3) An episodic training strategy is designed to optimize the model for generating
discriminative speaker features, which combines prototypical network and global
classification.

PRELIMINARY
In this section, we introduce meta-learning, focusing on how it differs from machine
learning methods in terms of definition and speaker verification protocol. Meanwhile,
metric-based meta-learning is discussed. To make the narrative clearer, the frequently used
notations in Section 2 are illustrated in Table 1.

Meta-learning
Meta-learning is usually understood as ‘‘learning to learn’’, which aims to learn from the
experience of historical tasks, so that the model can learn how to better acquire knowledge
and learn new tasks quickly, while ensuring the accuracy of the algorithm (Kumar et al.,
2020; Hospedales et al., 2020). In short, learn how to learn across tasks.

To further explain the concept ofmeta-learning,machine learning andmeta-learning are
compared. Machine learning learns a model from a dataset
D={(x1,y1),(x2,y2),...,(xN ′ ,yN ′ )}. Given inputs and labels, a predictive model ŷ = fθ (x)
with hyperparameters θ is trained, in order to get the predicted values as close to the true
value as possible. The optimal model parameters are as follows:

θ∗= arg minθ L(D;θ,φ) (1)

where L (•) is the loss function that computes the error of the true and predicted values,
and φ is pre-specified.
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Table 1 The mathematical notions and parameters used in the Section 2 are summarized.

Notations Description

D, Dt The whole dataset for machine learning, the t -th meta-task (or episode) dataset.
S, Q The support set S, the query set Q.
x, y Sample, label.
fθ ( · ) Predictive model with hyperparameters θ .
Fφ( · ) The learning algorithm Fφ( · ) that can learn the base model, φ is learnable hyperparameters.
L ( · ) Loss function.
dθ ( · ) Metric function.

Meta-learning transfers knowledge across tasks, rather than learning from scratch for
each task (Baik et al., 2021). It is assumed thatφ is learnable rather than pre-specified. Figure
1 shows the meta-train phase. Image is more intuitive than speech, so image classification is
used as an example. Given Tmeta-tasks (or called episodes) denoted as {Dt }

T
t=1, researchers

train a learning algorithm Fφ(•) that can learn the base model ŷ = fθ∗(x), by solving:

φ∗= arg maxφ log p(φ|{Dt }
T
t=1). (2)

Each meta-task (or episode) dataset is denoted as Dt = (S, Q)(t), consisting of a training
set and a test set, also known as the support set S and the query set Q. The support set is
used for learning and training Fφ(•). The query set is used to calculate the loss of model
fθ (· ) learned by Fφ(•). According to the loss value, the model parameters are updated by
backpropagation. The t -th meta-task base model parameters are as follows:

θ∗
(t )
= arg maxθ

∑
(x,y)∈Q(t )

log p(y|φ∗,x). (3)

In summary, in the base learning process, base tasks such as speaker recognition defined
by a single task dataset and training objectives are solved. In the meta-learning process,
the meta-task based on the meta-objective and meta-task datasets is to update the base
model (Sun et al., 2019; Lang et al., 2022). Most meta-learning methods are applied to
few-shot tasks (Chang et al., 2022). The model trained by a small number of samples can
quickly adapt and master the new few-shot task. The architecture of the meta-learning
model is similar to the deep learning model. It is logically divided into classifier and feature
extractor. The feature extractor is composed of a deep neural network.

Metric-based meta-learning
Metric-based meta-learning aims to learn an embedding network that transforms the
raw input into a metric space representation. In the metric space, the class is predicted
by comparing the similarity between query set samples and support set samples. The
most popular metric-based meta-learning methods include prototypical networks, siamese
networks (Koch, Zemel & Salakhutdinov, 2015), relation networks (Sung et al., 2018), and
matching networks (Vinyals et al., 2016).
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Figure 1 Meta-train phase.
Full-size DOI: 10.7717/peerjcs.1276/fig-1

The predicted probability over a set of known labels y is a weighted sum of labels of
support set samples. The weight is generated by the metric function dθ (· ) that computes
the similarity between two samples.

Pθ (y|x,S)=
∑

(xi,yi)∈S
dθ (x,xi)yi. (4)

Wang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1276 5/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1276/fig-1
http://dx.doi.org/10.7717/peerj-cs.1276


Speaker verification protocol
The SV based on deep learning process can be divided into three phases: During the
training phase, a large number of speaker utterances are fed into the neural network, which
learns a predictive model to classify the speakers. During the enrollment phase, the new
speaker (different from the speaker in the training phase) utterances are inputted into the
trained model without the classification for generating a new speaker model. Each new
speaker has its speaker model. During the evaluation phase, the utterance to be verified is
inputted into the trained model to obtain its embedding representation. Then, we calculate
the similarity between the embedding of the utterance to be tested and the target speaker
model, judging whether the speaker is the target speaker according to the similarity score
and the preset threshold. If the score exceeds the threshold, it is confirmed that the speaker
of the utterance being tested is the target speaker, and vice versa.

The SV process based on meta-learning is different from the SV based on deep learning,
includingmeta-train SV phase andmeta-test SV phase. During themeta-train phase, a large
number of trainingmeta-task sets are inputted into the neural network. In each episode, the
support set is used for training model Fφ(•). The query set is used for calculating the loss
of model fθ (· ) learned by the learning algorithm Fφ(•). The loss values of all meta-tasks
are added to obtain the model loss value. According to the loss, the model parameters are
updated by backpropagation until convergence, and thus the model is successfully trained.
During the meta-test phase, in each episode, the support set is used for adapting the new
SV meta-learner. The query set is used for evaluating the performance of the meta-learner
for fast adaptation to unseen SV tasks.

METHOD
Problem setup
Suppose that D is the entire training set, which is divided into several episodes to
mimic few-shot SV task. In each episode, N speakers are randomly selected from the
training set. K+M samples are randomly selected for each speaker. Meta-tasks include
support set S= {S1,...,SN } and query set Q= {Q1,...,QN }. Sn = {(x s1,y

s
n),...,(x

s
K ,y

s
n)},

Qn={(x
q
1 ,y

q
n),...,(x

q
M ,y

q
n)} respectively represent the labeled sample set of the n-th speaker

in the support set and the query set. K, M is respectively the number of utterances of Sn,
Qn.xn,i represents the i-th utterance of the n-th speaker. y is the corresponding label of xn,i,
yn= n.

Learning embedding for few-shot short utterances SV
The key to the metric-based meta-learning approach for few-shot SV task is to learn meta-
task embeddings (Ye et al., 2020), where embeddings from the same speaker are closer
than embeddings from different speakers. Therefore, we learn meta-task embeddings to
modify the prototypes to make them easier to distinguish. The overall architecture of ETP
is shown in Fig. 2. The raw utterances in the support set and query set are pre-processed
(pre-emphasis, frame addition, short-time Fourier transform and Mel-filterbank filtering
operations are performed sequentially.) to obtain the Mel-filterbank (MFB) features (Ohi
et al., 2021). One utterance corresponds to one MFB feature matrix with 80 rows and H
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Figure 2 Network architecture of ETP.
Full-size DOI: 10.7717/peerjcs.1276/fig-2

columns. 80 is the dimension of a frame of MFB features, and H is the number of frames.
MFB feature matrix is used as the input of ETP for feature extraction. We propose ETP,
which integrates ECAPA-TDNN into the prototypical network to implement a nonlinear
mapping of the original input to the metric space on the meta-tasks. The distance between
a query and its prototype is closer than the distance between the unknown speaker and the
prototype in the metric space.

ECAPA-TDNN contains the advantages of x-vector and ResNet architecture, adding
residual connections between frame-level layers to enhance speaker characteristics and
avoid gradient degradation. The convolution kernel of CNN has a fixed height, which is the
same as the dimension of the speech frame, to perform convolution along the direction of
the frame. We built three SE-Res2Blocks, using one-dimensional dilated convolution with
the dilated factors of 2, 3, and 4. The outputs of the three SE-Res2Blocks are connected. The
ASP is to introduce an attention mechanism in the statistical pooling layer to calculate the
importance of each frame. Then, the attention pooling layer is combined with the standard
deviation for aggregation, which can represent the features of any distance in the context
to capture the long-term characteristics of speakers more effectively. The output features
of ASP are mapped to 256-dimensional features through a fully connected layer (FC).

SE-Res2Block consists of two convolutional layers, Res2 Dilated Conv1D module and
SE, which are used to effectively learn feature information. As shown in Fig. 3, the size
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Figure 3 SE-Res2Block architecture.
Full-size DOI: 10.7717/peerjcs.1276/fig-3

of the convolution kernel of the two convolution layers is set to c ×1, and the size of the
convolution kernel of Res2 Dilated Conv1D is set to (c/s) ×3. Dilated convolution layers
with different dilated factors in Res2 Dilated Conv1D can effectively expand the receptive
field of the convolution layer without additional computation complexity. We use batch
normalization BN and activation function ReLU between layers. In addition, to avoid the
gradient vanishing or exploding, a residual connection is constructed.

Res2Dilated Conv1D with the scale dimension processes multi-scale features by
hierarchical residual connections internally, which is beneficial to extract local and global
information (Gao et al., 2019). It also uses one-dimensional dilated convolution to expand
the receptive field and obtain more useful information without changing the size of the
convolution kernel (Zhang, Wang & Jung, 2018). The definition of time dilated convolution
can be written as:

(X∗lw)(t )=
∑

p+lq=t
X(p)w(q) (5)

Wang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1276 8/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1276/fig-3
http://dx.doi.org/10.7717/peerj-cs.1276


where X represents the speech signal, w represents the convolution kernel. l represents the
dilated convolution factor, which is the interval when the convolution kernel processes the
data, l ∈Z+.

In the Res2 Dilated Conv1D module, the number of the frame x is H, xi ∈Rc′×H . We
divide x into s subsets xi, where i∈ {1,2,...,s}, which replace c-channel convolution kernels
with a set of c′-channel convolution kernels (c= s×c′). It changes the number of channels.
The convolution kernel group is connected layer by layer. This process is expressed in
mathematical form, that is, except for x1, each feature subset xi has its corresponding
convolution kernel wi. We add the current feature subset xi and the output result of the
previous convolution operation wi−1xi−1, and then perform the convolution operation
with the current convolution kernel. The output after convolution is yi, until all the feature
data is processed. yi is shown in formula (6):

yi=


xi i= 1
wixi i= 2.
wi(xi+yi−1) 2< i≤ s

(6)

All the features yi are spliced and sent to a set of convolutional layers with the convolution
kernel of c ×1 for information fusion to obtain feature data. Since the convolutional layer
does not effectively use the channel information of the features, SE is introduced to obtain
the channel relationship and improve the performance of the task system. First, global
average pooling is used to compress global spatial information to channel-level statistical
information (Hu, Shen & Sun, 2018). The squeeze operation reduces the time dimension
to generate statistics z ∈RC . The c-th channel of z is given by:

zc = Fsq(uc)=
1
T

∑T

t=1
uc,t (7)

where uc represents the c-th channel characteristic of U.
Secondly, two FCs are used to capture the interdependencies between the channels

and assign corresponding weights to each channel feature. This process is an excitation
operation as follows:

s= Fex(z,W )= σ (W2δ(W1z+b1)+b2) (8)

where σ is the sigmoid function, δ is the ReLU function, and Fex (· ) represents an excitation
operation.

Finally, the weight information of each feature channel is multiplied by the feature
information, so that the network can selectively focus on important features and suppress
unnecessary features, to achieve adaptive calibration of feature channels. Themultiplication
of feature uc and scalar sc is shown in formula (9):

ũc = sc ·uc . (9)
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Figure 4 Metric space of the prototypical network.
Full-size DOI: 10.7717/peerjcs.1276/fig-4

Episodic training
We use prototypical network to be trained in an episodic manner. Metric space of the
prototypical network is shown in Fig. 4. The prototypical network learns a metric space,
calculating the distance from the prototype center of each speaker to be tested speech.
Firstly, the prototype center pn of the speaker is calculated, which is the average of all
samples in each type of support set, as shown in formula (10):

pn=
1
K

∑
xn,i∈Sn

f (x sn,i) (10)

where n= 1,2,...,N , i= 1,2,..,K ,f (·) is the model required for SV, which is inputted
MFB features to extract speaker features. Then the distance distribution between each
query sample and the prototype center of the N speaker is calculated as shown in formula
(11):

p(yqn = n|xqn,i)=
exp(d(f (xqn,i),pn))∑N
n′ exp(d(f (x

q
n,i),pn′ ))

(11)

where, d (· ) is a cosine distance measurement function for measuring between the query
sample and the center of the class prototypes. Finally, the loss of calculating the sub-task is:

Jmeta=
1
N

∑N

n=1

1
M

∑
(xqn,i,y

q
n)∈Qn
− log p(yqn |x

q
n,i). (12)

Given a support set containing the target class, we calculate the prototype center of
each target class and classify it according to the closest metric distance. However, only
optimizing the meta-task model cannot be sufficient to distinguish speakers. Therefore, it
is necessary to globally classify each sample of each meta-task against the whole dataset, so
that the model can better recognize the speaker. Assume that each class has a set of global
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prototypes ω={wn ∈Rd
|n= 1,...,N

′

}, N
′

is the number of speakers in the entire training
set. d is the dimension of the speaker feature. Then the probability that the utterance x is
the class y :

p(y|x;ω)=
exp(d(f (x),wy))∑N ′

n′=1exp(d(f (x),wn′ ))
. (13)

Then, the global loss is calculated as Eq. (14):

Jglobal(ω)=
1

K +M

∑
(x,y)∈S∪Q

− logp(y|x;ω). (14)

Finally, the loss of the meta-task and the global loss are added as follows:

J = Jmeta+ Jglobal(ω). (15)

EXPERIMENTS
Datasets
The VoxCeleb2 and VoxCeleb1 datasets (Nagrani et al., 2017), which have no identical
speakers between them, are used for the experiments. VoxCeleb2 was published by the
University of Oxford in 2018 and contains 1,128,246 utterances from 5,994 speakers
downloaded from YouTube. VoxCeleb1 contains 153,516 utterances for 1,251 speakers,
which is composed of VoxCeleb1 test set and dev set. Speech is highly variable and contains
various background noises. The average length of the full utterances of VoxCeleb1 and
VoxCeleb2 are 8.2 and 7.8, respectively. SITW (McLaren et al., 2016) contains 299 speakers
with average of 8 voices each. The speech is collected in complex scenes with noise,
reverberation, etc.

Data representation
This article uses 80-dimensional MFB features with a 25ms window and a 15ms frame shift
as the input of the model. We normalized the speech frame by subtracting the average value
and dividing it by the standard deviation of all frequency components, without performing
any voice activity detection (VAD) operation and data augmentation. During the training
process, we set 1-shot 100-way in each episode and the number of query samples to 2.
Set the length of the utterance to 2 s. If the duration of the utterance is less than 2 s, this
utterance segment is copied to a duration of 2 s.

Implementation details
We implement amodel with 512 channels in the convolutional layers using PyTorch.When
only the global classification objective is used, the mini-batch size is 256. When combining
PNL and GC optimize model, the episode size is 100. We use the SGD optimizer with the
momentum set to 0.9 and use the weight decay set to 2e−4. Set the initial value of the
learning rate to 0.1 and its decay rate to 10 until convergence. The experiment was done
with NVIDIA V100 and T4 GPU.
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Baseline models
x-vector.The pre-trained x-vectormodel except for the final layer is used as an initialization
model (Kumar et al., 2020). The Adam optimizer with an initial learning rate of 1e−3. The
learning rate is reduced to 1e−6. Dropout and batch normalization are used at all layers
for regularization.

ThinResNet-34. The model is trained using the Adam optimizer. The initial learning
rate of 0.001 is reduced by 10 after every 36 epochs until convergence. The mini-batch size
is 160.

Evaluation metrics
Equal error rates (EER) and detection cost function (DCF) are applied to evaluate the
performance of speaker verification systems (Xu et al., 2021). The evaluation metrics EER
and DCF refer to two parameters, which are False Acceptation Rate (FAR) and False
Rejection Rate (FFR). FAR is the percentage of acceptance in the sample that should not
be accepted. FRR is the percentage of rejection in the sample that should not be rejected.
The EER is equal to the value when FAR and FRR are equal (Avila, O’Shaughnessy & Falk,
2021). The lower the EER value, the better the performance of the system is required.

RESULT
The impact of feature dimensions
The ETP is trained on the VoxCeleb1 dataset and tested on the original test set of VoxCeleb1
which contains 37,720 full utterances from 40 speakers. To evaluate the impact of feature
dimensionality on the SV task, we select and compare 40-dimensional MFB features and
80-dimensional MFB features.

The experimental results in Table 2 show that the performance of the model trained
with 80-dimensional MFB performs slightly better than that trained with 40-dimensional
MFB features, regardless of which episodic training strategy PNL or GC or combining
PNL and GC is used to optimize the model. It indicates the effectiveness of increasing data
dimension. Data with larger data dimensions contain more speaker information, taking
up more disk space and requiring more computation, but the model performance is not
significantly improved, which may represent that data with larger dimensions are sparser
than data with smaller dimensions.

Verification on VoxCeleb1
The model is trained on the VoxCeleb2 dataset and evaluated on three different test lists
from the VoxCeleb1 data set and eval core-core trial pairs of SITW dataset: (1) the original
test list; (2) the expanded VoxCeleb1-E list contained training sets and VoxCeleb1 test
set; and (3) the challenging VoxCeleb1-H list. In addition, there are a few errors in the
VoxCeleb1-E and VoxCeleb1-H lists. Xie et al. cleaned up the errors and publicly released
the cleaned test lists. We do not add any speech time, which may result in performance
improvement.

Table 3 shows the performance of models on the original test set of VoxCeleb1. We
use short utterance training our models to evaluate the performance of the model on
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Table 2 Performance comparison on effects of data dimensions.

Data dimensions P G P+G

EER% DCF EER% DCF EER% DCF

40D 2.74 0.316 2.67 0.312 1.37 0.180
80D 2.56 0.294 2.48 0.279 1.20 0.146

Notes.
D, Dimension; P, Prototypical Network Loss; G, Global classification; G+P, Global classification and Prototypical Network Loss; EER, Equal Error Rates; DCF, Detection
Cost Function.

Table 3 Results for verification on the full utterance.

Architecture Loss Aggregation Dims EER% DCF

ThinResNet-34 (Xie et al., 2019) Softmax GhostVLAD 512 3.22 –
ThinResNet-34 (Xie et al., 2019) Softmax TAP 512 10.48 –
ResNet-34 (Chung, Nagrani & Zisserman, 2018) Softmax+C TAP 512 5.04 –
ResNet-50 (Chung, Nagrani & Zisserman, 2018) Softmax+C TAP 512 4.19 0.449
x-vector (Kumar et al., 2020) P SP 512 3.48 0.331
ETP P ASP 256 3.46 0.359
ETP G+P ASP 256 2.36 0.241

Notes. Bold values represent the optimal values, which are highlighted for emphasis.
P, Prototypical Network Loss; G+P, Global classification and Prototypical Network Loss; C, Contrastive loss; AAM, Additive Angular Margin; ASP, Attentive Statistics
Pooling; TAP, Temporal Average.

full utterances. ETP exceeds the ThinResNet-34 (Xie et al., 2019) and ResNet-50 (Chung,
Nagrani & Zisserman, 2018) models (EER is 2.36% vs 3.22% and 4.19%). ETP and x-vector
are both meta-learning methods. ETP with episodic training strategy PNL is comparable to
the x-vector (EER is 3.46% vs 3.48%).When combining PNL andGC jointly to optimize the
model, ETP outperforms the x-vector (EER is 2.36% vs 3.48%), indicating the effectiveness
of GC. GC enhances information transfer across meta-tasks by each sample of each
meta-task against the whole dataset, improving the performance of the model. Similarly,
the last two rows of Table 3 show that the combination of PNL and GC to train the model
outperforms the single PNL.

Table 4 shows the comparison results of model performance on VoxCeleb-E, VoxCeleb-
H test sets, the cleaned test sets and SITW eval dataset. VoxCeleb1-E contains a large
number of expanded utterances, which can be used to fully test the performance of models.
It is difficult to evaluate the model on the VoxCeleb1-H list, due to it contains speakers
from the same gender and nationality, which the similarity between speakers is high. ETP
outperforms ThinResNet-34 and ResNet-50 in all cases. ETP can be generalized for target
tasks and further enhance performance during the testing phase of SV.

Verification based on the length of short utterances
We randomly sample 100 positive sample pairs and 100 negative sample pairs in the
VoxCeleb1 dataset to obtain test sample pairs, testing the performance ofmodels. Randomly
cut the test speech for 1 s, 2 s, and 5 s. If the length of the test utterance is shorter than the
required length, copy the utterance segment itself and set it as the target length.

Wang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1276 13/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1276


Table 4 Results for verification on VoxCeleb-E, VoxCeleb-H and SITW.

Architecture Loss VoxCeleb-E VoxCeleb-E* VoxCeleb-H VoxCeleb-H* SITW

EER% DCF EER% DCF EER% DCF EER% DCF EER% DCF

ThinResNet-34
(Xie et al., 2019)

Softmax 3.25 – 3.24 – 5.17 – 5.06 – 4.98 0.539

ResNet-50
(Chung, Nagrani & Zisserman, 2018)

Softmax+C 4.43 0.524 – – 7.43 0.673 – – 6.78 0.667

ETP G+P 2.41 0.276 2.27 0.262 4.15 0.372 4.03 0.356 3.90 0.428

Notes. Bold values represent the optimal values, which are highlighted for emphasis.
*cleaned up versions of the test lists by Xie et al. (2019).
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Table 5 Length of short utterances on performance.

Architecture Loss Aggregation 1s 2s 5s

EER% EER% EER%

ThinResNet-34 (Xie et al., 2019) Softmax GhostVLAD 12.72 6.59 3.36
x-vector (Kumar et al., 2020) P SP 8.35 5.41 3.97
ETP P ASP 8.19 5.30 3.92
ETP G ASP 7.73 4.95 3.71
ETP G+P ASP 6.44 4.16 3.34

Notes. Bold values represent the optimal values, which are highlighted for emphasis.

Table 5 shows the effect of the length of short utterances on the performance. ETP
outperforms baseline models in all cases. The episodic training manner is helpful for
mining the novel speaker information from few-shot SV tasks to improve the discriminative
ability of prototypes. Meanwhile, when the utterance length is 5 s, all models achieve the
lowest EER value. There is a strong correlation between model performance and utterance
length. With the increase of utterance length, more relevant speech signals from speaker
are captured so that the EER value is lower. To prove the effectiveness of the episodic
training strategy of PNL and GC, the ablation experiment is implemented. The experiment
on 1 s, 2 s, and 5 s utterances or full utterances (Table 3) shows that the method with the
prototypical network and global classification is more effective than the method using the
prototypical network or global classification alone. The episodic training manner can make
the distance between a query and its prototype closer than between the unknown speaker
and the prototype in the metric space, effectively distinguishing speakers.

Ablation experiment
In order to measure the effectiveness of the Res2 Dilated Conv1D module in the few-shot
short utterances speaker verification task, ablation experiments are performed on the
models. The Res2Dilated Conv1D module is replaced by a common one-dimensional
convolutional layer.

As shown in Table 6, the Res2 Dilated Conv1D module significantly improves the
performance of the model when it is testing the full utterances in the three different datasets
of VoxCeleb1. The results in the second column of Table 7 show that the parameters of
the ETP are reduced by 23.2%. The results in the fifth column of Table 7 show that when
the prototypical network loss is combined with the global classification, the EER of ETP
is relatively reduced by 14.5% than that of the NR-ETP; when using only the PNL, the
performance of the ETP is relatively 0.96% higher than that of the model the NR-ETP.
It is proved that the multi-scale features extracted by Res2 Dilated Conv1D represent the
personality information of the speaker, which improves the performance of the model.
ETP and NR-ETP take around 4 days to train.

CONCLUSION
In this article, we used the meta-learning method for solving the few-shot short utterances
SV task. We sampled from the training set to construct a large number of new subtasks to
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Table 6 Ablation study of ETP on VoxCeleb1. NR-ETP: EPT without Res2Dilated Conv1D.

Architecture Loss VoxCeleb1 VoxCeleb-E E* VoxCeleb-H

EER% DCF EER% DCF EER% DCF EER% DCF

NR-ETP G+P 2.98 0.339 2.93 0.325 2.84 0.324 4.87 0.431
ETP G+P 2.36 0.241 2.41 0.276 2.27 0.262 4.15 0.372

Notes. Bold values represent the optimal values, which are highlighted for emphasis.

Table 7 Ablation study of ETP on short utterances. NR-ETP: EPT without Res2Dilated Conv1D.

Architecture Params Loss Test 1s 2s 5s

EER% EER% EER%

NR-ETP 6.9M P Vox1 8.27 5.57 3.98
NR-ETP 6.9M G+P Vox1 7.59 5.13 3.85
ETP 5.3M P Vox1 8.19 5.30 3.92
ETP 5.3M G+P Vox1 6.44 4.16 3.34

Notes. Bold values represent the optimal values, which are highlighted for emphasis.
Vox1, VoxCeleb1 dev sets and VoxCeleb1 test sets.

mimic few-shot scenario. ECAPA-TDNN was applied to the prototypical network to learn
meta-task embeddings for either meta-task, where embeddings from the same speaker
are closer than embeddings from different speakers. We used global classification and
prototypical network in an episodic manner to train a model to obtain discriminative
speaker features. The SV task was tested on the VoxCeleb1 dataset. The experimental
results show that the performance of this model is better than the comparison model.
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